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Abstract

Differentiable architecture search (DARTS) has become the popular method of neural
architecture search (NAS) due to its adaptability and low computational cost. However,
following the publication of DARTS, it has been found that DARTS often yields a sub-
optimal neural architecture because architecture parameters do not accurately represent
operation strengths. Through extensive theoretical analysis and empirical observations,
we reveal that this issue occurs as a result of the existence of unnormalized operations.
Based on our finding, we propose a novel variance-stationary differentiable architecture
search (VS-DARTS), which consists of node normalization, local adaptive learning rate,
and

√
β -continuous relaxation. Comprehensively, VS-DARTS makes the architecture

parameters a more reliable metric for deriving a desirable architecture without increasing
the search cost. In addition to the theoretical motivation behind all components of VS-
DARTS, we provide strong experimental results to demonstrate that they synergize to
significantly improve the search performance. The architecture searched by VS-DARTS
achieves the test error of 2.50% on CIFAR-10 and 24.7% on ImageNet.

1 Introduction
Neural architecture search (NAS) is drawing a considerable amount of attention from the ma-
chine learning society as an attractive alternative to hand-crafting a neural architecture [12,
14, 23, 24]. Among various NAS algorithms, DARTS [12], a gradient descent optimization-
based search algorithm, has become the most widely benchmarked search algorithm due
to its low computational cost and intuitive methodological approach. Despite the popular-
ity of DARTS, it has been reported that DARTS often searches for a sub-optimal candidate
architecture [3, 10, 16, 20].

Wang et al. [16] argue that the failure cases of DARTS occur because architecture param-
eters, on which the architecture selection rule of DARTS is based, do not faithfully reflect
the true operation strengths. Thus, Wang et al. propose a new perturbation-based selection
rule, which does not use architecture parameters. However, the perturbation-based selection
requires progressive tuning, which results in a significant increase in the search cost. If the
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search process can be fixed, so that the architecture parameters function as a reliable metric
without additional computational cost, it becomes a more desirable solution for aligning the
search process and the selection rule of DARTS.

In this work, we reveal an undiscovered factor that makes the architecture parameters un-
reliable for the selection rule: unnormalized outputs of intermediate nodes in the super-net.
We provide extensive theoretical and empirical analyses to show how unnormalized out-
puts prevent the architecture parameters from accurately representing operation strengths.
To address the problem of unnormalized outputs, we propose node normalization. Apply-
ing node normalization produces an undesirable side-effect, named the gradient imbalance
problem, which is resolved with layer-wise adaptive control (LARC) [19]. We also intro-
duce

√
β -continuous relaxation to improve the training stability of the proposed method.

Our method that encompasses all of the amendments is named Variance-stationary DARTS
(VS-DARTS); the differences between DARTS and VS-DARTS are illustrated in Figure 1.
VS-DARTS focuses on making appropriate changes to DARTS, such that architecture pa-
rameters can function as intended.

VS-DARTS improves the search performance of DARTS by 0.57%p and that of DARTS
+PT [16] by 0.18%p, achieving a competitive test accuracy on the CIFAR-10 dataset. Fur-
thermore, the standard deviation of test errors is reduced in VS-DARTS, which indicates the
robustness of the search performance. When evaluated across different datasets and search
spaces, VS-DARTS once again consistently searches for a successful neural architecture.

2 Background and Related Works

2.1 Previous Works on Differentiable NAS
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Figure 1: Overview of
(a) DARTS and (b) VS-
DARTS (proposed) which
includes node normaliza-
tion and

√
β -continuous

relaxation, depicted in red
colors.

Automation of the neural architecture search process has con-
tinuously attracted interest, but wide search space and high
evaluation cost require high computational resources[11, 15,
23, 24]. After the cell-based search space[14] and param-
eter sharing[14] are announced, one-shot neural architecture
search (NAS) methods, which train supernet to search and
evaluate candidate architectures simultaneously, are widely
researched[6, 12, 17]. One-shot NAS can be categorized by
two groups: 1) differentiable architecture search which train
supernet with continuously relaxed seach space[1, 2, 3, 10,
12, 16, 18, 20] and 2) sampling-based methods which sam-
ple the candidate architecture and stochastically update the
supernet[6, 17, 22].

DARTS [12],which is the mile-stone research in the first
category, has become the most preferred baseline search al-
gorithm because of its simple and intuitive methodological
approach. Even though DARTS shows an impressive perfor-
mance and computational efficiency, it has been reported that DARTS lacks stablility [2, 20]
and often derives a sub-optimal architecture even in the search space where all possible ar-
chitectures are evaluated [7]. By restricting the search space of DARTS, Zela et al. [20]
empirically demonstrated the failure cases of DARTS. To make DARTS more robust against
such failure cases, Zela et al. introduces a regularization term to the inner loop of the bi-level
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optimization. In the case of the study of Chen et al. [2], the instability issue of DARTS is ad-
dressed through the learning of weight parameters with respect to the perturbed architecture
parameters.

Also, it has been empirically reported that the large number of skip connections in the
final architecture derivation step results in a significant performance drop [3, 10, 20]. Chu
et al. [4] argues that the skip connection operation in fact is performing two roles simultane-
ously: aiding the training of super-net and the candidate operation. Chu et al. separates these
two roles of the skip connection operation from each other. However, they do not provide an
additional analysis into the architecture selection rule based on the magnitude of α .

2.2 Preliminaries on DARTS
Differentiable architecture search (DARTS)[12] aims to search for a cell, which is repeat-
edly stacked to build the final architecture. In DARTS, two types of a cell are searched: a
normal cell and a reduction cell. While the normal cell maintains the dimension of the input
feature map, the reduction cell halves it and doubles the number of channels. These cells are
represented as a directed acyclic graph (DAG) with N nodes and E edges, which are asso-
ciated with feature maps and operations, respectively. The intermediate nodes of a cell are
computed by summing up all preceding nodes: x j = ∑i< j o(i, j)(xi). The output of a cell is
computed by concatenating all intermediate nodes.

DARTS starts by constructing a super-net, in which each edge includes all candidate op-
erations in the search space. To enable gradient-based optimization, DARTS continuously
relaxes the discrete choice of an operation by applying the Softmax function over all candi-
date operations with the architecture parameters α:

ō(i, j)(x) = ∑
o∈O

exp(α(i, j)
o )

∑o′∈O exp(α(i, j)
o′ )

o(x) = ∑
o∈O

β
(i, j)
o o(x), (1)

where i and j indicate node indices. ō, the weighted summation of candidate operations,
is referred to as a mixed operation. An example of a continuously relaxed cell in DARTS
is illustrated in Figure 1(a). By applying the continuous relaxation scheme, the problem of
architecture search can be equated with the following bi-level optimization problem:

min
α
Lval(w∗(α),α) s.t. w∗(α) = argminwLtrain(w,α). (2)

During the search process, architecture parameters α and operation weights w are updated
alternatingly. After the search process, the operation associated with the maximum β is
selected per edge. Afterwards, the final architecture is derived by selecting top-2 edges per
intermediate node by ranking the edges according to β of the selected operation.

2.3 Issue of DARTS Architecture Parameter
Previous works mainly attributed the DARTS failure to the optimization of super-net, but
the problem of the architecture selection process has largely been overlooked [16]. In this
section, we discuss Wang et al. [16], which is the one of the first works to address the prob-
lem of architecture parameters . Wang et al. demonstrate why the magnitude of architecture
parameters in the DARTS formulation is not suitable for indicating the contribution of each
operation to the super-net’s performance. According to Wang et al., when the problem of
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Figure 2: The magnitude of β vs. discretization accuracy (%) at convergence of 2 edges
from a trained (a) DARTS-L2 supernet and (b) VS-DARTS supernet. While optimized β of
the VS-DARTS supernet faithfully reflects the discretization accuracy of the corresponding
operation, i.e.operation strength, that of the DARTS-L2 supernet fails to do so.
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Figure 3: Change in the vari-
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put feature map during the
DARTS search process.
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Figure 4: The magnitude of βzero of (a) DARTS-L2 and (b)
VS-DARTS. The bar graphs in Ni and Ri correspond to the
incoming edges into the i-th node of the normal cell and of
the reduction cell, respectively.

skip operation domination occurs in the hastily optimized super-net, the architecture param-
eters are not aligned with the discretization accuracy, i.e.the accuracy of the trained super-net
when a single operation is selected for a randomly selected edge, while all other edges re-
main the same. Wang et al. thus proposed a new selection rule that re-evaluates the super-net
after removing a single operation per edge and selects the operation that yields the largest
drop in the super-net’s validation accuracy upon removal; this selection rule is coined the
perturbation-based selection rule (DARTS+PT) and does not directly utilize architecture pa-
rameters. However, to successfully execute the proposed perturbation-based selection rule,
it requires the progressive tuning process that incurs a considerable amount of additional
computation cost.

3 Lack of Reliability of β

From here on, we refer to the inability of β to appropriately reflect the operation strengths
as unreliability of β . Eliminating the unreliability of β is crucial for improving the accuracy
of the selection rule based on the magnitude of β . If we can improve the reliability of β ,
it becomes unnecessary to employ additional techniques, such as progressive tuning [16],
which causes a non-negligible increase in the search cost, during the search process.

As mentioned in Section 2.3, if the input feature maps to each operation are close to being
optimal, βskip begins to grow larger than β of other operations. However, we demonstrate
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that the previously-observed dominance of skip connection caused by the optimized input
feature maps is insufficient for explaining the unreliability of β . We train a DARTS super-
net with strong regularization (DARTS-L2) by increasing the weight decay value from 3e-
4 to 5e-3, such that the feature maps do not hastily converge to optimal in the middle of
the search process. Figure 2 shows the magnitude of β and the operation strength in 2
randomly selected edges of the super-net, where the operation strength is represented with
the discretization accuracy at convergence [16]. As can be seen from Figure 2(a), even after
increasing the regularization effect, the magnitude of β and the operation strength in the
DARTS-L2 super-net are not aligned, indicating that the unreliability of β still remains.

We further analyze the computational flow in the DARTS super-net to reveal another
reason for unreliability of β problem. According to Eq.(1), the influence of an operation
on the ō can be estimated by βoo(x). Therefore, for β to be a trust-worthy measure of
the operation strength, the outputs from o(x) must be scaled to a similar range of values.
However, as an example, when the scale of o(x) is far smaller than 1, o has a smaller influence
over ō, even if βo is the highest among β of candidate operations.

We observe that in DARTS, the scales of oskip(x) differs from those of the other opera-
tions. We use the variance of outputs from o(x) to represent their scales, since they have the
mean of zero. Figure 3 shows the output feature map variance for each node of a randomly
selected cell during DARTS super-net training. We find that while the outputs of other op-
erations are normalized to (0,1) due to their last normalization layer, the output of the skip
operation is not normalized. There exist two reasons why the output of the skip operation
cannot normalized in DARTS: 1) the input feature map to the skip operation is the output
of the previous node, which is unnormalized as shown in Figure 3 and 2) the skip operation
itself does not have the ability to normalize it. If nodes remain unnormalized as in DARTS,
to select an operation based solely upon the magnitude of β becomes unreliable and thus re-
sults in a sub-optimal architecture. Therefore, we proposed VS-DARTS, which is described
in Section 4, and VS-DARTS makes β more reliable as shown in Figure 2(b).

4 Variance-stationary DARTS (VS-DARTS)

4.1 Node Normalization
To remedy the problems caused by the unnormalized nodes, we propose a simple yet effec-
tive method of normalizing the output of every intermediate node as follows:

x̂ j =
x j−µx j,B

σx j,B

, where x j = ∑
i< j

ō(i, j)(xi), (3)

x̂ j is the normalized output feature map of node N j, and µx j,B and σ2
x j,B

are the mean and
the variance of x j within a single mini-batch, respectively. Applying the proposed node
normalization to DARTS prevents the input to the skip operation from being unnormalized.
Consequently, by scaling outputs of o(x) to a similar range, node normalization contributes
to amending the unreliability of β .

Node normalization additionally addresses the problem of suppression by zero operation.
The zero operation was initially introduced to indicate the lack of connection between two
nodes [12]. Against the initial expectation, the zero operation is in fact performing the role of
scaling output feature maps in DARTS. As shown in Figure 4(a), without node normalization,
the average βzero of incoming edges grows large to make the variances of each intermediate
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Figure 5: The change in the scale of gradient of 3x3 separable convolution operation at last
intermediate node (a) before and (b) after applying node normalization.

node similar. The large value of βzero in turn suppresses β of other operations, which we
call suppression by zero. The unreliability of β exacerbated by this phenomenon. It can
be clearly observed from Figure 4(b) that applying node normalization effectively prevents
βzero from exploding. Under the architecture selection rule based on the magnitude of β , we
believe that node normalization is crucial for DARTS-based algorithms to function properly.

4.2 Remedying Gradient Imbalance

While node normalization is effective at making β reliable, from the perspective of super-
net training, it has a minor side-effect: the gradient imbalance problem. In Figure 5(a) and
(b), we visualize the gradients with respect to the weights of the 3x3 separable convolution
operation before and after applying node normalization to empirically support the occurrence
of the gradient imbalance problem. In Figure 5(a), the amount of gradient against weight of
each edges are similar scale in early epochs, while not in Figure 5(b). If a different amount
of gradient signal is delivered to each edge, operations in the edge with large gradient will
likely converge faster than others. Therefore, the scale of gradient should be similar in the
early stage of search for fair competition among different edges. The reason of the gradient
imbalanced problem is that node normalization change the scale of node output feature maps.

Node normalization scales the output feature maps using their sigma as in Eq.(3), and
scaling the feature maps also scales the gradient with respect to the corresponding feature
maps. For instance, as in Figure 3, when σ of the unnormalized feature map is 1.6, the
gradient is divided by 1.6 and becomes smaller; on the contrary, when σ is 0.6, the gradient
becomes larger. This results in the gradient becoming unbalanced across incoming edges of
a single intermediate node.

We deal with the gradient imbalance problem by applying the operation-wise adaptive
learning rate. This adaptive learning rate scheme is realized by Layer-wise Adaptive Rate
Control (LARC) [19]. Through LARC, the local learning rate for each operation is computed
by multiplying the global learning rate by ||w||/||g||, eliminating the above issue entirely.
Therefore, LARC resolves the gradient imbalance problem caused by node normalization,
and applying node normalization and LARC together is important for improving the relia-
bility of β .

4.3
√

β -Continuous Relaxation

Aside from improving the reliability of β , we propose an additional method to improve the
search performance of DARTS:

√
β -continuous relaxation. Figure 6(a) shows the change
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Figure 6: (a) The ratio of variance of the output of the mixed operation to that of the input
of the mixed operation in a randomly selected edge. (b) Covariances between each pair of
operations in the search process using DARTS with node normalization.

in σ(ō(x))/σ(x), where σ2(ō(x)) and σ2(x) denote the variance of the output and input of
the mixed operation respectively, as the search process proceeds. We observe that the ratio
starts with 0.4 and decreases monotonically in DARTS. Through this observation, we want
to answer the following questions: 1) why the scale of the output feature map is smaller than
that of the input and 2) why the ratio of the output to the input varies in the mixed operation
with the conventional DARTS continuous relaxation.

To address the first question, let us denote the variance of a feature map generated by the
mixed operation as σ2(ō(x)) which is expressed as:

σ
2(ō(x)) = ∑

o∈O
β

2
o σ

2(o(x))+∑
i

∑
j 6=i

βoiβo jCov(oi(x),o j(x)), (4)

where Cov denotes the covariance between the feature maps generated by two different op-
erations within the mixed operation. We assume that every output feature map of the op-
erations is normalized. The ratio of the variance of the output to that of the input of the
mixed operation is 1 if and only if all of the covariances are equal to 1. We empirically
show that this condition is never satisfied by plotting the covariances between each pair of
operations in DARTS with node normalization in Figure 6(b). The covariances between the
unparametrized operations stay above 0.7 throughout the search process, because the fea-
ture maps of unparametrized operations are highly correlated. On the contrary, covariances
between all operations and parametrized operations remain close to zero as a result of the
negligible correlation between them. This observation provides an answer to the first ques-
tion.

Based on Figure 6(b), we also find that the covariances between unparametrized op-
erations become stationary approximately after the first 10 epochs. Once the covariances
between unparametrized operations become stabilized, the covariance term in Eq.(4) can be
treated as a constant C. Therefore, with the proposed node normalization, σ2(ō(x)) can now
be approximated as:

σ
2(ō(x))≈ ∑

o∈O
β

2
o σ

2(o(x))+C ≈ ∑
o∈O

β
2
o +C. (5)

During the search process, σ2(ō(x)) is bound to change because values of β no longer follow
the uniform distribution and start to vary. Consequently, in the mixed operation with node
normalization, although the variance of the input feature map σ2(x) is equal to 1 because
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of node normalization, the variance of the output feature map σ2(ō(x)) changes during the
search process. This observation explains why the ratio of the output to the input varies in
the mixed operation, providing an answer to the second question.

Batch normalization is a commonly adopted technique to make the ratio between the
input and the output stable, and it also keeps the input and the output at a similar level.
However, directly applying batch normalization causes the unreliability of β because of re-
scaling; the detailed discussion is provided in the Supplementary Materials. To aid training
of the super-net by mimicking the effect of batch normalization, we instead propose

√
β -

continuous relaxation that substitutes β in the continuous relaxation with
√

β . Let us denote
the mixed operation with

√
β -continuous relaxation as õ(x). Then, Eq.(5) is modified as:

σ
2(õ(x))≈ ∑

o∈O

√
βo

2
σ

2(o(x))+C ≈ ∑
o∈O

√
βo

2
+C = ∑

o∈O
βo +C = 1+C. (6)

Eq.(6) indicates that σ2(õ(x)) is maintained as a constant 1+C, while σ2(x) is 1. If C is kept
small, then

√
β -continuous relaxation can obtain the effect of batch normalization while

avoiding another cause of the unreliability of β problem. This property is empirically sup-
ported by Figure 6(a). In VS-DARTS that includes

√
β -continuous relaxation, this ratio

remains fairly stationary after the early stages in the search process, while in others, it be-
comes quite volatile.

5 Experiments

5.1 Results in DARTS Search Space
5.1.1 Settings

All of our experiments are conducted using a single NVIDIA Tesla V100 GPU. For the
search process, following Zela et al. [20], we use a larger weight decay factor than default
DARTS [12] to account for the significant performance drop caused by the increase in the
number of skip connections. The remaining hyperparameters of the search process are kept
the same as those of default DARTS [12]. The searched architecture is retrained for final
evaluation, which is the standard practice in NAS. We follow the experimental protocols
of default DARTS [12] for the hyperparameters of the retrain process. More detailed hy-
perparameter settings are included in the Supplementary Materials. The cells searched by
VS-DARTS are also visualized in the Supplementary Materials.

5.1.2 Results

In Table 1, we compare the search performance of VS-DARTS on the CIFAR-10 dataset
against that of various NAS Algorithms. The search performance comparison for the Ima-
geNet dataset is provided in Table 2.

CIFAR-10: To validate the stability of the search performance, we repeat the search and
retrain processes three times with different seeds; hence, we report the average performance
of our searched architectures with its standard deviation. The architectures searched by VS-
DARTS are depicted in the Supplementary Materials. As shown in Table 1, the performance
of VS-DARTS architectures is comparable to the state-of-the-art performance.

ImageNet: To evaluate the performance of the VS-DARTS architecture on ImageNet,
we transfer the architecture that yields the lowest test error on CIFAR-10 to ImageNet. As
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Table 1: Comparison of architectures
searched by various NAS algorithms on
CIFAR-10. Cost refers the search cost
with GPU days.

Method Params Test Err. Cost
(M) (%)

NASNet-A[24] 3.3 2.65 2000
ENAS[14] 4.6 2.89 0.5
AmoebaNet-B[15] 2.8 2.55 3150
PNAS[11] 4.6 3.41 225

DARTS1st[12] 3.3 3.00 1.5
DARTS2nd[12] 3.3 2.76 4.0
SNAS[17] 2.8 2.85±0.30 1.5
GDAS[6] 3.4 2.93 0.2
P-DARTS[1] 3.4 2.50 0.2
PC-DARTS[18] 3.6 2.57 0.1
R-DARTS[20] - 2.95±0.21 1.6
FairDARTS[3] 3.3±0.5 2.54±0.05 0.4
DARTS-[4] 3.5 2.59±0.08 0.4
PR-DARTS[22] 3.4 2.32 0.17
DARTS+PT[16] 3.0 2.61±0.08 0.8

VS-DARTS (avg) 3.4±0.3 2.50±0.05 0.4
VS-DARTS (best) 3.38 2.43 0.4

Table 2: Performance comparison of architec-
tures on ImageNet, where the all architectures
are searched on CIFAR-10 and then transferred
to ImageNet classification task.

Method Params FLOPs Test Err. (%)
(M) (M) Top1 Top5

MobileNet[8] 4.2 569 29.4 10.5
ShuffleNet2×(v2)[21] ∼5 524 25.1 -

NASNet-A[24] 5.3 564 26.0 8.4
PNAS[11] 5.1 588 25.8 8.1

DARTS2nd[12] 4.7 574 26.7 8.7
SNAS (mild)[17] 4.3 522 27.3 9.2
PC-DARTS[18] 5.3 586 25.1 7.8
GDAS[6] 5.3 581 26.0 8.5
P-DARTS[1] 4.9 557 24.4 7.4
FairDARTS-B[3] 4.8 541 24.9 7.5
PR-DARTS[22] 5.0 543 24.1 7.3
DARTS+PT[16] 4.6 - 25.5 8.0

VS-DARTS 5.3 589 24.8 7.5
VS-DARTS +Proxy[13] 5.7 640 24.7 7.7

Table 3: Performance comparison (test error (%)) across three datasets and four search
spaces, which are constrained from the cell-based search space [20]. †: evaluated ourselves
while settings are the same as cited paper.

Benchmark DARTS R-DARTS(L2) DARTS-ES DARTS-ADA PR-DARTS† [22] DARTS+PT [16] VS-DARTS (ours)

C10

S1 3.84 2.78 3.01 3.10 3.26 3.50 2.58
S2 4.85 3.31 3.26 3.35 3.63 2.79 2.57
S3 3.34 2.51 2.74 2.59 3.99 2.49 2.52
S4 7.20 3.56 3.71 4.84 2.59 2.64 2.49

C100

S1 29.46 24.25 28.37 24.03 32.74 24.48 23.87
S2 26.05 22.24 23.25 23.52 32.52 23.16 21.49
S3 28.90 23.99 23.73 23.37 26.96 22.03 22.03
S4 28.85 21.94 21.26 23.20 20.80 20.80 20.69

SVHN

S1 4.58 4.79 2.72 2.53 3.33 2.62 2.37
S2 3.53 2.51 2.60 2.54 4.48 2.53 2.37
S3 3.41 2.48 2.50 2.50 2.75 2.42 2.37
S4 3.05 2.50 2.51 2.46 2.95 2.42 2.32

shown in Table 2, the performance of the searched architecture achieves is comparable
to that of the state-of-the-art architecture. We highlight that VS-DARTS achieves 1.9%p
improvement from DARTS, the baseline for our method, and 0.7%p improvement from
DARTS+PT [16]. When directly searching an architecture on ImageNet using proxy dataset
[13], VS-DARTS yields a test error of 24.7%, which is comparable to the recently searched
architectures.

5.2 Results in RobustDARTS Search Space

We further evaluate the search performance of VS-DARTS across three datasets, CIFAR-
10, CIFAR-100, and SVHN, and four search spaces denoted by S1∼S4 [20]. These search
spaces are designed to evaluate the robustness of the search algorithm against changes in
candidate operations. We followed the experimental protocols of Zela et al. [20]. The eval-
uation process for the CIFAR-10 dataset is identical to the one described in Section 5.1. For
CIFAR-100 and SVHN datasets, we use the architecture that consists of eight cells, i.e., six
normal cells and two reudction cells.
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The search results are reported in Table 3. VS-DARTS clearly outperforms recent DARTS
variants, indicating that in VS-DARTS, the selection rule based on the magnitude of β can
function properly to derive the optimal architecture. In particular, on S4, which includes the
meaningless noise operation as a candidate operation, the cells searched by VS-DARTS do
not contain any noise operation at all, while those of other NAS algorithms [4, 20] do contain
some amount of noise operations.

5.3 Ablation Study

NodeNorm LARC
√

β Test Acc.

7 7 7 97.09%
3 7 7 97.29%
3 3 7 97.40%
3 3 3 97.57%

Table 4: Ablation studies

In this section, we provide a comprehensive ablation
study of VS-DARTS to demonstrate the contribution of
each added component to the increase in search perfor-
mance. The experimental settings are as same as Section
5.1. In Table 4, we report the search performance in test
accuracy after applying node normalization, LARC, and√

β . Just by adding node normalization, the test accuracy
is improved by 0.2%p (97.09%→ 97.29%). However, because the problem of imbalanced
gradient remains unaddressed, the search performance only with adding node normalization
has room for improvement. Applying LARC and introducing

√
β each brings upon 0.31%p

(97.09% → 97.40%) and 0.48%p (97.09% → 97.57%) improvement in test accuracy. Our
ablation results support that all of the applied techniques are crucial for substantially improv-
ing the search performance.

6 Conclusion
In this study, we revealed that unnormalized node in a continuously-relaxed cell leads DARTS
to yield a sub-optimal neural architecture because the architecture parameters do not accu-
rately represent operation strengths. Node normalization was proposed as a simple yet ef-
fective solution to address this issue. After applying node normalization, we found that the
gradient imbalance problem becomes prominent, and thus, to remedy this problem, the lo-
cal adaptive learning rate strategy was utilized. Lastly, to further stabilize training of the
super-net, we newly introduced

√
β -continuous relaxation, which makes the scales of the

input and the output feature maps to be similar. We provided through theoretical analysis
and empirical results to support the effectiveness of each component. By combining all the
components, VS-DARTS successfully searched for a competitive architecture on CIFAR-10.
This study alerts that when constructing a search space, the influence of normalization or
lack there of must be carefully considered.
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