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Abstract

Articulated objects are pervasive in daily life. However, due to the intrinsic high-
DoF structure, the joint states of the articulated objects are hard to be estimated. To
model articulated objects, two kinds of shape deformations namely the geometric and
the pose deformation should be considered. In this work, we present a novel category-
specific parametric representation called Object Model with Articulated Deformations
(OMAD) to explicitly model the articulated objects. In OMAD, a category is associated
with a linear shape function with shared shape basis and a non-linear joint function. Both
functions can be learned from a large-scale object model dataset and fixed as category-
specific priors. Then we propose an OMADNet to predict the shape parameters and the
joint states from an object’s single observation. With the full representation of the ob-
ject shape and joint states, we can address several tasks including category-level object
pose estimation and the articulated object retrieval. To evaluate these tasks, we create a
synthetic dataset based on PartNet-Mobility. Extensive experiments show that our sim-
ple OMADNet can serve as a strong baseline for both tasks. Our code and dataset are

available in https://sites.google.com/view/omad-bmvc/.

1 Introduction

Articulated objects are very common in daily life. A vision system that can model articu-
lated objects from a single observation (e.g. depth image, point cloud) can be beneficial for
the downstream tasks such as robot manipulation [6], AR/VR [24] and CG modeling [29].
However, visual analysis of articulated objects is challenging due to their high-DoF (Degree
of Freedom) nature in 3D space and large intra-class appearance variations. In this work, we
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Figure 1: Our OMAD representation for modeling articulated objects. In OMAD, we use
shape parameters B to capture shape geometric deformations and use joint states @ to capture
pose deformations. We use ’ to represent the variables in canonical space (e.g.P'), which
distinguishes from variables in camera space (e.g. P).

propose an explicit parametric representation to depict shape and pose of articulated objects
in the same category. There are two sources of articulated deformations, namely shape geo-
metric deformation on parts and pose deformations on joints. To handle both deformations,
we propose a novel Object Model with Articulated Deformations (OMAD) (Fig. 1).

To describe the shape geometric deformations, given an articulated object, we consider
its rest structure (i.e. shape geometry, joint parameters) in the axis-aligned, zero-centered
canonical space. Then for its shape, which is represented by ordered sparse keypoints, can
be derived from the proposed shape function P’ = S(B; B), where B is a pose-invariant shape
parameters in canonical space, and B is the category-specific linear shape basis. For the
joint parameters @', we devise a non-linear joint function ® = J(B;I) with parameters I
The parameters {B,I"} of shape function and joint function can be regarded as category-
specific priors, and can be learned from existing object dataset like PartNet-Mobility [28]
with proposed OMAD-PriorNet. In this way, the shape geometric deformation can be fully
described by (P, ®’). On the other hand, the pose deformation on joints can simply defined
by its joint state @ in camera space.

To combine both deformations, we devise a deformation function W (P, ®’,®). It can
transform the rest structure in canonical space to camera space. In this sense, we can de-
pict arbitrary articulated object of a known category simply with B and @. To predict 8
and ®, we propose a novel OMADNet, which is mainly constituted by a neural prediction
stage for coarse estimation of B and ©® and an optimization stage to refine the prediction
results. To show the applicability of the proposed OMADNet, we apply it into two different
tasks, namely articulated object pose estimation and articulated object retrieval. The pre-
dicted shape parameters B can be used for pose-oblivious object retrieval [8]. Besides, the
predicted joint state @ and joint parameters @’ can directly address the object pose estima-
tion task. To evaluate our method, we select articulated object models of 5 categories from
PartNet-Mobility[28] to create a dataset named Artlmage. For the articulated object pose
estimation task, we achieve better results on joint state error and joint distance error com-
pared to existing method. For the object retrieval task, we achieve 82.3 average mAP on 5
categories.

Our contribution can be summarized as follows:

* A novel category-specific articulated modeling approach named OMAD, which ex-
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plicitly models both shape deformation and pose deformation at category-level.

* With the proposed OMAD, we provide a simple OMADNet to estimate the shape
parameters and joint states required to describe the articulated object from its single
observation. The output of OMADNet can be used to address the category-level object
pose estimation task and the articulated object retrieval task.

2 Related Work

Articulated Object Shape Signature and Retrieval. The shape parameters in our proposed
OMAD which capture the geometric features of articulated objects and summarize them into
a vector are mostly like the shape signature adopted in [2, 8, 12, 13, 18, 19]. However, these
shape signatures cannot be directly applied to our case for at least two reasons: (1) Their
methods are largely relied on the mesh representation, such as spectral-based [12], graph-
based [2], geodesic-based [8], SDF-based[ 18], while our shape is in point cloud format. (2)
None of the previous methods are interested in the joint parameters of the articulated ob-
jects, while our representation takes both joint states and joint parameters into account. For
articulated object retrieval task, the standard benchmarks are the the McGill shape bench-
mark (MSB) [22] and ISDB dataset [8]. However, the object models for a certain category
are very few for both datasets, which cannot support the training of our proposed OMAD-
PriorNet and OMADNet.

Low-rank Shape Prior. Our proposed OMAD adopts a low-rank shape prior based ap-
proach to model the sparse shape. Such choice has been proved effective in many tasks,
such as instance segmentation [23], NRSfM [3, 4, 14, 25], object structure learning [7],
human body modeling [17, 21]. To the best of our knowledge, we are the first to apply it
to the generic articulated object modeling. It is worth noting that our method differs from
SMPL[17] and its variants[21] from at least two aspects: (1) SMPL[17] relies on hand-
crafted mesh templates with fixed topology and vertex number, while our OMAD only re-
quires flexible point cloud input. (2) SMPL[17] performs PCA on standard meshes to obtain
shape basis, while our proposed OMAD-PriorNet can learn shape basis in an unsupervised
manner directly from raw point cloud.

Category-level Articulated Object Pose Estimation. Cateogry-level object pose estima-
tion task aims at predicting poses of unseen objects in the same category, which is firstly
introduced by NOCS[27]. A-NCSH[15] extends this task to articulated objects. Later, sev-
eral works on this task are conducted on videos [11, 16]. Our proposed OMADNet can
address the category-level articulated object pose estimation task given a single depth image
as input. Overall, our work is closely related to [15] with significant different on method-
ology. Firstly, [15] takes a part-centered perspective, the joint states are estimated from the
predicted part segmentations and poses. Our method takes a joint-centered perspective, the
joint states are directly predicted by OMADNet. Secondly, [15] uses dense NOCS coor-
dinates to represent articulated objects, while our method use ordered keypoints to obtain
sparse correspondence, which largely reduces optimization complexity. Thirdly, Li et al.
[15] models the shape deformation implicitly with segmentation and NOCS coordinates,
which cannot explicitly reflects the complete shape deformation by parameterization as our
proposed OMAD representation. Thus it cannot support other important tasks like object
retrieval.
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3 Object Model with Articulated Deformations, OMAD

In this section, we will give a definition about the articulated objects which the OMAD can
support (Sec. 3.1). As the representation of pose deformation on the joints are self-evident,
we will mainly discuss how to model shape geometric deformations in canonical space(Sec.
3.2) with shape function (Sec. 3.2.1) and joint function (Sec. 3.2.2). A general articulated
object in camera space is formed by transforming the keypoints and joint parameters in
canonical space via a deformation function (Sec. 3.3).

3.1 Object Articulation

We take a joint-centered perspective to study articulated objects. Kinematic tree is one kind
of abstraction of articulated objects (See Fig. 2). We denote the joint that connects one node
and its parent node in the kinematic tree as the reference joint of this node. For example, if
joint k connects node a and its parent node b, then joint k is the reference joint of node a.

Here we consider three types of joints: free joint, revolute joint and prismatic joint (See
Fig. 2). (1) Free joint is the joint that connects the world node with the base part (root node)
in the kinematic tree. The joint state of free joint can be defined as 8V7°¢) = (R() t(/)),
which can be seen as the 6D pose of base part in the world coordinate space. (2) For revolute
joint, joint parameters can be defined as ¢ ") = (u(’) , q(r) ), where ul” represents the direction
of joint axis and q(’ ) represents the pivot point of joint axis. The joint state is denoted by
g(r)’ which is the relative rotation angle compared to a pre-defined rest state in canonical
space. (3) For prismatic joint, joint parameters can be defined as ¢, where u?) represents
the direction of joint axis. The joint state is denoted by 6'?), which is the relative distance
along the joint axis compared to a pre-defined rest state in canonical space.

With the introduction of reference joint and free joint, the part number and the joint
number can be equal. Given an articulated object with K joints, the overall joint state is
denoted as @ = {0,...,0¢}.

Kinematic tree Articulated objects Lemmmmmm s .

1
I
1
I
1
I
1
! @ rootnode
1
I
1
\

Canonical Space

Figure 2: Joint types, parameters and states in consideration. Figure 3: Examples of ob-
jects in canonical space.

3.2 Geometric Deformation in Canonical Space

As pose deformation can be independently considered by ®, we model the shape geomet-
ric deformation in the canonical space (See Fig. 3). Objects of the same category in the
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canonical space have the following properties: (1) The directions in the joint parameters are
aligned. (2) The whole object is zero-centered. (3). The joint states are the same and pre-
defined. To note, our canonical space does not normalize the object scale, because object
scale is a crucial part of the shape geometry and can be explicitly modeled by the OMAD
representation. We use / to represent the variables in canonical space (e.g.P’), which distin-
guishes from variables in camera space (e.g. P). As the articulation is associated with shape
and joint, thus we model the geometric deformation with a shape function and joint function.

3.2.1 Shape Function

As detailed geometric deformation is hard to be modeled, we adopt the sparse shape repre-
sentation, which seeks sparse keypoint correspondences among objects from the same cat-
egory. Inspired by [7], we predict the sparse shape with the low-rank shape prior. Given a
complete object point cloud in canonical space, the sparse shape P’ with M keypoints can be
generated by shape parameters B using shape function S(-):

B
P'=S(B;B)=BB =) Bbi (D
i=1

where B =[B1,...,Bx]". and the b; € R*™ represents linear shape basis. Let B=[by, ..., bx] €
R3M*K be the matrix of all such shape basis, which will be shared in the same category.

3.2.2 Joint Function

Given the rest-state object in canonical space, we can define joint parameters ¢’ = (u',q’),
u' € R g’ € R? for each joint. As the corresponding joint direction u’ is aligned in the
canonical space, and the pivot point g’ for each joint are strongly correlated to the shape
geometry, we propose to predict joint parameters in canonical space from shape parameters
B. All the joint parameters ® = {@/,..., 9%} of the K joints can be generated by joint
function J(-):

@' =J(B:T) )

where I is the parameters of the joint function J(-). Since the relationship between shape
parameters and joint parameters in canonical space are highly non-linear, we design a two-
layer MLP with ReLU activation as J(-).

3.3 Deformation function

To combine both shape geometric deformation and pose deformation, we introduce a defor-
mation function P = W (P’,®' @), which can transform the sparse shape P’ in zero-centered
canonical space with joint parameters @' according to joint states @ to the observed sparse
shape in the camera space P. Each keypoint p! in P’ that belongs to part k is transformed
into p; in P according to Eq. 3 and Eq. 4:

P, = Gi(®',0)p; 3)

Gi(®,0)= [] Fi(®).0)) S

JEA(K)


Citation
Citation
{Fernandez-Labrador, Chhatkuli, Paudel, Guerrero, Demonceaux, and Gool} 2020


6 XUE ET AL.: OMAD: OBJECT MODEL WITH ARTICULATED DEFORMATIONS

Shape branch keypoints « 1
P’ PR N transformed keypoints

shape parameters I o P
(canonical space) === ™, "
joint paramerters | * . &
Input: partial point cloud @' .
X S
4 O i e
o
i Joint state branch s
% Joint state 4
E (camera space) I/ % e
&
energy function
> 4 Ip-7i,
. ) :

Keypoint branch

keypoint target ﬁ
(camera space)

- ° )

Figure 4: Overall pipeline of our OMADNet. Given a partial point cloud of an observed artic-
ulated object, the point features extracted by PointNet++[20] will be fed into three branches:
(1) shape branch (2) joint state branch (3) keypoint branch. We also devise an optimizer to
refine final results.

where p means the homogeneous form of p, Gi(®',®) is the 4 x 4 transformation matrix of
part k. Finally, A(k) is the ordered set of all the ancestors of part & in the kinematic tree, and
F j(<I>’j, 0)) is the relative 4 x 4 transformation matrix caused by the reference joint of part j.
Please refer to the supplementary materials for the details of F’ j(<I>;-, 9)).

3.4 Learning the OMAD Prior

The parameters of shape function S(B;B) and joint function J(B;I") are category-specific,
and we call these parameters {B,I'} as OMAD prior. We design a network called OMAD-
PriorNet to learn OMAD prior for each cateogry in an unsupervised manner. The parameters
{B,T} of shape function S(B;B) and joint function J(f8;T") will be treated as shared network
parameters of OMAD-PriorNet for each category, and they will be updated during training
process. After the training, these parameters will be fixed as category-specific OMAD prior,
then we will predict shape parameters B and keypoints P’ for each instance in the training
set with the pre-trained OMAD-PriorNet which will be used as ground truth in the training
of OMADNet described in Sec. 4.1. Please refer to the supplementary materials for all the
loss functions and network structure of OMAD-PriorNet.

Learning of Shape Function. To learn the shape basis B for shape function S(-), we adopt
a similar design in [7]. We make some modifications on the loss functions to adapt to the
articulated objects. The tweaks on loss functions are listed in the following: (1) We add an
additional £, regularization loss on B which can improve the generalization ability. (2) The
original chamfer loss, coverage loss and surface loss is changed to part-level. (3) We add a
separation loss to ensure the keypoints not collapsed into a cluster.

Learning of Joint Function. The parameters I" of joint function J(-) is optimized during
training according to the proposed joint loss defined in Eq. 5.

Lioine = Ly +ALg &)

where Ly is a cosine-similarity loss that supervises joint direction and L, is the L, loss
between the predicted joint pivot point and the ground-truth joint pivot point.
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4 OMADNet

With the OMAD representation and the pre-learned OMAD priors, given a point cloud X =
{x,- eR|i=1,...,N } reprojected from a depth image, we propose a OMADNet to predict
the shape parameter B and joint states @. The overall pipeline is shown in Fig. 4.

4.1 Coarse Prediction of Shape Parameters and Joint States

Feature Extractor. We adopt PointNet++ [20] to extract d-dimensional dense point-wise
feature Fyense € RV from X. Then we can generate global feature Fyiopar € R? using a
max pooling layer with the extracted dense feature.

The Shape Branch. The shape branch learns to predict pose-invariant shape parameters f8
in canonical space. It uses a two layer MLP with global feature Fgjopa as input to regress a
vector as shape parameters 8. We supervise B by Eq. 6:

Lg = |[S(B) = S(B")||, + Lioin(/(B),J (B7)), (6)

where [3* is obtained by the pre-trained OMAD-PriorNet described in Sec. 3.4, and Lioin
is defined in Eq. 5. Lg indirectly supervises B by generating keypoints P’ = S(B;B) and
joint parameters @' = J(B;T) in canonical space.The parameters {B,I"} are obtained from
pre-trained OMAD-PriorNet and are fixed during training.

The Joint State Branch. This branch predicts joint states using a two layer MLP with
global feature Fgiopal as input to regress joint states @. As there are three joint types in
consideration, we treat them separately. For the free joint, Opase = {Rbases tbase }» We directly
supervise Rypase, Which is represented by a quaternion vector, via a cosine-similarity loss
Lpase(r) While the 10ss Ly () fOr thase is a Root Mean Square (RMS) loss. For the 1D

revolute (£,) or prismatic (£,) joint, we use L, loss on 0") or 8”). The overall loss for
joint state is:

K
Lo = Z 1§'fr86) (‘Cbase(R) + ‘Cbuse(t)) + 15r>£r + 15'[7)‘6177 @)
=1

where 1(]-'> indicates whether it is the joint type for the joint j.

The Keypoint Branch. The keypoint branch will directly predict ordered keypoint targets
P € RM*3 in camera space using dense feature Fyense- These keypoints are for the opti-
mization process described later in Sec. 4.2. Similar to PVN3D [10], we predict P with
an offset-voting mechanism, that is every point will regress all the M keypoint offsets with
respect to its own location. These offsets are denoted by O € R¥*M_ However, it is hard to
directly regress keypoint offsets in camera space for articulated objects due to large joint de-
formations and self-occlusion. So we additionally predict an attention map S of input point
cloud X to focus areas around keypoints. Specifically, the j-th keypoint p; € P is generated
by Eq. 8:

o1y
pj= Y sijlxitoij) ®)
NS
where s; ; € [0,1] is the attention score of i-th point for j-th keypoint, 0;x € O is the 3D

offset of j-th keypoint repective to the i-th point, x; € X is the 3D coordinates of i-th input
point. The prediction of P is supervised by:

Lip = |P—~W(S(B";B),J(B";T),0")], ©)
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where @" is the ground truth of the joint state, the rest of deformation function W(-) is
obtained from pre-trained OMAD-PriorNet in Sec. 3.4.

4.2 Optimization-based Estimator

Since the regression of neural network is known to be noisy, empirically the estimated high-
level properties like shape parameters B and joint states @ are less accurate than the predicted
ordered keypoint targets P in camera space. Thus, to push the limits of the prediction results
in inference, we propose to refine 8 and ® with an energy function E defined in Eq. 10:

E = argmin ||W(S(B;B),J(B;T),0) — P||,
e (10)
= argminHP—PH2
B.®

where P is the camera-space keypoints generated by deformation function W (-). The energy
function E is differentiable, so we can try to find optimal shape parameters  and joint states
O to fit the predicted keypoint targets P during the optimization process. The initial values
of B and @ are obtained from OMADNet prediction, which vastly reduces the optimization
time. Please refer to the supplementary files for further details.

S Experiments

5.1 Dataset

To the best of our knowledge, there is no public image dataset for articulated object tasks in
category level. So we create a synthetic dataset named ArtImage to evaluate OMADNet.
We select 5 categories of object models from PartNet-Mobility dataset[28] and render depth
images under random joint states, object positions and viewpoints for each category with
Unity[1]. We will make our dataset public in the future. Please refer to the supplementary
materials for further details of ArtImage.

5.2 Experiments on Category-level Pose Estimation

Metrics. We use the following metrics to evaluate the performance of our algorithm on
category-level pose estimation. (1) joint state. All the joint states error are evaluated in
camera space, including mean angle error for revolute joints (max error 90° for missing
ones) and mean distance error for prismatic joints (max error 1 for missing ones). (2) joint
parameters. All the joint parameters are evaluated in camera space. we use mean angle
error to evaluate the orientation of joint axis, and use mean distance error to evaluate the
distance between two joint axes.

Main Results. Table 1 shows the performance of different methods on category-level pose
estimation. We can see that OMAD(refine) surpasses OMAD(initial) by a large margin,
which proves the effectiveness of our optimization-based estimator. Compared to state-of-
the-art method A-NCSH[15], our OMAD(refine) achieves better results on joint state error
and joint distance error on most categories. It is worth noting that the prediction of A-
NCSH[ 15] heavily relies on part segmentation, which could result in missing parts or joints
when segmentation fails. While our method could utilize kinematic prior information to
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Table 1: Performance comparison on category-level pose estimation task on Artlmage.
OMAD(initial) represents the initial joint state and joint parameters predicted by OMAD-

Net, and OMAD(refine) represents the refined results with our optimizer.

Category Method JO::O?TC angle er‘ll”g:"nj Pa.rancllei:;nce error | Inference Time per Image |
A-NCSH[15] 3.5° 1.7° 0.09 9.0s
Laptop OMAD(initial) 5.9° 19.5° 0.14 0.4s
OMAD(refine) 3.3° 3.7° 0.03 1.6s
A-NCSHJ15] 12.8°, 14.2° 3.1°,3.1° 0.07, 0.06 11.9s
Eyeglasses | OMAD(initial) 19.1°,19.4° 17.3°,17.3° 0.18,0.17 0.7s
OMAD(refine) 4.9°,5.2° 4.2°,4.6° 0.05, 0.04 2.5s
A-NCSH[15] 3.8° 6.1° 0.11 5.5s
Dishwasher | OMAD(initial) 17.6° 15.7° 0.17 0.6s
OMAD(refine) 3.7° 4.6° 0.09 1.6s
A-NCSH[15] 4.4° 0.8° 0.04 6.5s
Scissors OMAD(initial) 5.8° 18.7° 0.14 0.7s
OMAD(refine) 3.2° 2.7° 0.05 1.7s
A-NCSH[15] | 0.38,0.45,0.41 2.6°,2.7°,52 - 16.5s
Drawer OMAD(initial) | 0.18,0.17,0.18 | 15.2°,15.2°, 15.2° 1.0s
OMAD(refine) | 0.11, 0.11, 0.09 3.2°,3.2°,3.2° 1.9s

prevent missing joints. Besides, our method is much faster than A-NCSH because we adopt
sparse keypoints for optimization. We show some qualitative results of our OMAD(refine)
in Fig. 5. We can see that the predicted keypoints after optimization can achieve semantic
consistency in category, and maintain object structure under heavy self-occlusion.

Ablation Study. Table 2 shows some ablation experiment results. We use optimization-
based estimator as default setting in all the ablation experiments. We can see from Table 2
that the use of attention score vastly boosts the performance on all metrics when predicting
keypoint targets. We also analyze the upper bound of our method in Table 2. The overall
performance improves a lot when we replace keypoint targets P predicted by keypoint branch
with ground-truth keypoints during optimization process. This indicates that our OMAD
representation has great potential and the bottleneck of our method is the quality of predicted
keypoint locations in camera space. Please see supplementary files for ablation study on
keypoint number, shape parameters 8 and experiment results on real images.

Figure 5: Qualitative results of OMADNet on unseen instances for category-level object
pose estimation. Keypoint indexes are represented by colors for each category. Ground-truth
part segmentation are used for a better view.

5.3 Experiments on Articulated Object Retrieval

Metrics. The pose-invariant shape parameters predicted by OMADNet can be used as shape
signatures for articulated object retrieval task. We use the Euclidean distance of shape pa-
rameters to estimate the similarity between object instances. We randomly choose 100 depth
images as test query set for each category. We report the mAP (mean Average Precision) of
top-10 instances on five categories in the test dataset.
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Table 2: The effects of using attention score and ground-truth(GT) keypoint targets in

OMADNet. Optimization-based estimator are used as default setting.
Ablation

Joint State Joint Parameter

Category attention score | GT keypoints error |, angle error | distance error |
4.7° 5.4° 0.04
Laptop v 3.3° 3.7° 0.03
v 1.1° 0.8° 0.01
9.8°,11.2° 9.2°,9.2° 0.10, 0.09
Eyeglasses v 4.9°,5.2° 4.2°,4.6° 0.05, 0.04
v 1.1°,1.2° 1.2°,2.1° 0.02, 0.01
5.0° 5.8° 0.10
Dishwasher v 3.7° 4.6° 0.09
v 0.4° 0.4° 0.02
3.9° 3.9° 0.05
Scissors ' 3.2° 2.7° 0.05
v 0.4° 1.8° 0.01
0.173,0.187,0.181 | 15.2°,15.2°,15.2° -
Drawer ' 0.110, 0.114, 0.093 3.2°,3.2°,3.2°
v 0.001, 0.001, 0.003 0.5%,0.5°,0.5°

Figure 6: The t-SNE[26] visualization of predicted shape parameters of unseen eyeglasses
instances under different poses on test dataset of ArtImage. Different instances are distin-
guished by colors.

Results. To the best of our knowledge, there is no available retrieval method specially de-
signed for our setting. Inspired from [5], we design a simple but effective Siamese Network
as baseline which uses PointNet++[20] backbone and contrastive loss[9] for training. Please
see supplementary files for further details of the Siamese Network. Table 3 shows some
quantitative results. Although our method are not specially designed for retrieval task, we
still achieve better performance compared to the baseline on most categories. We find that
the Siamese Network can not distinguish some similar instances in drawer category, which
vastly harms the performance, while our method can distinguish them very well. Fig. 6
shows t-SNE[26] visualization of shape parameters predicted by OMADNet. We can see
that the predicted shape parameters can distinguish different instances well and maintain
pose-invariant.

Table 3: Articulated object retrieval results on ArtImage.

Method - mAP -
Laptop | Eyeglasses | Dishwasher | Scissors | Drawer || Mean
OMAD(Ours) 45.2 935 71.7 98.5 96.7 823
Siamese Network | 43.9 96.2 75.7 96.8 73.6 772

6 Conclusion

In this work, we propose a novel category-level representation, OMAD, for articulated ob-
ject by modeling the two kinds of deformations namely the shape geometric deformation and
pose deformation. The OMAD can describe articulated objects with shape parameters and
joint states. Then for a naturally observed object, we propose to predict such OMAD infor-
mation via OMADNet. The predicted OMAD information can be used for multiple tasks,
such as category-level object pose estimation and articulated object retrieval.
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