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Abstract
The diversity of deep learning applications, datasets, and neural network architectures

necessitates a careful selection of the architecture and data that match best to a target
application. As an attempt to mitigate this dilemma, this paper investigates the idea of
combining multiple trained neural networks using unlabeled data. In addition, combining
multiple models into one can speed up the inference, result in stronger, more capable
models, and allows us to select efficient device-friendly target network architectures.
To this end, the proposed method makes use of generation, filtering, and aggregation
of reliable pseudo-labels collected from unlabeled data. Our method supports using an
arbitrary number of input models with arbitrary architectures and categories. Extensive
performance evaluations demonstrated that our method is very effective. For example, for
the task of object detection and without using any ground-truth labels, an EfficientDet-D0
trained on Pascal-VOC and an EfficientDet-D1 trained on COCO, can be combined to a
RetinaNet-ResNet50 model, with a similar mAP as the supervised training. If fine-tuned
in a semi-supervised setting, the combined model achieves +18.6%, +12.6%, and +8.1%
mAP improvements over supervised training with 1%, 5%, and 10% of labels. Code is
released as supplementary [7].

1 Introduction
Deep learning has enabled achieving outstanding results on a wide range of applications in
computer vision and image processing [5, 27]. However, the diversity of datasets and neural
network architectures necessitates a careful selection of model architecture and training data
that match best to the target application. Often times, for a same task, many models are
available. These models might be trained on different datasets, or might come in different
capacities, architectures, or even bit precisions.

Motivation: A natural question that arises in this case, is whether we can combine the
neural networks so that one combined network can perform the same task as several input
networks. Fig. 1 shows an example, where two input object detection models to detect ‘per-
son’ and ‘vehicle’ are combined in one model. The benefits of combining models include:
a) possible latency improvements due to running one inference as opposed to many, b) in
case input models cover partially overlapping or non-overlapping classes/categories, one can
build a stronger model with the union of the classes/categories through model composition
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Figure 1: An example of
the proposed model composi-
tion approach for object detec-
tion. Two input models for
detecting ‘person’ and ‘vehicle’
categories are combined to cre-
ate one model that does both.

(i.e. merging models’ skills as in Fig. 1), and c) for applications involving model deploy-
ment, e.g. for cloud services providers, it can reduce the deployment frequency/load.

Challenges: Creating a combined model from several input models is a challenging task.
First, depending on the target task, the output model may need to have a specific architecture,
and not necessarily one that is dictated by the input models. The input models themselves
also might have different architectures. Second, in case input models are provided by users
of a cloud system, or by different model creators/clients, the individual model owners would
likely prefer not to share their training data, labels, not even weights or code. A privacy pre-
serving model composition approach should rely on only a minimum amount of information
from the model creators. Third, input models may have only partially overlapping or disjoint
class categories. This imposes a major challenge when combining the individual models.

Existing methods: The existing solutions are mostly based on techniques such as knowl-
edge distillation [6, 15, 34] or ensembling [35], which may be useful when classes/categories
are identical and labeled data are available, but not for the case of arbitrary classes/categories
with only unlabeled data. More details regarding the existing approaches are provided in sec-
tion 2. In summary, to the best of our knowledge, the existing methods do not fully address
the three challenges mentioned above.

Our contributions: In this paper, we propose a simple yet effective method to address
the model composition of neural networks. Our method supports combination of an arbitrary
number of networks with arbitrary architectures. To train a combined model, we leverage the
abundance of unlabeled data and having labels or original training data of the input models
is not a requirement. However, if any labeled data are available, the algorithm uses them to
further boost the performance of the output model. Furthermore, we put no restrictions on the
type and number of object categories of the input models. We demonstrate the effectiveness
of our method through an extensive set of experiments for the task of object detection.

2 Related works
Related to our work are the following approaches:
Network Ensembling: Ensembling is a common way of aggregating the predictions of more
than one models. Ensembling strategies are well explored in the literature [9, 28, 35]. Sim-
plest ways could be naive averaging of predictions.
Architectural Combination: These methods create new architectures from the input mod-
els. Adaptive Feeding (AF) [33] proposes to use simultaneously two small and large net-
works that are trained to perform a same task. A linear classifier decides which examples to
go to the small or large model. Their goal was to improve the inference speed. In another
work, [10] Unifying&Merging (U&M) proposes to design a new architecture based on ex-
isting input architectures, to support learning multiple tasks.
MultiTask Networks: MultiTask networks learn multiple tasks in one model [18, 25, 31].
Tasks train simultaneously, not by combining already trained individual networks.
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Incremental Learning (IL): Gradually adding new categories while trying to limit the catas-
trophic forgetting [22].
Dataset Merging: [23] Dataset merging is closest work to our study. It proposes to combine
datasets by filling the missing annotations of non-overlapping categories.

While existing works have some correlation to the problem we study, none of them di-
rectly addresses this problem. Specifically, our proposed method combines neural networks
of same tasks (e.g. classification, detection, etc.) using unlabeled data. If any labels are
available, it will use them to further boost the performance. On the other hand, most existing
methods mentioned above require labels to be available. In addition, our method supports
having overlapping or disjoint target label categories while existing methods such as multi-
task networks, U&M, AF, ensembling, or Dataset Merging only support homogeneous cat-
egories. Moreover, our method is architecture agnostic. In contrast, AF, MultiTask, IL, and
Dataset Merging, don’t support arbitrary input model architectures.

It is also worth noting that most existing methods require access to input model weights
or code, to construct a combined model. Methods such as multi-tasking, IL, Dataset Merging
or U&M need full access to input models, in order to design a new combined architecture.
Our method only requires an inference API, and thus treats the input models as black boxes,
which in turn leads to a better privacy protection for the clients.

3 Model composition strategy
This section provides details regarding the model composition method we use in this paper.
Fig. 2 shows the inputs and outputs of this process. In addition, Fig. 3 shows a flow-diagram
of different steps within this method. As observed from Fig. 3, a number of models are
provided as inputs. We then collect the predictions of these models over an unlabeled set
of images. These predictions are filtered and aggregated to form a set of generated pseudo-
labels, which is later used to train the output model M. If any labeled data are available, M
will be fine-tuned on them. Algorithm 1 shows a break-down of these different steps.

An embodiment of how our method would be implemented for usage in a cloud services
provider platform is demonstrated in Fig. 4. As shown in this figure, in the context of a cloud
services provider, model composition can be leveraged for: less frequent model/data de-
ployment/transfer, building stronger models, faster overall inference, empowering the model
markets, and encouraging users to share their models in an incentive sharing strategy.

3.1 Filtering pseudo-labels

Figure 2: Inputs and output of model composition.

Since the input model predictions are not
always perfectly accurate, the generated
pseudo-labels will be noisy, and therefore
less reliable. These training examples could
have an adverse impact on the training of
the output model. We filter out such kind of
examples, by employing an entropy-based
thresholding mechanism.

Figure 3: Flow-diagram of the model composition method used in our study.
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Figure 4: An embodiment of how our model composition strategy would be implemented in a cloud
services platform. Models shown as groups are combined with each other.

For a given input x and a network function f such that p = f (x), the entropy is given by
H( f ,x) = −∑i p fi log p fi . An unreliable pseudo-label may be discarded if H( f ,x) > τ , for
some threshold τ . Although entropy thresholding does not guarantee a perfect filtering of
bad pseudo-labels, but in practice it works well and has been used as a confidence indicator
for similar purposes [24, 26, 30]. Note that for some tasks such as object detection, models
output a confidence score that can also be used for filtering bad pseudo-labels.

3.2 Aggregation of pseudo-labels
Next, in the pseudo-label aggregation phase, we employ a consensus based strategy, where
the majority of the input models need to agree on a pseudo-label in order for it to qualify
as a candidate and pass to the next step. Pseudo-label aggregation can be done in various
ways such as unanimous (all models agree), affirmative (union of all predictions), consensus
(majority voting), etc. [9]. Our experiments showed all these methods can be used with
minor performance variations. We chose the consensus approach for the experiments since
for combining a higher number of models, intuitively it makes more sense (See section 4 for
a 10-model example). Note that for some tasks such as image classification, the aggregation
will be a simple majority voting mechanism. For some other tasks such as object detection,
it becomes more complicated due to the nature of the task. Here, we review our method of
pseudo-label aggregation for object detection, which can also be extended to other similar
tasks such as instance segmentation, tracking, etc.

Details of the pseudo-label aggregation strategy: Let D denote the unlabeled dataset
used. The input to the pseudo-label aggregation procedure is a list S = [y1, ...,yN ], where
each yi itself is a list of detections from an input model over all unlabeled training images
in D. We then create a new list Sim = [p1, ..., p|D|] so that each pi contains predictions of all
models on one single image, and length of Sim is equal to number of all images in D.

Next, for each element pi, we unite the predictions by their category names and the over-
lapping of their bounding boxes. If the overlapped area of any two elements in pi is higher
than a certain threshold, and meanwhile if these two elements are of the same category, then
they are treated as detections of the same object, which are further grouped together into a
sub-list: pi = {pi j}. Subsequently, we decide whether to keep each element pi j depending
on the number of unique models with predictions included in pi j, denoted by Ki j. In the
most strict case, pi j is kept in the list only when Ki j = Ni j, where Ni j ≤ N is the maximum
number of models that may predict the object category corresponding to pi j; If we want a
majority voting, then pi j is kept when Ki j ≥ Ni j/2; If a simple stacking strategy is used,
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Algorithm 1 Our Model Composition Approach

Inputs: Input models M1, ...,MN ; unlabeled data D
Optional: Output model architecture; labeled data D
Output: Combined model M

procedure MODELCOMPOSITION(M1, ...,MN , D)
S ← /0
for i← 1,2, ...,N do
{yi}← GeneratePseudoLabels(Mi,D)
{yi} ← FilterPseudoLabels({yi})
S ← S ∪{yi}

S ← AggregatePseudoLabels(S)
Initialize M
for j← 1,2, ...,nepochs do

for B← GetBatch(D,S) do
M← ApplyGradients(B,M)

Algorithm 2 Our Pseudo-Label Aggregation
Inputs: Pseudo-labels S from N input models;

unlabeled data D; aggregation strategy A
Output: Aggregated pseudo-labels list S

procedure AGGREGATE(S,N,D,A)
Sim← GroupByImages(S,D); S ← /0
Let {p1, p2, ..., p|D|}← Sim

for pi in {p1, p2, ..., p|D|} do
pinew ← /0
{pi j}← GroupByOb ject(pi)
for pi j in {pi j} do

Let Ki j = |UniqueModels ∈ pi j|
Ni j = |Models supporting pi j class|
if A is ‘unanimous’ then

delete pi j if Ki j < Ni j
else if A is ‘consensus’ then

delete pi j if Ki j < Ni j/2

pi jso f t
← SoftNMS(pi j)

pinew ← pinew ∪ pi jso f t

S ← S ∪ pinew

then pi j is kept regardless of Ki j. At this point, each pi j could still have several candidate
detections for the same region. Processing all of them through the detection network is not
only cumbersome but could also decrease the overall performance. Therefore, we applied
soft non-maximum suppression (Soft-NMS) [8] to each pi j to filter the predictions a second
time. Algorithm 2 formally captures these steps and Figure 5 demonstrates an example.

Remark 1: pi j for image i, represents a list of bounding boxes predicted on a particular
object j, i.e. detections of a same object by different models. Ki j is the number of unique
models in pi j. Ni j is the number of models that have the category of pi j in their label set
(i.e. number of models that actually have the capability of detecting that object category).
As such, in general Ki j ≤ Ni j ≤ N. In an ideal case where all eligible models can detect
an object i j, we will have Ki j = Ni j. If all input models have the same category label set,
Ni j = N. In the case input models have different but overlapping categories (i.e. there is at
least one category that is not supported by all models), for at least some i and j, Ni j < N. If
all models have strictly different categories (no overlap), Ki j = Ni j = 1. And finally if some
particular categories only belong to one model, for those categories Ki j = Ni j = 1.

Figure 5: Pseudo-label aggregation scheme, an example.

Remark 2: The experiments
in Section 4 contain various prac-
tical scenarios in which different
aspects of our method are evalu-
ated. Moreover, Figure 9 in sup-
plementary materials [7] shows a
scenario where 10 input models
with a diverse count and type of
object categories are combined.
For example in this figure, ‘teddy
bear’ is only in M1, ‘bicycle’
is in M1,M3, ‘potted plant’ is
in M2,M3,M4, etc. In addition,
we also explore in Section 4 the
task of combining a face detection
model with a mask detection one.
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3.3 Training pipeline
Once pseudo-labels are filtered and combined, they will be used to train the output model
architecture. Any available labeled data will be used in a final fine-tuning stage to improve
the performance. Note that pseudo-labels are generated from unlabeled data. This is be-
cause input model owners may only share an interface to their model API for inference, not
necessarily the weights, code, architecture, training data, or labels, to protect their privacy.
We treat the input models as black boxes. In other words, we only pass a set of arbitrary
unlabeled images through them, and collect their predictions to use as pseudo-labels. This
further allows us to choose an arbitrary architecture and size for the output model that com-
bines the class categories of the input models. Consequently, our model composition method
is agnostic to the training hyper-parameters of the input models such as various optimizers,
learning rate schedules, batch sizes, etc.

It is also worth noting that this way of creating composite models can help with light
domain shifts. As we see in section 4, input models trained on different datasets (for the
same task) can still be effectively combined (even with different sets of categories). To what
extent exactly our method can robustly support domain shifts remains out of the scope of
this work, and we leave that as a future direction.

4 Experiment results and discussions
4.1 Experiments setup
Selected model architectures: We have selected the task of object detection as the main
experiments task due to its importance and wide-spread usage in practical applications. That
being said, we will also provide results on the task of image classification, as it is often
used as a baseline experiment task. For object detection, we utilized the following architec-
tures: EfficientDet-D0 [29], EfficientDet-D1 [29], and RetinaNet-ResNet-50 [21]. For the
classification task, we used: ResNet-18 [14], ResNet-152[14], and DenseNet-121[16].

Datasets: We used three sets of benchmarking datasets for object detection: COCO [20],
Pascal-VOC [11], and Open-Images-V5 [19] (referred by OID hereafter). For classification,
we use Caltech-256 [13] and OID datasets.

Evaluation metrics: We follow the common practice by using the mean Average Pre-
cision, mAP @IoU=0.50:0.95, as the main metric to evaluate the performance of object
detection models. We report top-1 accuracy for classification.

Training protocols and settings: We adopt code from [1] for the object detection ex-
periments, and use the same training hyper-parameters with ImageNet [17] pre-trained back-
bones. We trained all the models using SGD with a momentum of 0.9. We increased the
learning rate from 8e−3 to 8e−2 for the first epoch and then trained the remaining 300 epochs
using a cosine decay rule with a moving average decay set at 0.9998. Soft NMS was utilized
to filter the pseudo-label detections in our method. We used an IoU threshold of 0.5 and a
confidence threshold of 0.001. For the classification experiments, models were trained for
200 epochs, using an in-house code-base. An SGD optimizer with momentum 0.9 was used,
and learning rate was exponentially increased from 0 to 0.01 for the first 8 epochs and then
annealed down exponentially to 0.0001 in the remaining epochs.

4.2 Object detection results
Our experiments are categorized in various scenarios, which are explained in this subsection.
These scenarios cover various possible cases of input models’ architectures, training data,
and what kind of unlabeled data were used in our algorithm. Table 1 provides a summary
of these scenarios. In Table 1, training data in each case is constructed from the training set
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Experiment Architecture Model/Method Train Set Size
EffDet-D0 input (supervised) COCO subset 1 72K
EffDet-D0 input (supervised) COCO subset 2 66K
EffDet-D0 input (supervised) COCO subset 3 81K

Scenario 1 EffDet-D0 Upper-bound COCO subsets union 89K
EffDet-D0 ModelComp (Ours) unlabeled COCO 118K
EffDet-D0 ModelComp (Ours) unlabeled OID∗ 1.9M
EffDet-D0 input (supervised) COCO 118K
EffDet-D0 input (supervised) VOC 17K

Scenario 2 EffDet-D0 Upper-bound COCO+VOC 135K
EffDet-D0 ModelComp (Ours) unlabeled COCO+VOC 135K
EffDet-D0 ModelComp (Ours) unlabeled OID∗ 1.9M
EffDet-D1 input (supervised) COCO 118K
EffDet-D0 input (supervised) VOC 17K

Scenario 3 RetinaNet-R50 Upper-bound COCO+VOC 135K
RetinaNet-R50 ModelComp (Ours) unlabeled COCO+VOC 135K
RetinaNet-R50 ModelComp (Ours) unlabeled OID∗ 1.9M
EffDet-D0 10 inputs (supervised) 10 COCO partitions ≈12K each
EffDet-D0 Upper-bound COCO 118K

Scenario 4 EffDet-D0 ModelComp (Ours) unlabeled COCO 118K
EffDet-D0 ModelComp (Ours) unlabeled OID 100K

Table 1: Data-splits and models for object detection. *We also evaluate on a 118K subset of OID.

Model skill Categories supported
Transportation person, bicycle, car, motorcycle, bus, truck, traffic light, fire hydrant, stop sign, parking meter
Sports person, bicycle, frisbee, skis, snowboard, sports ball, skateboard, baseball bat, baseball glove, motorcycle
Home person, bicycle, chair, couch, bed, dining table, skateboard, refrigerator, toilet, tv

Table 2: Object categories for input models of scenario 1.

of VOC, COCO, OID, or a subset of them (unlabeled). Validation sets are also built from
the validation sets of VOC and COCO: a subset of COCO (union of input categories) for
scenario 1, union of the val set of COCO & VOC for scenario 2 & 3, and val set of COCO
for scenario 4. As such, validation sets may be different across different scenarios, but are
the same within one scenario. Moreover, the class distributions of data for scenario 1 & 4
are shown in Table 2 and Figure 9 (supplementary), and for scenario 2 & 3 it follows the
distributions of COCO & VOC. Next, we will go over the details of each experiment.

Scenario 1: Combining detectors with different expertise: We took 3 models, each
trained on a subset of the COCO dataset but designed for a different purpose, one for detec-
tion of transportation related objects, one for sports related, and the other for home objects.
These categories have some partial overlap. Table 2 shows the object categories used for
each model. The combined model achieved by our model composition procedure combines
the skills of the input models, and builds a stronger model with all object categories. We
tried our method in two ways: one using unlabeled COCO images (similar data distribution
to training data, but without using the labels), and the other using unlabeled OID (open im-
ages) dataset (entirely different dataset with different distribution). The upper-bound of the
performance would be to train a model with all labels of all object categories (supervised).
This model achieved 35.11% mAP on validation set of COCO (considering only object cat-
egories corresponding to the ones it was trained on). On the same validation set, our method
achieved 32.61% when using unlabeled COCO, and 30.97% when using unlabeled OID.
This shows that our method can effectively combine the models with different expertise, and
achieve a performance close to that of the supervised upper-bound model. We further in-
vestigated the performance of our method if partial labels are available for fine-tuning, in a
semi-supervised manner. Table 3 shows the results for this experiment. As observed, with
fine-tuning, our method could even surpass the supervised model with 100% of labels.

Scenario 2: Combining input models that are trained on entirely different datasets.
In scenario 1, input models had different expertise, by getting trained on different subsets
of COCO (examples roughly came from a similar distribution). Scenario 2 investigates a
more challenging case, where input models were trained with data from entirely different
datasets, hence different distributions. To this end, we trained input models on COCO and
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Proportion of labeled data used (%)
Experiment Method 0 1 5 10 30 50 100

Supervised: COCOsubsets - 3.9 16.4 20.3 28 30.8 35.1
Scenario 1 Ours: COCOU +FT 32.6 32.6 33.5 33.7 34 34 35.7

Ours: OIDU−118k+FT 28.5 29.1 29.6 31.8 32.8 33.9 35.3
Ours: OIDU +FT 31 31 31.3 32.3 33.9 34.6 36
Supervised: COCO+VOC - 5.3 16.3 19.7 25 27.5 32.9

Scenario 2 Ours: [COCO+VOC]U +FT 29 29.2 29.3 30 30.3 30.4 33.1
Ours: OIDU−118k+FT 26 26.5 27 27.9 29.2 30.3 32.5
Ours: OIDU +FT 27.4 27.4 27.8 29 30 30.5 32.7
Supervised: COCO+VOC - 4 12.6 18.5 27.5 30.6 35

Scenario 3 Ours: [COCO+VOC]U +FT 34 34.2 34.6 35 35.4 35.9 38
Ours: OIDU−118k+FT 16 22.5 24.9 26 28.1 30.2 33.9
Ours: OIDU +FT 16 22.6 25.2 26.6 29 30.4 34.1
Supervised: COCO - 1.2 15.6 19.2 24.4 27.9 33.6

Scenario 4 Ours: COCOU +FT 24.4 24.5 26.7 27.7 28.6 29.1 33.1
Ours: OIDU +FT 16.6 16.8 19.9 21.6 25.2 27.1 32.4

Table 3: Object detection results: FT, Ours, and U , refer to fine-tuning, Model Composition, and
unlabeled, respectively. Combined models, even without any labels, show a competitive performance.

Pascal-VOC datasets respectively. Similar to the previous scenario, we studied two choices
of unlabeled data for our Model Composition method: a) unlabeled data from the same
distribution as training data (in this case COCO+VOC images without using labels), and b)
unlabeled data from a different dataset all together, e.g. the OID dataset. Note that the input
models were trained on a different number of object categories (with overlap), and the output
combined model was trained to support the union of object categories of the input models.

Table 3 shows the results of this experiment. It is observed from Table 3 that in the
unsupervised case (i.e. no labeled data was used), our method achievs 29% and 27.4% mAP,
close to the fully supervised performance of the upper-bound model. We also see from
Table 3 that when partially labeled data are used for further fine-tuning, our method shows
significant improvements over supervised training. In particular, when using 1%, 5%, and
10% of labels, our method shows +22.1%, +13%, and +10.3% gaps over supervised training.

Scenario 3: Combining input models with different architectures, that are trained
on entirely different datasets. In this scenario, we studied the most generic case, in which
input models have different architectures, are trained on different datasets, and with a differ-
ent number of object categories. The output model also was chosen to have a different archi-
tecture than the input models (See Table 1). This scenario evaluated whether our method can
combine the knowledge of models trained on different circumstances, data, and architecture,
to a desired new and different architecture.

Table 3 shows the results of this experiment. It is observed from Table 3 that our method
is very effective, and in some cases performs even better than supervised training with 100%
of labels. When partial labels are available for fine-tuning, our method shows a strong per-
formance, with large gaps compared to supervised training, especially in the low label range.
Moreover, Table 3 shows that unsupervised training with our method achieved an mAP of
34%, only 1% below supervised training with all labels. After fine-tuning, we were able to
meet the same performance as supervised training with only 10% of the original data.

Scenario 4: Having a large number of input models. This scenario investigates the
case when a larger number of input models are provided. This would increase the diversity
among the models since they can be trained on different data, or object categories, and thus
results in a more challenging situation. To this end, we assumed 10 input models. Each
model was trained on a randomly selected subset of the COCO dataset, so that training data
for each model had no overlap to the other models. However, object categories could have
overlap, as their type and count were chosen randomly. Supplementary materials [7] provides
a visualization of the type and count of the object categories used for these 10 models. Since
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each model was trained with roughly 10% of the COCO training set, different number of
object categories for different models resulted in a different per-class size of training data.
The imbalance here made model composition harder, but mimicked realistic situations where
training data can in fact be imbalanced for input models. As mentioned, for these 10 models,
categories were randomly selected and the number of categories was selected from 5, 10,
20, 30, and 40. Note that generating 10× pseudo-labels on unlabeled data can be time-
consuming (although it can be parallelized in production). Therefore, we only used 100K
randomly selected examples from the OID dataset for this experiment.

We observe from Table 3 that our model composition method can effectively combine
the 10 input models into a single new model with the union of their object categories.

Remark 3: A note on the unsupervised performance of OID: As observed in Table 3,
in the challenging scenarios of 3 and 4, the unsupervised (0% labels) performance of model
composition with OIDU is considerably lower that that of COCOU or [COCO+VOC]U . In
this regard, there are a few points worth a mention:
• In general, using unrelated arbitrary data is expected to result in a lower performance

compared to using data from the same distribution as the input models’ train set, since
pseudo-labels will be less reliable. This is exacerbated in challenging tasks such as sce-
nario 3 where input models are trained on different data and have different architectures
with respect to each other and the output model; or in scenario 4 where there are a large
number of input models trained on different small-scale data.
• It is worth reminding that the case of purely unsupervised model composition means com-

bining an arbitrary number of black-box models (trained on arbitrary data with arbitrary
architecture or categories), all without using any labels. In that sense, the real baseline
to compare against is the supervised training, which performs much worse than model
composition in low data regimes, even in the case of unrelated OIDU data.
• Moreover, the main goal of the paper is to explore whether or not neural networks can

be combined using only unlabeled data, and if yes, to what extent (hence the title). We
observe from the results that the answer is for the most part yes; however, in case unlabeled
data from the original distributions was not available, for some challenging scenarios a
small percentage of labels may be needed to achieve a decent performance.

• In a completely unsupervised setting, model composition can still effectively combine
input models. The performance will be improved if the unlabeled set size is larger.
Remark 4: A note on practical applications: As mentioned in Section 3, a fundamental

motivation for our work is a cloud services application, as shown in Figure 4, in which
engineers and expert users can leverage a model composition service to build stronger models
with combined skills, especially in the presence of a large variety of trained models and
datasets on the cloud. Different scenarios in the experiments were also inspired by such a
philosophy, but designed at various levels of difficulty. Here, we add a new practical use-
case. In this new experiment, we combine separate models of face and mask detection, to
build one that is suitable for both face & mask detection. Results are shown in Table 4.

Model/Expertise Train set Validation set AP(%)
input: Face (D0) face data 1 (20007) face data 1 (4079) 52.29
input: Face (D0) MAFA-faces (30870) MAFA-faces (5338) 44.86
input: Mask (D1) MAFA-masks (30870) MAFA-masks (5338) 29.63

ModelComp (R50): w/o filtering & aggregation face+mask (50877) face+mask (9417) 30.72
ModelComp (R50): w/o aggregation face+mask (50877) face+mask (9417) 34.48

Ours, ModelComp: Face & Mask (R50) face+mask (50877) face+mask (9417) 38.90
Table 4: Combining face and mask detectors with different architectures trained on different datasets.
Face data 1: Face images from WIDERFACE [32] and medical masks datasets [2, 3] (including both
faces with-masks and without-masks). MAFA faces and masks are obtained from the MAFA dataset
[12]. We also provide an ablation on the filtering and aggregation modules.
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#Categoreis 5 6 7 10 15
ModelComp 27.1 26.8 26.6 24.7 23.9

Table 5: Ablation on classes. Details in 4.2.

Ablation on the number of categories: Next,
we study the impact of the number of class cate-
gories in the performance. To this end, we take
two input models from scenario 4, and combine them with a varying number of classes. M1
is trained on 5 and M2 is trained on 10 object categories (see Figure 9 in supplementary).
Each time we add a number of random categories of M2 to M1, so the combined model
can have 5,6,...,15 classes. Table 5 shows the results. Note that in each case the valida-
tion/training set will be different as it includes images of a particular set of categories. M1
and M2 have mAP of 27.1% & 25.4%, respectively (each has roughly 12K training, and 1K
validation examples). In general, higher number of classes results in slightly lower mAP, but
we should also note that unlabeled set size becomes also larger (i.e. more pseudo-labels).

4.3 Image classification results
In addition to our main results on the task of object detection, we also provide a highlight of
our results on the task of image classification. Similar to object detection, we designed the
classification experiments in the form of different scenarios.
Scenario 1: 3 input models, ResNet-18, each trained on 1/3 of the Caltech-256 dataset.
Scenario 2: 3 models, ResNet-18, ResNet-152, and DenseNet-121, trained on Caltech-256.

In both scenarios, we tried model composition with unlabeled data from the Caltech-256
dataset (i.e. similar data distribution but without labels), and a 160K subset unlabeled data
from OID (i.e. a different dataset altogether). Table 6 shows the results for these scenarios.

In Table 7, we provide a comparison between our method and two additional baselines:
i) a simple model ensemble by aggregating directly the prediction of the input models; ii)
knowledge distillation when using the input models as teachers, such as [4, 15]. For the
second baseline, we consider the vanilla distillation [15] but with soft labels.

It is observed from the results that the proposed method is effective in combining im-
age classification models. In both the unsupervised and semi-supervised cases, our method
performs competitively compared to supervised models, even when 100% of labels are used.

Proportion of labeled data used (%)
Experiment Method 0 1 5 10 50 100

Supervised: Caltech - 16.2 44 61 79.4 82.4
Scenario 1 Ours: CaltechU +FT 83 82.6 82.8 82.9 83 83.5

Ours: OIDU +FT 69 70 71.2 72.9 79 81.6
Supervised: Caltech - 16.2 43.9 60.9 79.4 82.4

Scenario 2 Ours: CaltechU +FT 83.2 82.1 81.8 81.8 83.1 83.3
Ours: OIDU +FT 71.6 68.5 71.5 72.4 78.8 81.6

Table 6: Image classification results: FT, Ours, and U , refer to fine-tuning, Model Composition, and
unlabeled, respectively. Combined models, even without any labels, show a competitive performance.

5 Conclusion
Scenario 1 Scenario 2

Ensembling 53.7 59.8
Vanilla distillation 64.2 68.2
Ours: OIDU 69 71.6

Table 7: More classification results on OIDU .
This paper proposed a method for combining
multiple trained neural networks into a single
model, using unlabeled data. To this end, first the input models’ predictions (pseudo-labels)
were collected. The pseudo-labels were then filtered based on confidence scores of the pre-
dictions. Next, a consensus aggregation strategy was incorporated to combine these pseudo-
labels. The remaining pseudo-labels were used to train the output model. The proposed
method supported the use of an arbitrary number of input models with arbitrary architec-
tures and categories. Performance evaluations on various datasets, tasks, and network archi-
tectures demonstrated the effectiveness of the proposed method.

Citation
Citation
{Ahn, Hu, Damianou, Lawrence, and Dai} 2019

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Hinton, Vinyals, and Dean} 2015



BANITALEBI-DEHKORDI, KANG, AND ZHANG: MODEL COMPOSITION 11

References
[1] Efficientdet repository. https://github.com/google/automl/tree/master/

efficientdet. Accessed: 2020-08.

[2] Medical masks dataset. https://www.kaggle.com/ivandanilovich/
medical-masks-dataset-images-tfrecords, . Accessed: 2021-08.

[3] Humans in the loop medical mask dataset. https://humansintheloop.org/
resources/datasets/medical-mask-dataset/, . Accessed: 2021-08.

[4] S. Ahn, She. X. Hu, A. Damianou, N. Lawrence, and Zh. Dai. Variational information distillation
for knowledge transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9163–9171, 2019.

[5] M.Z. Alom, T.M. Taha, Ch. Yakopcic, S. Westberg, P. Sidike, M.Sh. Nasrin, M. Hasan, B.C.
Van Essen, A.A. Awwal, and V.K. Asari. A state-of-the-art survey on deep learning theory and
architectures. Electronics, 8(3):292, 2019.

[6] A. Banitalebi-Dehkordi. Knowledge distillation for low-power object detection: A simple tech-
nique and its extensions for training compact models using unlabeled data. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, October 2021.

[7] A. Banitalebi-Dehkordi, X. Kang, and Y. Zhang. Model composition: Can multiple neural net-
works be combined into a single network using only unlabeled data? In 32nd British Machine
Vision Conference, BMVC, 2021. Supplementary materials. 0508supp.pdf.

[8] N. Bodla, B. Singh, R. Chellappa, and L. Davis. Soft-nms–improving object detection with one
line of code. In Proceedings of the IEEE international conference on computer vision, pages
5561–5569, 2017.

[9] A. Casado-Garcıa and J. Heras. Ensemble methods for object detection. In European conference
on artificial intelligence, ECAI, 2020.

[10] Y.-M. Chou, Y.-M. Chan, J.-H. Lee, Ch.-Y. Chiu, and Ch.-S. Chen. Unifying and merging well-
trained deep neural networks for inference stage. arXiv preprint arXiv:1805.04980, 2018.

[11] M. Everingham, L. Van Gool, Ch.K. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. International journal of computer vision, 88(2):303–338, 2010.

[12] Shiming Ge, Jia Li, Qiting Ye, and Zhao Luo. Detecting masked faces in the wild with lle-
cnns. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2682–2690, 2017.

[13] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

[14] K. He, X. Zhang, Sh. Ren, and J. Sun. Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

[15] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[16] G. Huang, Zh. Liu, L. Van Der Maaten, and K.Q. Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[17] R. Socher L.-J. Li K. Li J. Deng, W. Dong and L. FeiFei. Imagenet: A large-scale hierarchical
image database. IEEE conference on computer vision and pattern recognition, pages 248–255,
2009.

https://github.com/google/automl/tree/master/efficientdet
https://github.com/google/automl/tree/master/efficientdet
https://www.kaggle.com/ivandanilovich/medical-masks-dataset-images-tfrecords
https://www.kaggle.com/ivandanilovich/medical-masks-dataset-images-tfrecords
https://humansintheloop.org/resources/datasets/medical-mask-dataset/
https://humansintheloop.org/resources/datasets/medical-mask-dataset/


12 BANITALEBI-DEHKORDI, KANG, AND ZHANG: MODEL COMPOSITION

[18] A. Jha, A. Kumar, B. Banerjee, and V. Namboodiri. SD-MTCNN: self-distilled multi-task CNN.
In 31st British Machine Vision Conference 2020, BMVC 2020, UK, September 7-10, 2020. BMVA
Press, 2020.

[19] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, Sh. Kamali, S. Popov,
M. Malloci, A. Kolesnikov, et al. The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale. arXiv preprint arXiv:1811.00982, 2018.

[20] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C.L. Zitnick.
Microsoft coco: Common objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

[21] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection. In
Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017.

[22] C. Peng, K. Zhao, and B.C. Lovell. Faster ilod: Incremental learning for object detectors based
on faster rcnn. arXiv preprint arXiv:2003.03901, 2020.

[23] A. Rame, E. Garreau, H. Ben-Younes, and Ch. Ollion. Omnia faster r-cnn: Detection in the wild
through dataset merging and soft distillation. arXiv preprint arXiv:1812.02611, 2018.

[24] M. Rottmann, K. Kahl, and H. Gottschalk. Deep bayesian active semi-supervised learning. arXiv
preprint arXiv:1803.01216, 2018.

[25] S. Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

[26] A. Saporta, T.-H. Vu, M. Cord, and P. Pérez. Esl: Entropy-guided self-supervised learning for
domain adaptation in semantic segmentation. arXiv preprint arXiv:2006.08658, 2020.

[27] A. Shrestha and A. Mahmood. Review of deep learning algorithms and architectures. IEEE
Access, 7:53040–53065, 2019.

[28] R. Solovyev, W. Wang, and T. Gabruseva. Weighted boxes fusion: ensembling boxes for object
detection models. arXiv preprint arXiv:1910.13302, 2019.

[29] M. Tan, R. Pang, and Q.V. Le. Efficientdet: Scalable and efficient object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10781–10790,
2020.

[30] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Branchynet: Fast inference via early exit-
ing from deep neural networks. In 2016 23rd International Conference on Pattern Recognition
(ICPR), pages 2464–2469. IEEE, 2016.

[31] S. Vandenhende, S. Georgoulis, L. Van Gool, and B. De Brabandere. Branched multi-task net-
works: Deciding what layers to share. In 31st British Machine Vision Conference 2020, BMVC
2020, UK, September 7-10, 2020. BMVA Press, 2020.

[32] Sh. Yang, P. Luo, Ch. Ch. Loy, and X. Tang. Wider face: A face detection benchmark. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[33] H. Zhou, B. Gao, and J. Wu. Adaptive feeding: Achieving fast and accurate detections by adap-
tively combining object detectors. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 3505–3513, 2017.

[34] P. Zhou, L. Mai, J. Zhang, N. Xu, Z. Wu, and L. Davis. M2KD: incremental learning via multi-
model and multi-level knowledge distillation. In 31st British Machine Vision Conference 2020,
BMVC 2020, UK, September 7-10, 2020. BMVA Press, 2020.

[35] Zh. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many could be better than all.
Artificial intelligence, 137(1-2):239–263, 2002.




