HARTLEY, SIDOROV, WILLIS, MARSHALL: JITTER-CAM 1

Jitter-CAM: Improving the Spatial Resolution
of CAM-Based Explanations

Thomas Hartley’ 1 Cardiff University
hartleytw@cardiff.ac.uk

Kirill Sidorov'
sidorovk@cardiff.ac.uk
Christopher Willis?
chris.willis@baesystems.com
David Marshall’
marshallad@cardiff.ac.uk

2BAE Systems Applied Intelligence

Abstract

Class Activation Mappings (CAMs) are a popular group of methods for creating
visual explanations of the reasons behind a network’s prediction. These techniques
create explanations by weighting and visualising the output of the final convolution
layer. Recent CAM techniques have sought to improve these explanations by intro-
ducing methods that aim to produce weights that more accurately represent how the
network informs its prediction. However, none of these methods address the low spa-
tial resolution of the final convolutional layer, leading to coarse explanations. In this
paper, we propose Jitter-CAM, a method for producing and combining multiple CAM
explanations that allow us to create explanations with a higher spatial resolution than
previous comparable methods. We use ImageNet and a number of well known ar-
chitectures to show that our technique produces explanations that are both more ac-
curate and better at localising the target object. Code for Jitter-CAM is available at
https://github.com/HartleyTW/Jitter—-CAM.

1 Introduction

The impact of Convolutional Neural Networks (CNNs) on all applications of computer vision
in recent years has been profound. We now see that CNNs are becoming more common
in domains where the predictions of the network can have critical real life consequences.
Examples of this include healthcare [33] or security [34]. However, a common concern with
the use of CNNss is their lack of interpretability. As a result, numerous techniques have been
developed to create post-hoc explanations of model decisions.

A popular method for creating explanations uses weighted feature maps from the final
activation layer. This is called Class Activation Mapping (CAM). Numerous explanation
methods have used CAMs as the basis for their technique, with the primary difference being
in how the feature maps are weighted. Despite all the advances in generating better methods
of weighting the activations, a limiting factor of any explanation produced this way is the
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spatial resolution of the activations. The spatial resolution of the final activation is a function
of both the input image size and the architecture. The typical input size when using ImageNet
is 224 x 224, with Inception [29] using an input of 299 x 299. It is therefore common for
newer CNN architectures [10, 11, 12, 37], using the typical input size, to produce a final
activation map with a height and width of 7. VGG16 [24] is somewhat unusual with a final
activation map of 14 x 14 when using a 224 x 224 input. When these coarse activation maps
are resized to the input image size using bilinear interpolation, their poor resolution will
be reflected in the explanation. If there was a method for creating activation maps with a
higher resolution than 7x7 then the resultant explanations would likely be more useful than
before. An alternative to CAM-based methods are perturbation methods [6, 19, 21]. These
typically alter the input in some way and observe the change in confidence of the network’s
prediction. As the input can be perturbed in multiple ways, even down to manipulation of
individual pixels, there is theoretically no limit to the spatial resolution of the explanations.
However, these methods are typically very inefficient as the image is required to be passed
through the network multiple times to build a single explanation (e.g. 8,000 times with
RISE and ResNet50). This limits the resolution of the explanation than can be realistically
achieved, typically being only slightly larger than those obtained by CAM methods before
the process becomes too inefficient. For example, the RISE authors propose explanations of
size 8 x 8 (prior to resizing) compared to Grad-CAM’s 7 x7.

In this paper, we introduce Jitter-CAM, a method for creating explanations which have
an increased spatial resolution compared to similar methods. This is achieved by creating
multiple CAM explanations in a structured manner using a resized input image, and combin-
ing the results. Each CAM explanation locates features that are important to the networks
discrimination of the given class. Combining them gives an insight into how the network
represents the target class. We show that our method creates explanations with better accu-
racy, and better localisation abilities. We conduct experiments using ImageNet with ResNet,
Inception, and DenseNet. In addition, we discuss faithfulness, a metric found in the CAM
literature, and show it is a misleading metric that should be discontinued from future use.

2 Related Work

While we concentrate on comparisons with CAM-based methods in this paper, there are a
number of alternative methods for generating explanations of a network. Gradient-based
methods produce very fine explanations in which each pixel in an image is assigned a score.
Examples of these techniques are ‘vanilla’ gradients [25], Guided Backpropagation [27],
Layer-Wise Relevance Propagation (LRP) [1], Integrated Gradients [28], Smooth-Grad [26],
and Excitation Backprop [36]. Recently, there have been techniques such as XRAI [14] and
SWAG [9] that attempt to pool these gradients to produce more interpretable explanations.
Alternatively to this, there are a range of explanation techniques based on perturbation
such as LIME [21], RISE [19] and meaningful perturbations [6]. Meaningful perturbations
are created by learning a mask based on a novel loss function. This work is expanded upon
by Qi et al. [20] through the use of Integrated Gradients, allowing explanations to be cre-
ated more efficiently. Similar explanations that are learnt via optimising a loss function are
SCOUTER [15] and the work by Schulz et al. [22]. The benefit of these techniques is that
the spatial resolution of the explanation can be chosen at will. The caveat is that typically,
an increased resolution will require an increased number of perturbations / training epochs.
CAM-based methods were first introduced by Zhou et al. [38]. This technique was ini-
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tially confined to network architectures that possessed a global average pooling layer prior to
the classification layers. Grad-CAM [23] generalised this by backpropagating the gradients
from a specific class output to the activation map. Weights for the activations were produced
by taking the mean value of the gradients in such a way that each activation map had a cor-
responding mean gradient value. The intuition here is that the mean of the gradient will be
indicative as to how useful the network finds a particular activation map to the output. This
concept was expanded further in Grad-CAM++ [3], which aims to improve the localisation
ability of Grad-CAM, and XGrad-CAM [8], which aims to ensure that the explanation meets
the axioms introduced by Montavon et al. [17] and Sundararajan et al. [28].

Recently, there has been a trend towards perturbation-based approaches. This is seen in
the Ablation-CAM [4] and Score-CAM [30] techniques. In both, the network is perturbed
and the output prediction score for the desired class used as the activation map’s weight.
With Ablation-CAM, the activation maps are extracted and iteratively ‘turned off” by setting
them to 0. When these activations are passed to the classification layers, it gives an indication
of how useful it was to the network’s prediction based on the amount the class score drops.
Score-CAM is similar to RISE [19] in its approach. It extracts the activation maps and itera-
tively multiplies the input with each map so as to mask out regions not activated by that filter.
These are then passed to the network and the prediction score used as the weight for that acti-
vation map. These methods require as many passes through the network as there are maps to
weight; for VGG16 this is 512 passes. Recently, the number of filters in the final layer have
increased e.g. ResNet[10] uses 2,048 filters, while ShuffleNet[37] and MobileNet[11] use
1,024 and 1,280 respectively. This subsequently increases the computational requirements
needed to produce an explanation. In addition, the authors of Ablation-CAM[4], suggest
that their technique does not outperform other methods when using networks that do not use
fully connected layers. Fully connected layers are now uncommon in newer networks such
as ResNet[10], DenseNet[12], ShuffleNet[37] and MobileNet[11].

3 Jitter-CAM

As we have highlighted, the resolution of the activation maps which CAM methods use as a
base is a limiting factor. By offering a technique that allows us to increase the resolution of
the CAMs, we believe that visualisations can be produced that provide more useful expla-
nations. While other methods may achieve this through perturbations using a large number
of iterations, we propose a method based on increasing the scale of the input, and then, pro-
ducing explanations for patches of the new image corresponding to the original image size.
These explanations are combined to produce a new explanation with an increased resolution.
Before outlining our method we adopt the following notation: Let the size of the activa-
tion map be defined as mxm. Each cell of the activation map corresponds to k pixels in the
input image, where k = p/m. Here, p is the height or width of the input image (i.e. 224 pix-
els). To increase the size of the CAM from m = 7 to m = 10, an increase, d, of 3, we would
need to increase the size of the input image by dk pixels. We call this resized image I. A
CAM is created by passing an image, X, to a CAM explanation function E(X). E(X) returns
a CAM explanation of size mxm. We use Grad-CAM as our base explanation method.
Example: suppose we would like to increase the CAM size, m, from 7 to 12, an increase
value, d, of 5. For an input image of p = 224, this would be an increase of 5k where
k =224/7. This would give a new image size of 384 x384. Patches of this enlarged image
are taken corresponding to size p X p, and a stride of k. For a CAM size increase of 5,
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Figure 1: Comparison between differing sizes of Jitter-CAM and the original rad—CAM.
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Figure 2: How the deletion and insertion scores are affected by the spatial value of m.

this would give 36 patches (= (5 + 1)?). To create a Jitter-CAM explanation, we create and
combine CAM explanations from each of the patches. We extract patches from the resized
image I and creating a combined explanation J (of size (m + d)x(m+ d)) as so:

Ji:i+m,j:j+m = Jisi+m,j: j+m +E(Iki:ki+p,kj:kj+p)7 (D

where i, j is the starting location for the explanation to be added to J. Here i, j = [1...d + 1].
Multiple explanations will be created at any given point, with more being created corre-
sponding to centre regions. To account for this, we create a count of how many times each
region of the image has had an explanation created for it. We call this C, a matrix of size
(m—+d)x(m+d), and define it as:

Ci:i+m,j:j+m = Ci:i+m,j:j+m +1. (2)

Again, i, j = [1...d + 1]. We found in practice that there are few artefacts present from the
resizing process, however, for transparency we show example patches and their associated
pre-resized explanations in the supplemental material.

Finally, we produce the pre-resized Jitter-CAM explanation: Jitter-CAM = % Given this
higher resolution CAM, we can now resize it to the original input image size using bilinear
interpolation to give us a familiar looking CAM explanation.

The key parameter for this technique is by how much we increase the size of the CAM?
If we increase it too much, we run the risk of the explanations not being exposed to enough
of the image and, therefore, unable to produce explanations for the object in the image.
Too small and we may not offer any improvement over the standard Grad-CAM method.
In Figure 1, we show an example of how the increase in the CAM size affects the final
explanation. Here, we can see that the original Grad-CAM is fairly coarse. However, as we
begin to increase the size of the CAM, we see that the explanation begins to better highlight
the object for classification, rather than background regions.

How then do we find the optimal size for a Jitter-CAM explanation? To answer this
we use the deletion and insertion metrics from RISE. We experiment using the ResNet50
network, and vary the size of the CAM from m = 7 (the original Grad-CAM) to m = 20 in
steps of 1. We determine the optimal m value by combining the insertion and deletion scores
together: (deletion + (1—insertion)).
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The results for each of these experiments is shown in Figure 2. Here, we see the deletion
score plateaus around m = 14 while the insertion score never improves from the original
coarse size of m = 7. Taking the combined score m value at the lowest position determines
that m = 14 seems to be the optimal size, double the initial size of the original CAM explana-
tions from a ResNet50 model. For Inception [29], which has a final activation layer of 88,
we experimented with increasing it to 14x 14, and 16x16. We found better results were
achieved using a 16x 16 Jitter-CAM explanation. Going forward, when we refer to Jitter-
CAM it will be with an explanation of double the original explanations size. This gives
ResNet50 and DenseNet a 14x 14 CAM prior to resizing, and Inception a 16 x16 CAM.

4 Experiments

In this section, we present results for a number of common experiments found in the ex-
plainability literature. These are measures of explanation accuracy, localisation ability, and
efficiency. All experiments are conducted using the ImageNet validation set (50,000 images)
using the pre-trained models from PyTorch: ResNet50[10], DenseNet121[12], and Inception
V3[29]. The first two networks produce CAM explanations of 7x7 prior to resizing, while
the Inception network produces 8x8 CAMs. We primarily compare Jitter-CAM against
other CAM methods due to the increased computational requirements of perturbation meth-
ods. However, we do include results for RISE to allow for some comparison. In addition, we
test using two baselines, a heatmap radiating from the centre point, and a heatmap radiating
from a random point. We label these as centre and random respectively.

4.1 Qualitative Inspection of Results

We begin with a qualitative assessment of the explanations. Examples of each of the methods
tested are presented alongside Jitter-CAM examples. These are shown in Figure 3. Here, we
see that using Jitter-CAM to double the size of the explanation prior to resizing, allows us
to produce an explanation that is more compact around the object in the image. We see this
clearly in the first image of a goldfish, where our Jitter-CAM explanation focuses less on the
surrounding tank, and more on the goldfish itself. Also notice, in cases such as the canoe,
how Jitter-CAM manages to highlight more of the object than previous methods. In examples
where more regions of an object are highlighted, Jitter-CAM still adheres more strongly to
the object boundary than previous CAM methods. Perhaps the most striking aspect of the
qualitative comparison is how visually similar all the previous CAM methods are, due to the
constraints of all using the same activation maps. RISE produces explanations that are finer
than previous CAM methods, but still not as precise as Jitter-CAM. In addition each RISE
explanation required 8,000 passes through the network. Additional examples for alternative
architectures tested can be found in the supplemental material

4.2 Grad-CAM Vs 7 x 7 Jitter-CAM

Before we begin to discuss quantitative metrics, a question that should be asked is whether
the explanation created by Jitter-CAM has the ability to recreate the original Grad-CAM
explanation, if given a smaller starting image. We use an input image of size 160 x 160
(which produces a 5 x 5 Grad-CAM explanation) and use Jitter-CAM to resize it to 7 x 7.
When compared to Grad-CAM explanations produced using an input image of size 224 x
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Figure 3: Visual comparison using ResNet50 and images from ImageNet.

224 we find that the mean Spearman correlation across the ImageNet validation set is 0.95
suggesting a high degree of similarity between the explanations. Visual examples of this can
be found in the supplemental material.

4.3 Faithfulness

Faithfulness is a metric that is often deployed in CAM research[3, 4, 13]. In this section,
we show that it is not an appropriate measure of an explanation, and perhaps should be
discounted as a metric in future research. First, introduced by Chattopadhay et al. [3], the
faithfulness metric was intended to be a measure of how well the regions that were deemed
important by an explanation aligned to those used by the model. This is achieved by perform-
ing a point-wise multiplication of the explanation and the input image to create a masked im-
age E€ for class ¢: E€ = L°ol. Here, L¢ is the original explanation for class ¢ scaled between
0...1 and [ is the input image. The masked image, E€ is passed to the model and the change
in the softmax results observed. This softmax score is then used to inform two measures of
faithfulness, namely the average drop (AD), and the increase in confidence (IIC).
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ResNet50 DenseNet Inception
Method 11C AD 11C AD 11C AD
Grad-CAM 40.21 14.04 39.65 13.22 4046 1698
Grad-CAM++ 38.70 1422 37.54  13.69 38.89  17.02
Constant 48.22 2.70 49.14 1.08 47.36 1.32

Table 1: Faithfulness scores for IIC (higher is better) and AD (lower is better).

AD is a measure of how much the models confidence drops when shown the masked
image compared to the original image. The intention is that a good explanation should
highlight the regions of an image important to a network, and give low scores to those that
are unimportant. Therefore, E¢ will be an image where useful regions are kept, and those
not seen as useful are suppressed. AD is then measured as:

N ~
Z—m (’i,_ ) 5 100. 3)

Here, Y and Of are the model’s softmax output for class ¢ and the i input image, and
its corresponding masked image respectively. N is the number of images in the dataset. For
AD, a lower value is desirable as it reportedly indicates that the masked image has only kept
useful regions. IIC is the complement to this and seeks to determine if the masked image
results in the model’s confidence increasing. The idea behind this is that the explanation has
the potential to mask out regions of the image that are detrimental to the network’s prediction.
IIC is given by:

=

1
N/

1

1[Y¢ < 05] x 100, )

where 1 is an indicator function equal to 1 if the condition in brackets is true, O otherwise.
For IIC a large value is desirable.

It is notable that the CAM methods that score well on this metric assign high values to a
large region of the image. It transpires that this is not coincidental. We hypothesise that what
these metrics are actually rewarding is having a large number of high valued pixels. To test
this, we propose two experiments. The first is through the use of a baseline, consisting of an
explanation which is completely made up of values of 0.9, except for two random pixels with
a value of 1 and 0. These random pixels ensure that during any rescaling, the constant values
are not scaled to either 0 or 1. We label this baseline as ‘Constant’. In Table | we show
this baseline compared to Grad-CAM and Grad-CAM++. Here, we can see that our baseline
outperforms both CAM techniques, while also clearly being a poor explanation method.
The second experiment is to create Grad-CAM explanations for each validation set image
and then observe how the faithfulness metric change as the scores in the explanation are
multiplied by a value from 0-10 in increments of 0.5, and clipped at the maximum value of
the original explanation minus le—10* (ensures rescaling is not an issue). Figure 4 shows an
example of this modified explanation. In addition to using Grad-CAM, we also modify our
random baseline in the same manner. Further examples shown in the supplemental material.

We show the average AD and IIC scores for this second experiment in Figure 5. In these
charts we see how expanding the high value regions of an explanation (either Grad-CAM
or random) outperforms a regular Grad-CAM explanation (marked by the dashed red line).
Even a small multiplication value increases the performance in this metric. Again, looking at
the examples in Figure 4, we see that the explanations that score well in this metric may not
be useful for someone trying to understand which image regions are useful to the network.
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Figure 5: Showing how AD (left) and IIC (right) scores change as we expand the explana-
tions. Below the red line for AD is an improvement. Above for 1IC is an improvement.

While it makes sense that the AD metric might improve, as multiplying the input image
by the constant baseline close to 1 should produce little deviation in the model’s prediction.
It is not immediately obvious why the IIC score should improve. We, therefore, extracted
an additional measurement using the constant baseline: the mean amount of improvement
(0 —Y{). This showed the reason that the baseline was able to improve the score was that
it improved more images, but with a lower mean improvement. The baseline improved the
confidence of 24,094 images, with an average confidence increase of 0.022. Grad-CAM
and Grad-CAM++ improved the confidence of 20,103 and 19,348 images respectively with
mean increases of 0.091 and 0.081. However, none of this is represented in these faithfulness
metrics. This suggests that they should be discouraged from future use as they are, at best,
misleading and could lead to the development of inappropriate explanation methods.

4.4 Local Accuracy

Faithfulness is often presented alongside the local accuracy measures of deletion and inser-
tion introduced alongside RISE[19]. However, there is a crucial difference between the two
types of metric that is important when measuring explanations. Both measurements alter the
input image based on the explanation, but while the faithfulness metric simply performs a
point wise multiplication (which we have shown is a poor method), deletion and insertion
masks the pixels iteratively according to their importance. Masking the input image in this
way allows us to understand how well the explanation ranks the pixel’s importance. We
perform the metric over 28 iterations. The results for both insertion and deletion are shown

ResNet50 DenseNet Inception

Method Del Ins Del Ins Del Ins

Random 0303 0413 0.280  0.382 0.287  0.425
Centre 0.177  0.420 0.172  0.374 0.165  0.460
Grad-CAM 0.142  0.576 0.137  0.536 0.128  0.585
Grad-CAM ++ 0.147  0.564 0.141 0.524 0.132  0.572
XGrad-CAM 0.142  0.576 0.137  0.540 0.128  0.585
Score-CAM 0.150  0.568 0.142  0.532 0.131  0.579
Ablation-CAM 0.144  0.567 0.140  0.531 0.129  0.577
RISE 0.131  0.540 0.131  0.513 0.162  0.528
Jitter-CAM 0.118  0.551 0.120  0.522 0.107  0.570

Table 2: AUC for local accuracy metric. Del: Lower is better. Ins: Higher is better.
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ResNet50 DenseNet Inception
Method Val Mea Eng Val Mea Eng Val Mea Eng
Random 5743 5896 5739 5743 5896 5739 5774  59.10  57.66
Centre 4758  48.18  47.68 4758  48.18  47.68  48.56 4834  47.84

Grad-CAM 4594 4589 4435 4544 4499 4348 4484 4529 4460
G-CAM ++ 45776 45.83 43.85 44.89 4488 42.88 4505 4494 4487
XGrad-CAM 4594 4589 4435 45.67 4538 4396 4484 4529  44.60
Score-CAM 4753  46.86 4532 4729 4635 4474 4572 4559  45.19
Ablat-CAM 4588 4588 4430 4552 4526 4371 4525 4534 45.00
RISE 5299  54.10 50.76 51.50 5299 4838 55.57 56.66  53.05
Jitter-CAM 39.83 4230 40.64 4024 41.55 4044 3838 39.10 39.86

Table 3: Weak-localisation results as % of localisation error. Lower is better.

in Table 2. From these results we can see that Jitter-CAM is much better at the deletion
metric than the other CAM methods, but this is achieved via a trade-off with the insertion
metric. As Qi ef al. [20] found, as deletion scores improve, typically insertion scores fall.
This suggests that Jitter-CAM is able to better locate the pixels deemed most important to
the model’s prediction, but is less able to determine which pixels are required when rebuild-
ing the image from scratch. RISE outperforms CAM methods but notably struggles with the
inception network, likely due to the increased activation map size.

4.5 Weak Localisation

The original CAM method [38] was primarily aimed at the localisation of objects. As such,
the ability of CAM-based methods to localise an object well has been used in number of tasks
such as segmentation [18, 31, 32], object recognition [7], and person re-identification [35].
Localisation metrics are therefore often presented in CAM papers. We show results for two
localisation metrics: weak localisation [2, 36], and the pointing game [36].

In weak localisation, the explanation is thresholded using one of three methods, and a
bounding box drawn around the explanation. This is done over a range of thresholds and
the best score for each is presented. The first method of thresholding is based on scaling the
explanation between 0 and 1, then sweeping through a range of thresholds in range [0: 0.05 :
0.95]. This is labelled as ‘Val’. The second set of thresholds is obtained by multiplying the
mean value of the explanation with a value in the range [0 : 0.5 : 10]. This is labelled as
‘Mean’. The final method is based on thresholding the heatmaps by the percentage of energy
that covers a subset of the explanation in range [0 : 0.05 : 0.95]. This is labelled as ‘Eng’.
The results for these three methods are shown in Table 3. We see that Jitter-CAM offers a
dramatic improvement over existing techniques, improving by around 2% — 5% depending
on thresholding method. The likely reason for this improvement is that Jitter-CAM is able
to better highlight more of the object used in the models predictions than previous methods.
This in turn results in regions that better align to the ground-truth bounding boxes.

4.5.1 Pointing Game

The second metric used is the pointing game by Zhang et al. [36]. This takes a differ-
ent approach to the previous weak localisation metric in two ways. The first is that the
COCO [16] dataset containing multiple objects in an image is used. The second is that
rather than thresholding the explanation to find regions which overlap with a bounding box,
the maximum point on the explanation is used instead. This maximum point is said to be a
hit if it falls (within a 15 pixel margin of error) on one of the correct annotated regions in
an image. Accuracy is given as g #hits The final aspect to the pointing game is that

+ #misses *
results are presented on both the entire dataset, and a difficult subset of COCO images. The
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Method All Difficult
Centre 24.61 17.93
Random 12.33 7.99

Grad-CAM 53.47 49.40
G-CAM++ 47.26 4293
XGrad-CAM  53.46 49.39
Score-CAM 47.28 42.70
Jitter-CAM 64.08 61.10

Table 4: Pointing game results. Higher is better. Jitter-CAM outperforms all other methods.

Method ResNet50 DenseNet Inception
Grad-CAM 0.03 (1) 0.07 (1) 0.06 (1)
G-CAM++ 0.03 (1) 0.07 (1) 0.06 (1)
XGrad-CAM 0.03 (1) 0.07 (1) 0.06 (1)
Score-CAM 3.83(2048) 1.92 (1024) 5.01 (2048)
Ablation-CAM 0.60 (2048) 0.30 (1024) 0.60 (2048)
RISE 17.58 (8000)  18.24 (8000)  24.27 (8000)
Jitter-CAM 0.37 (64) 0.40 (64) 0.67 (81)

Table 5: Mean computation time in seconds with number of passes required in parentheses.

difficult subset consists of images that contain objects from more than one class, that are in
total smaller than 25% of the image by area. We use the pointing game implementation and
pre-trained ResNet50 model from Fong and Vedaldi [5].

The results for ResNet50 can be seen in Table 4. From these results we can see that Jitter-
CAM offers significantly better localisation abilities across both the regular and difficult
datasets. By increasing the spatial resolution, we are able to be much more precise in where
we can point. Previous methods are limited by the coarseness of the explanations.

4.6 Efficiency

Using Jitter-CAM introduces an element of inefficiency to the process of creating explana-
tions due to the multiple CAMs required. In Table 5, we show the mean time in seconds
to compute a single explanation. Methods requiring only a single pass (Grad-CAM, Grad-
CAM-++, and XGrad-CAM) are the most efficient. Jitter-CAM is slightly slower than single
pass methods, performing similarly to Ablation-CAM, but faster than Score-CAM and RISE.
We believe that the small time increase is justified by the improved results in other metrics.

4.7 Guided Jitter-CAM

In the work by Selvaraju et al. [23], the authors proposed an extension of Grad-CAM called
Guided Grad-CAM. The authors found this technique produced higher resolution results
than Grad-CAM, while being more class-discriminative than Guided Backprop. We used the
same method to produce Guided Jitter-CAM explanations. When using ResNet50, we found
that these outperformed both Guided Backpropagation and Guided Grad-CAM for both local
accuracy and weak localisation metrics. Results are found in the supplemental material.

S Conclusions

In this paper, we have proposed Jitter-CAM, a novel method that allows us to improve the
spatial resolution of explanations created using existing CAM techniques. Rather than spend
resources trying to improve the accuracy of the activation layer weights, we instead rescale
the image and take multiple explanations. These are then combined into a single explana-
tion. Through both visual inspection and and quantitative measurement we show that this
technique improves local deletion accuracy, and greatly improves weak-localisation ability.
In addition we have also provided evidence for why the faithfulness metric is flawed and its
use should be discontinued.
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