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Abstract

We propose a generic framework MEDUSA (Multimodal Estimated-Depth Unifica-
tion with Self-Attention) to fuse RGB and depth information using multimodal trans-
formers in the context of object detection. Unlike previous methods that use the depth
measured from various physical sensors such as Kinect and Lidar, we show that the
depth maps inferred by a monocular depth estimator can play an important role to en-
hance the performance of modern object detectors. In order to make use of the estimated
depth, MEDUSA encompasses a robust feature extraction phase, followed by multimodal
transformers for RGB-D fusion. The main strength of MEDUSA lies in its broad applica-
bility for any existing large-scale RGB datasets including PASCAL VOC and Microsoft
COCO. Extensive experiments with three datasets show that MEDUSA achieves higher
precision than several strong baselines.

1 Introduction
The advances of deep neural networks (DNNs) have expedited the development of accurate
object detection methods, such as Faster-RCNN [30], SSD [17], YOLO [29], and DETR [2].
However, most existing methods still struggle with close (or overlapping) objects, complex
background, and varying illumination [4, 11]. These methods rely on only color intensity for
detecting multiple objects and may not recognize geometric variations of the objects in such
subtle situations. To complement the inherent limitation of color information, one could also
use depth information as it is less sensitive to color or lighting variations [4, 36, 45].

Significant performance improvements have been witnessed by exploiting depth infor-
mation in scene classification [14, 44] and semantic segmentation [36, 47]. With this increas-
ing interest in depth information, numerous RGB-D datasets, such as NYU [32], KITTI [20],
and SIP [4], have been constructed. However, depth information is available for a very small
proportion of images because acquiring the ground-truth depth at scale still remains a chal-
lenge, and thus its widespread adoption in object detection is hindered.

To alleviate the lack of depth information, leveraging estimated depth maps using off-
the-shelf models is a promising direction for object detection as recent monocular depth
estimators such as [1, 15, 24, 27] are shown to perform quite well and robust across different
scene types. For instance, MiDaS [27] can effectively learn to infer dense depth maps from
a single-view image by mixing multiple available RGB-D datasets during training. The
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Figure 1: Overview of the proposed framework: MEDUSA encompasses a robust feature
extractor for RGB and estimated depth inputs, followed by the multimodal transformer for
determining their complementary fusion via the attention mechanism.
robustness and generality of recent estimators facilitate numerous vision tasks leveraging
depth maps from regular RGB images without requiring the ground-truth depth information.

In this paper, we propose a generic object detection framework, MEDUSA, that can
leverage inferred depth maps with RGB images with multimodal transformers. Differently
from the typical early and late fusion schemes for RGB-D input [7, 22, 41, 42], our detection
framework consists of the three components shown in Figure 1:
• The Siamese network learns hierarchical features from RGB and depth inputs through

shared parameters. By the transferability of deep neural networks, each single-channel
depth map is duplicated into three channels and treated as a grayscale image to employ the
same backbone as for RGB images. This conversion relieves the requirement of a suitable
pretrained backbone for every modality.

• The feature refiner further processes the extracted features. To minimize the negative
effects from erroneous depth information, we use region- and channel-wise attention to
robustly focus on reliable regions and channels. We guide the region-wise attention by
using a global saliency map of RGB features to be robust to noisy depth measurements.

• The multimodal transformer first reasons the RGB and depth features that can contribute
to finding objects via self-attention in the encoder. This process helps simplify object ex-
traction and localization for the decoder. Then, the decoder performs object-level RGB-
D fusion, which applies different fusion strategies per object. Given a fixed number of
learned object queries, MEDUSA captures complex correlations between RGB and depth
features for each object and directly outputs the final set of predictions.

To our knowledge, this is the first generic framework that can leverage depth for tradi-
tional object detection with multimodal transformers. Compared to most previous work on
early and late fusion that simply concatenates RGB and depth inputs (or features), MEDUSA
consists of three well-designed components that work well even with the inferred depth. In
particular, MEDUSA determines a fusion strategy for each object individually by employ-
ing the transformer architecture based on the DETR detector [2]. Our framework is flexible
such that each component can be easily replaced with a better one when available; the per-
formance benefit of leveraging our framework remains consistent even when using the most
recent detector, Deformable-DETR [48], as a wheel to build our multi-modal transformers.
We evaluate our method on three benchmark datasets with inferred or ground truth depth
maps: Pascal VOC [3], Microsoft COCO [16], and SUN-RGBD [33]. MEDUSA outper-
forms existing early and late fusion approaches for object detection. More precisely, each
component of MEDUSA contributes to improving the performance in a synergistic manner.

2 Related Work
RGB-D Detection Learning rich features from the combination of RGB and depth in-
formation has attracted much attention in recent years. In particular, semantic segmen-
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Domain Method Depth Format Feature Extractor Object Detector Dataset

Indoor

Gupta et al. [7] HHA Two-stream SVM NYUv2
Hou et al. [10] HHA Two-stream R-CNN NYUv2
Xu et al. [41] HHA Three-stream Fast-RCNN SUN RGB-D
Macanu et al. [21] Depth Map Two-stream Faster-RCNN SUN RGB-D
Ophoff et al. [22] HHA Two-stream R-CNN CENTAURO

Car Driving Yang et al. [42] Depth Map Two-stream YOLOv2 KITTI
Schwarz et al. [31] Depth Map Two-stream Faster-RCNN Private

Various MEDUSA Gray Image One-stream DETR VOC & COCO

Table 1: Comparison of recent RGB-D object detection methods: each method is grouped
into their target domain. In the first row, “Depth Format” is the encoding for the depth input;
“Feature Extractor” is # backbone streams for the RGB and depth inputs; “Object Detector”
is the architecture used for detection; and “Dataset” is the dataset used for training.

tation [11, 23, 47] and salient object detection [5, 6, 19] have been actively studied and
achieved significant performance improvements. Most approaches have focused on pixel-
wise categorization and attempted to overcome the limitation of the RGB input by addition-
ally using depth information. On the other hand, RGB-D object detection is yet to be widely
studied owing to the lack of large-scale RGB-D datasets.

Such deficiency in RGB-D datasets motivates recent efforts on specific domains such
as indoor scenarios [9, 10, 21, 31] and car driving scenarios [22, 42]. Table 1 summarizes
recently proposed RGB-D object detection methods, including MEDUSA which has the
following properties:
1. The ground-truth depth map or HHA1 [7] is no longer required and is replaced by esti-

mated depth. Since the feature refiner helps use erroneous depth maps, our method can
be easily applied to other datasets that include multiple different domains, such as Pascal
VOC [3] and Microsoft COCO [16].

2. The issue of increased model complexity is alleviated by employing a Siamese network
as the shared feature extractor for RGB and depth inputs. In contrast, most of the re-
cent methods maintain two independent backbones (i.e., one for each modality), thereby
almost doubling the number of parameters for the extractor.

3. The RGB and depth features are fused by the attention mechanism object-wisely in the
transformers, as opposed to the late fusion scheme in the recent methods that simply
concatenate the entire feature map at once at the end of their backbone streams.

Depth Estimation The main challenge in monocular depth estimation is to cover a variety
of scenarios for its practicality [12, 25]. To this end, numerous learning-based estimators,
such as MegaDepth [15] and MiDaS [27], exploit multiple RGB-D datasets with distinct
characteristics and biases. As a result, the robustness and generality of the estimators have
significantly improved, reaching the weighted human disagreement rate of 12.27%.
Multimodal Transformer Multimodal transformers are attracting great attention in the
field of multimodal language analysis [26, 43], and self-attention has been successfully ap-
plied to various problems including vision-to-language alignment [34]. In this work, we
adopt the multimodal transformer to determine the complementary fusion strategy of RGB
and depth features for object detection.
Detection with Inferred Depth Maps A few methods that utilize depth maps inferred from
RGB inputs to help 3D object detection [37, 38] have been proposed in recent years. Pseudo-
LiDar [38] uses per-pixel camera position information derived from the depth map, but it still

1HHA is a depth encoding consisting of horizontal disparity, height above ground, and norm angle.
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requires a pair of left-right images as the reference for detection. In contrast, ForeSeE [37]
estimates more precise depth maps by treating foreground and background differently for a
better 3D object detection. Different from the existing work, we study how to exploit noisy
(inferred) depth maps for the traditional 2D object detection with help of a more effective
RGB-D fusion approach based on the transformer.

3 MEDUSA Framework
We describe the overall architecture of the proposed framework illustrated in Figure 1, where
the three components are designed for (i) feature extraction from RGB and depth inputs, (ii)
feature refinement of RGB and depth features, and (iii) feature fusion between them.

3.1 Siamese Feature Extractor
A Siamese structure (shared backbone) is commonly adopted to extract discriminative fea-
tures between two different inputs with triplet or contrastive losses [39]. Another property
of the Siamese network is its transferability to learn hierarchical features from different
modalities [6, 13]. In this work, we convert a single-channel depth map to a three-channel
grayscale image by replicating its single channel map, thereby sharing the Siamese ResNet-
50 2 [8] backbone pretrained on the ImageNet dataset. For each image, our feature extractor
receives a pair of an RGB image and a three-channel grayscale image, X rgb ∈ Rh0×w0×3 and
Xdepth ∈ Rh0×w0×3, and then generates a feature map for each modality, Frgb ∈ Rh×w×c and
Fdepth ∈ Rh×w×c, where c is set to 2048, and h and w are set to h0

32 and w0
32 .

3.2 Feature Refiner
Although a monocular depth estimator infers a depth map from a monocular image fairly
well, the depth map inevitably contains non-negligible estimation errors; specifically, it per-
forms well for moderately large or close objects, but not for small or distant objects.

Figure 2: Examples of incorrectly estimated depth
maps by MiDas [27] with their RGB images and
ground-truth bounding boxes.

For example in Figure 2, smaller
birds and farther cars are missed in
the depth maps, indicating depth fea-
tures are incorrectly generated from
these erroneous regions. To enhance
the robustness to noisy depth maps,
our feature refiner adopts the idea of
region- and channel-wise attentions to
reweight the feature maps obtained from the Siamese network.

As the first step toward the region-wise attention, we refine the erroneous depth map by
using the clean RGB feature. A single-channel pixel-wise weighting map is derived from
the RGB features through a 1×1 convolution, I = σ(Conv1×1(Frgb)) ∈Rh×w×1, where σ is
a ReLU activation that ensures all the refined depth values to be positive. Accordingly, the
refined depth map D̂ is then obtained by multiplying the pixel-wise weighting map, which
is upsampled to have the same size as the depth map, D̂ = Down(D⊗Up(I)) ∈ Rh×w×1,
where ⊗ is the element-wise multiplication, and Down and Up denote downsampling and
upsampling, respectively. Next, the refined depth map D̂ is used to form a region-wise
attention. Specifically, D̂ is divided into m binary mask maps D̂i, each of which is set to 1
for its corresponding depth range ( i−1

m , i
m ). The region-wise attention is defined by

2We remove the classification layer in ResNet-50 as a backbone. Any pretrained backbone can also be used for
the Siamese structure.
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AttR(F) =

feature map︷︸︸︷
F ⊗

region-wise weighting︷ ︸︸ ︷
m

∑
i=1

D̂i

( hw

∑
j=1

(
D̂i, j×S(Frgb) j

)/ hw

∑
j=1

D̂i, j

)
, (1)

where S(Frgb) is the global saliency map [46] of the RGB feature. The pixels for an object
not only share similar depth values (i.e., a binary mask) but also exhibit large saliency val-
ues (i.e., a global saliency), thus multiplying them helps finding salient object regions in the
depth map. Last, the region-wise attention is applied to both the RGB and depth features
along with the standard channel attention [40], thereby obtaining two refined features,

F̂rgb = [AttC(AttR(F
rgb)),Frgb] and F̂depth = [AttC(AttR(F

depth)),Fdepth], (2)

where AttC and [ · ] are channel-wise attention and feature concatenation along the channel.
We present the qualitative analysis of using the feature refiner in Section 2.1 of the supple-
mentary material.

3.3 Multimodal Transformer 3

Encoder: Modality-Wise Self-Attention The role of the encoder is to perform global scene
reasoning for each modality, finding the areas of the feature map that can contribute to object
detection. Thus, MEDUSA allocates a dedicated self-attention block for each modality,
which we call modality-wise self-attention.

Two 1×1 convolutions reduce the channel dimension of each refined feature map from
2c to d (d < 2c), generating two compact feature maps. Then, we flatten the spatial contexts
by reshaping into a one-dimensional sequence of length hw for the input to the transformer,

Zrgb = (zrgb
1 ,zrgb

2 , . . . ,zrgb
hw ) and Zdepth = (zdepth

1 ,zdepth
2 , . . . ,zdepth

hw ) where ∀i zi ∈ Rd . (3)

These two embedding sequences are fed to two self-attention streams for their respec-
tive modalities, sharing the same self-attention module with a point-wise feed-forward net-
work (FFN). The shared self-attention module recognizes all pairwise point interactions, be-
ing formulated by the self-attention map SA,

SA(Z) = Softmax
(
(ZWQ)(ZWK)

>/
√

d
)
∈ Rhw×hw where Z ∈ {Zrgb,Zdepth}, (4)

and then an embedding sequence Z is encoded by Z′ = SA(Z)(ZWV ), where WQ,WK , and WV
are the query, key, and value projection matrices of the self-attention module.

Each encoder layer follows the standard form of the multi-head attention mechanism.
Before entering the self-attention module, the sinusoidal-based spatial positional encoding
[2, 48] is added to the input of each attention layer to supplement the permutation-invariant in
the transformer. All encodings from the parallel heads are concatenated and fed to the point-
wise FFN together with residual connections and layer normalization, which are commonly
observed in the transformer [35]. Next, the two modality-wise representations Hrgb and
Hdepth are obtained and stacked along the sequence dimension, Hrgbd = [Hrgb,Hdepth]> ∈
R(hwrgb+hwdepth)×d . Note that we do not perform RGB-D fusion at the encoder level because
the fusion strategy should be differentiated for each object.

Decoder: Object-Level RGB-D Fusion The role of the decoder is to infer the best RGB-
D fusion policy and then produce the final object embeddings. In contrast to the previous

3We describe a multimodal transformer architecture with a single-layer encoder and decoder just for ease of ex-
position. It can be extended to the L-layer structure by stacking them sequentially just like the standard transformer.
Please refer to Section 4 of the supplementary material for readers unfamiliar with the transformer.
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work [22, 31, 42] in which RGB and depth features are fused in a batch by adding or con-
catenating the entire feature maps, to achieve the most appropriate RGB-D fusion, the mul-
timodal attention block in the decoder differentiates the fusion strategy for each (predicted)
object provided by the object query (see the analysis of the object-level fusion in Section 4.3).

Similar to DETR [2], the decoder processes n objects in parallel where n is the number
of objects to detect per image. The input of the decoder is called object queries, which are
the learned encodings to help the decoder produce diverse results (i.e., bounding boxes and
labels) by adding themselves to the query input of each attention layer. The n object queries
are first converted to an intermediate representation Hob j∈Rn×d through the multi-head self-
attention module. Next, for the object-level RGB-D fusion, the multimodal attention module
receives the intermediate representation Hob j for n objects as its query and the stacked se-
quence Hrgbd as its key and value. Thus, for individual query (object), the RGB-D fusion
strategy is derived in the form of a multimodal attention map MA, which is the softmax of
dot products between the query and key,

MA(Hob j,Hrgbd) = Softmax
(
(Hob jW ′Q)(H

rgbdW ′K)
>/
√

d
)
∈ Rn×(hwrgb+hwdepth), (5)

where W ′Q,W
′
K , and W ′V be the query, key, and value projection matrices of the multimodal

attention block. Therefore, the RGB-D object embedding for n objects are computed by
Oob j = MA(Hob j,Hrgbd)(HrgbdW ′V ) ∈ Rn×d . The point-wise FFN and layer normalization
layer are followed for the final object embedding, which is fed to a 3-layer FFN for bounding
box regression and a linear projection layer for classification.

4 Experiments
We show that MEDUSA achieves much higher detection performance on three benchmark
data than DETR and its three extensions for RGB-D fusion. Then, we conduct a detailed
ablation study of our proposed framework. Finally, we provide insights into why the object-
level fusion plays an important role in detection and ultimately improves the performance.
Datasets Three benchmark datasets are used for evaluation: Pascal VOC, Microsoft COCO,
and SUN-RGBD – an instance of data contains 2.35, 6.53, and 5.66 objects on average,
respectively. We apply the state-of-the-art monocular depth estimator, MiDaS [27], for VOC
and COCO because ground-truth depth maps are not available in both datasets. Please see
Section 3.1 of the supplementary material for the details.
Algorithms The existing RGB-D object detection methods in Table 1 are, in fact, not di-
rectly comparable with MEDUSA: (1) they require stereo images (HHA format), which are
absent in VOC and COCO, and (2) they employ different types of detectors, resulting in
an unfair comparison. Thus, we injected their underlying RGB-D fusion philosophy into
DETR [2]. Following the recent work [22], only the layers compatible with the RGB pre-
trained model were fine-tuned for these DETR extensions.
• Early Fusion: The depth map is treated as the fourth channel of the RGB input. The back-

bone was fine-tuned from the pretrained weight except the first four-channel input layer.
• Late Fusion V1: Maintaining a two-stream backbone for each modality. The RGB back-

bone was fine-tuned, while the depth backbone was trained from scratch.
• Late Fusion V2: This variant is similar to Late Fusion V1, but the depth backbone was

fine-tuned in the same way as Early Fusion.
Overall, the baseline, DETR (RGB), and its three extensions for RGB-D fusion were com-
pared against the MEDUSA approach. For SUN-RGBD data where ground-truth depth is
available, MEDUSA is further compared to the three existing RGB-D detection methods.
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Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow

DETR (RGB) 79.7 89.5 80.0 77.2 54.0 90.6 89.4 90.3 68.1 88.8
Early Fusion 79.1 88.6 80.1 76.7 52.5 91.2 89.1 90.2 76.1 81.1
Late Fusion V1 79.7 80.1 75.1 66.9 35.2 72.9 78.8 91.6 51.6 78.2
Late Fusion V2 78.6 87.6 78.9 75.5 57.1 88.9 88.4 89.6 65.9 88.4
MEDUSA 80.2 (+0.5) 89.2 (-0.3) 79.9 (-0.1) 77.4 (+0.2) 60.2 (+6.2) 90.2 (-0.4) 89.5 (+0.1) 90.6 (+0.3) 76.3 (+8.2) 89.3 (+0.5)

...

hh (a) First ten classes among 20 classes.

hhMethod Table Dog Horse Mbike Person Plant Sheep Sofa Train TV AP50

DETR (RGB) 80.7 90.1 90.4 88.4 79.0 61.1 87.0 79.1 90.3 80.7 81.7
Early Fusion 81.7 89.6 89.7 79.5 79.0 63.9 87.4 88.5 89.8 80.9 81.7
Late Fusion V1 72.4 90.3 81.1 78.8 73.2 39.3 67.6 80.9 90.5 75.8 73.0
Late Fusion V2 79.5 89.8 89.6 87.0 77.8 60.9 87.3 88.7 89.5 88.3 81.9
MEDUSA 79.8 (-0.9) 90.2 (+0.1) 90.3 (-0.1) 88.7 (+0.3) 79.2 (+0.2) 65.2 (+4.1) 87.7 (+0.7) 79.5 (+0.4) 90.3 (0.0) 88.7 (+8.0) 83.1 (+1.4)

hh (b) Last ten classes among 20 classes along with the AP50 on the entire classes.

Table 2: Results for VOC data. The last column indicates the mAP at IoU 0.5 (AP50) on
the entire classes. The highest value for each class is marked in bold, and the value inside
the parentheses in MEDUSA denotes the difference from DETR (RGB).

Resolution Method Epochs AP50:95 AP50 AP75 APS APM APL

300×500

DETR (RGB) 150 27.4 45.8 27.5 6.2 27.2 49.2
Early Fusion 150 26.4 44.8 26.1 6.2 25.4 47.3
Late Fusion V1 150 26.6 44.4 27.0 6.3 25.8 48.0
Late Fusion V2 150 28.1 46.5 28.0 6.5 28.1 50.3
MEDUSA 150 28.9 (+1.5) 47.1 (+1.3) 29.2 (+1.7) 7.8 (+1.6) 28.7 (+1.5) 51.3 (+2.1)

420×700 DETR (RGB) 150 32.5 52.7 33.4 10.1 34.2 54.4
MEDUSA 150 33.6 (+1.1) 53.5 (+0.8) 34.3 (+0.9) 11.4 (+1.3) 35.5 (+1.3) 55.9 (+1.5)

800×1333 DETR (RGB) 150 38.0 58.9 39.6 16.7 40.8 58.2
MEDUSA 150 40.0 (+2.0) 60.8 (+1.9) 41.6 (+2.0) 18.1 (+1.4) 43.1 (+2.3) 60.0 (+1.8)

800×1333 DETR (RGB) 500 42.0 62.3 44.2 20.5 45.8 61.1
MEDUSA 500 42.8 (+0.8) 63.3 (+1.0) 44.7 (+0.5) 22.2 (+1.7) 48.0 (+2.2) 65.1 (+4.0)

Table 3: Results for COCO data. 4 The mAP over multiple thresholds are summarized for
three image resolutions.

Implementation Details
All the algorithms were implemented using PyTorch and executed using eight NVIDIA

V100 GPUs. They were trained for 150 epochs using AdamW [18] with a weight decay
of 10−4 and a dropout of 0.1. The ResNet-50 pretrained on ImageNet was used as the
backbone, and all transformer weights were initialized with Xavier initialization. We used
an initial learning rate of 10−4 decayed by 10 at the 100-th epoch except the ResNet-50
backbone. An initial learning rate of 10−5 was used for fine-tuning.

For VOC and SUN-RGBD, the image resolution was 600×1000, and the batch size was
set to 16; for COCO, the image resolution was resized to 300×500, 420×700, 800×1333
to demonstrate consistent improvements over varying resolutions, and the batch size was
set to 32. In addition, random crops and horizontal flips were applied for data augmentation.
More details can be found in Section 3.2 of the supplementary material. The source code and
trained models are publicly available at https://github.com/songhwanjun/MEDUSA.

4.1 Performance Evaluation
Pascal VOC Dataset Table 2 shows the experimental results on the Pascal VOC dataset.
Although the inferred depth is fairly noisy, the performance is improved significantly by
MEDUSA compared with the baseline; the mAP at IoU 0.5 (AP50) of MEDUSA is 83.1%,
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Figure 3: Convergence curve. The mAP over training epochs for COCO val set are plotted.

which is higher than that of DETR (RGB) by 1.4%. The direct use of the inferred depth with
the early or late fusion is not that effective; the AP50 of Early Fusion or Late Fusion V2 is
close to that of the baseline, while that of Late Fusion V1 rather drops by 8.7%.

MEDUSA achieves the best results in 14 classes out of the 20 classes. In particular,
the performance gains in the “bottle,” “chair,” “plant,” and “TV” classes are significant; the
AP50 of those classes are respectively increased by 6.2%, 8.2%, 4.1%, and 8.0% compared
with DETR (RGB). Meanwhile, it is not effective to achieve significant gains with the early
and late fusion approaches for the following reasons: (i) they do not handle the noisy depth
caused by the estimation process; (ii) the RGB and depth features are simply concatenated,
but this implicit fusion makes the model biased toward only RGB information as the RGB in-
formation mostly dominates the final prediction [6]; and (iii) the pretrained model is not fully
used because of the difference in framework and modality, and considerable degradation of
Late Fusion V1 is attributed to the mismatch between the two backbone streams. MEDUSA
address these issues through its three components—Siamese structure, feature refiner, and
multimodal transformer for object-level RGB-D fusion.

Microsoft COCO Dataset Table 3 shows the mAP results with different thresholds on the
Microsoft COCO dataset. Further, to clearly verify the performance improvement, we pro-
vide the mAP convergence curve of MEDUSA along with compared methods with varying
resolutions in Figure 3. When all the five methods are evaluated on images of 300× 500
pixels, the general trend is similar to that for VOC. MEDUSA achieves the highest mAP
over multiple thresholds and object scales, which are 1.3%–2.1% higher than DETR (RGB).
In contrast, the performance of Early Fusion and Late Fusion V1 drops by 0.2%–1.7% and
0.1%–1.6%. Meanwhile, Late Fusion V2 achieves 0.1%–1.0% higher mAP than DETR,
which confirms that the weights pretrained from RGB images are useful even for the depth
backbone. Even for the 420×700 and 800×1333 resolutions, MEDUSA still achieves the
consistent improvement of 0.8%–1.5% and 0.5%–4.0% compared with DETR (RGB), re-
spectively. In terms of the mAP convergence, MEDUSA exhibits consistently higher values
over all training epochs compared with other methods, as shown in Figure 3(a), and com-
pared with DETR at varying resolutions, as in Figure 3(b). Therefore, the use of inferred
depth maps with MEDUSA results in a more effective object detector.

SUN-RGBD Dataset We evaluate the improvements in SUN-RGBD data when using in-
ferred and ground-truth depth in Table 4(a). Except for Early Fusion, all methods ob-
tain performance improvement over the DETR (RGB) with the inferred depth. However,
these schemes achieve significantly higher mAP with the ground-truth depth. In particular,

4The performance of all methods improves significantly with the increase in the image resolution. We also
experiment with the resolution of 800×1333 pixels used in the DETR paper using two different learning schedules.
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Type N/A Estimated Depth Ground-Truth Depth

Method DETR (RGB) Early Fus. Late Fus. V1 Late Fus. V2 MEDUSA Early Fus. Late Fus. V1 Late Fus. V2 MEDUSA

AP50 56.9 54.7 57.5 57.9 59.7 55.3 58.1 58.5 60.9
hh (a) Performance difference when using estimated and ground-truth depth maps.
hh

Backbone AlexNet ResNet-50

Method RGB-D RCNN [10] RGB-D RPN [41] RGB-D F-RCNN [41] MEDUSA MEDUSA

AP50 32.9 51.8 52.9 54.3 60.9
hh

(b) Performance comparison with three existing methods for RGB-D object detection.
hh
Table 4: Results for SUN-RGBD data. The results for the existing methods are borrowed
from [10, 41] since there is no source code available. The highest value is marked in bold.

Feature Extractor Feature Refiner RGB-D Fusion Measure

# Two-stream Siamese Region Att. Pixel Rew. Channel Att. Scene-Level Object-Level AP50 Params. Hour

(1) X X 77.3 65.2M 25.3
(2) X X 77.0 41.8M 20.9
(3) X X X 77.1 42.8M 21.3
(4) X X X X 77.3 42.9M 22.7
(5) X X X X X 77.6 43.9M 22.8
(6) X X X X X 78.5 43.9M 23.5

Table 5: Detailed ablation study using VOC data with 300×400 resolution.

MEDUSA achieves the largest performance improvement in both cases, and outperforms
other DETR variants by 1.8%–5.6%. Our method can handle a variety of noise even in the
ground-truth depth map, including missing estimates (holes) and noisy boundaries. We ex-
pect more performance gains can be achieved by using more accurate depth estimators such
as DPT [28].

Table 4(b) shows evaluation results against three RGB-D detection methods when using
the ground-truth depth. With the same configuration using the AlexNet backbone, MEDUSA
outperforms these schemes by 1.4%–21.4%. When using the ResNet-50, the performance
of MEDUSA reaches 60.9% owing to a more effective feature representation model.

4.2 Ablation Study
Extension with Deformable DETR The DETR detector in MEDUSA can be easily re-
placed with other state-of-the-art detectors, e.g., Deformable DETR [48]. With the same
configuration for VOC dataset in Table 2, the AP50 of our method with Deformable DETR
is 86.7%, which is 1.0% and 3.6% higher than those of RGB-only Deformable DETR and
MEDUSA with DETR, respectively. The depth estimation module plays an important role
to help increase the performance of detectors, even when using the state-of-the-art model.

Contribution of Each Component Table 5 shows the effectiveness of all design choices
for MEDUSA on the VOC dataset using images of 300×400 pixels. The object-level fu-
sion via the multimodal transformers (6) obtains the biggest gain of 0.9% over the scene-
level fusion (feature concatenation). The model using region-wise attention with the pixel
reweighting (4) performs better than that using the region-wise attention alone (3). The
channel-wise attention (5) further improves the performance. The two-stream extractor (1)
performs slightly better than the Siamese extractor (2), but with heavy computational load.

Analysis of Model Parameters The parameter increase in MEDUSA is much smaller than
that in representative previous work [22, 42]; specifically, the late fusion approach adds
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RGB and Depth Query Id: 41 (Person) Query Id: 13 (Elephant) Query Id: 15 (Elephant) Query Id: 7 (Person)

RGB and Depth Query Id: 16 (Person) Query Id: 79 (Elephant) Query Id: 33 (Elephant) Query Id: 15 (Person)

Figure 4: Visualization of the RGB-D fusion policy for detected objects. The first row
shows all the attention weights for RGB in DETR(RGB), and the second and third rows show
those for RGB and Depth derived from the "multimodal attention block" in MEDUSA. The
attention weights and predicted bounding boxes are coded in different colors for each object.

23.9M parameters to the 41.3M parameters used for the original DETR, while MEDUSA
adds only 2.6M parameters because of its shared structure. The performance gain mainly
comes from our three components rather than a larger number of parameter usage.

4.3 Analysis of Object-Level Fusion
We analyze the object-level RGB-D fusion (the attention weights) of the multimodal trans-
former for RGB-D fusion. MEDUSA determines a different fusion policy for each object
(query) such that it gives different weights to RGB and depth features for better detection.
Figure 4 shows the attention map and predicted bounding box of MEDUSA for the objects
that DETR (RGB) fails to detect. The two people enclosed by cyan and green boxes are
not easily recognizable from the RGB images (i.e., the first and second rows), owing to the
similar color with the background and overlap with another object. Thus, MEDUSA gives
dominant weights to depth features to help recognizing them via RGB-D fusion. However, it
turns out that depth attention could leak out of the bounding box unlike RGB (e.g., the query
16). That is, only using the depth input is not sufficient for box regression. Thus, the depth
input should be used in conjunction with the RGB input for better object detection.

Moreover, it is interesting that MEDUSA pays attention to the overall appearance of an
object in depth view, whereas to some discriminative parts (e.g., head and leg) in RGB view
for RGB-D fusion. More examples of the attention maps are presented in Section 2.2 of the
supplementary material.

5 Conclusion
In this paper, we have proposed a generic object detection framework for leveraging the
estimated depth. The Siamese network and feature refiner are able to generate high-quality
RGB and depth features; then, the multimodal transformer determines the complementary
fusion strategy between RGB and depth features via the cross-attention mechanism. This
model can exploit depth information even for regular RGB images without requiring the
ground-truth depth. Using the three benchmark datasets, the proposed approach is shown to
outperform the DETR extension and three existing methods. In addition, detailed ablation
studies are presented together with an insight into the object-level fusion.
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