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Abstract
In this paper, we consider the problem of audio-visual synchronisation applied to

videos ‘in-the-wild’ (i.e. of general classes beyond speech). As a new task, we identify
and curate a test set with high audio-visual correlation, namely VGG-Sound Sync. We
compare a number of transformer-based architectural variants specifically designed to
model audio and visual signals of arbitrary length, while significantly reducing mem-
ory requirements during training. We further conduct an in-depth analysis on the cu-
rated dataset and define an evaluation metric for open domain audio-visual synchroni-
sation. We apply our method on standard lip reading speech benchmarks, LRS2 and
LRS3, with ablations on various aspects. Finally, we set the first benchmark for general
audio-visual synchronisation with over 160 diverse classes in the new VGG-Sound Sync
video dataset. In all cases, our proposed model outperforms the previous state-of-the-art
by a significant margin. Project page: https://www.robots.ox.ac.uk/~vgg/
research/avs

1 Introduction
In videos, the audio and visual streams are often strongly correlated, presenting effective
signals for self-supervised representation learning [7, 47]. A useful task in this area is audio-
visual synchronisation, and several studies have shown promising results even without re-
quiring any manual supervision [4, 17, 22]. However, these works study this problem exten-
sively on only one class – human speech – where even a slight offset is easily discernable.

In this paper, rather than focusing on a specialised domain, e.g. human speech [4, 16, 17,
22], or videos with periodic sounds such as the tennis shots in a match [27], we aim to explore
audio-visual synchronisation on general videos in the wild (characterized by more than 160
sound classes). Solving this task would be extremely useful for a number of applications
including video conferencing, television broadcasts and video editing, which are largely
done by ‘off-line’ measurements or heavy manual processing [24, 51, 53].
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Figure 1: Audio-visual synchronisation in the wild. The goal of this work is to develop an audio-visual synchro-
nisation method that performs well on general videos in-the-wild. Unlike speech videos, highly correlated audio
and visual events for general classes may occur briefly in the video (e.g. the bark of the dog in the centre of this
clip). A short clip sampled randomly from the video might miss this fleeting moment; with longer input videos this
becomes less probable. With this in mind, we propose a Transformer based architecture that can operate on long
sequences, and is able to perform audio-visual synchronisation on videos of 160 general sound classes.

There are several challenges in automatic audio-visual synchronisation for general classes.
First, unlike the task of synchronising speech [2, 19, 21, 44], which contains audio-visual
evidence from the lips most of the time, videos from general classes may contain uniform
sounds (e.g. airplane engine sound, electric trimmer), ambient sounds (e.g. wind, water,
crowds, traffic), or small object sound sources (e.g. players in an orchestra, birds), which
make synchronisation extremely challenging or even impossible; Second, for categories with
strong audio-visual evidence, localising such signals can also be difficult, for example: tem-
porally, ‘dog barking’ may happen instantaneously, as shown in Figure 1, and spatially,
unlike in speech synchronisation where visual cues are largely localised to lip motions, in
general videos the entire frame must be processed to accommodate different object classes;
Third, due to the aforementioned challenges, it is unclear how to evaluate the synchronisation
in general classes.

In order to address these issues, first, we curate a new benchmark for general audio-visual
synchronisation called VGG-Sound Sync using a subset of VGG-Sound [13]. Specifically,
this is built by selecting classes and video clips that potentially have audio-visual correlation,
and removing those classes and video clips that don’t, e.g. uniform, ambient sound; Second,
compared with previous works, we use substantially longer input video sequences, so that
the chance of having a synchronised audio and video event in the input increases. We explore
several variants of Transformer-based architectures that can elegantly deal with these long
sequences of variable lengths, and that use self-attention to implicitly pick out the relevant
parts in both space and time. Finally, we conduct a thorough study on the VGG-Sound Sync
test set, estimating the chance of audio-visual synchronisation for different clip lengths, and
also define a set of metrics for evaluation.

Concretely, in this paper, we consider the problem of audio-visual synchronisation ap-
plied to ‘in-the-wild’ videos, i.e. general classes beyond speech. We make the following
contributions: (i) we identify and curate a subset of general classes from VGG-Sound,
namely VGG-Sound Sync, with potentially high audio-visual correlation; (ii) we introduce
a set of transformer-based architectures for audio-visual synchronisation, which can exploit
the spatial-temporal correlations between audio and visual streams, such models can train
and predict on variable length video sequences; (iii) we conduct an analysis on the VGG-
Sound Sync test set, and define an evaluation metric for audio-visual syncrhonisation on
these videos; (iv) we achieve state-of-the art synchronisation performance on standard lip
reading speech benchmarks, LRS2, LRS3; and more importantly, set the first benchmark for
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audio-visual synchronisation in general (non-speech) classes.

2 Related Work

Audio-visual synchronisation. Early works studied audio-visual synchronisation in talking
faces [35, 52] using handcrafted features and statistical models. [16] developed a model
for synchronizing lip movements to audio speech, based on a dual-encoder architecture
trained with contrasting learning. Follow-up works improved this pipeline by moving to
noise-contrastive objectives [22], or directly inferring the audio-visual offset conditional on
cross-similarity patterns [38]. Lip synchronisation is an important component for pipelines
used for various visual speech related tasks, such as lipreading [2, 18], active speaker de-
tection [16] and sign language recognition [5]. Although these works demonstrate strong
synchronisation performance, they are limited in terms of deployment as they are applicable
only on videos that include speech. Our method generalizes to broader sound source classes
and conditions, while also outperforming these works in the speech domain. Other closely
related works have investigated lip-syncing [34], i.e. the temporal alignment of video and
speech clips from different sources, speech-conditioned face animation [20, 58], and audio-
visual dubbing [49, 62]. Audio-visual synchronisation has been also used as a pre-text task
for learning general visual and audio representations [4, 15, 40, 47, 48]. [37] investigate the
use of attention for audio-visual synchronisation on speech data. [27] train models to detect
synchronisation errors based on mismatch of event detection between the audio and visual
stream. [12] propose a method for synchronising audio-visual recordings of the same events
from different cameras. Unlike the works above which use simple concatenation between
audio and visual features, we employ encoder-based and decoder-based Transformers to im-
plicitly match the relevant parts.

Audio-visual learning. Our work is more broadly related to various works on audio-visual
learning, including audio-visual event detection [43, 54], sound-source localization [4, 8,
28, 50, 61], representation learning [6, 9, 45], audiovisual fusion [36, 46, 60] and sound
source separation [32, 56, 64]. More recently, [65] proposed to leverage temporal motion in-
formation to separate musical instrument sound. [30] further improved the sound separation
models with explicit keypoint-based representations. Another line of work explored audio
synthesis using visual input: [29] utilized body keypoints to synthesize music from a silent
video, and [39] synthesized piano music from overhead views of the hands. [31] converted
monaural audio into binaural audio by injecting visual spatial information.

Transformers. Transformers [57] were originally introduced for NLP tasks, in particular
machine translation where they showed improvement over recurrent-based encoder-decoder
architectures. Since then they have been widely applied to a great range of problems, includ-
ing speech recognition [33], language modelling [23, 25], object detection [11, 63]. Recent
works have even extended their use to visual feature extraction, replacing CNNs, for classi-
fication [26], semantic segmentation [26, 59] and video representation learning [10]. In the
multi-modal domain, [42, 55] explored unimodal and cross-modal temporal contexts simul-
taneously to detect audio-visual events, and [41] alleviated the high memory requirement
of a vanilla Transformer by sharing the weights across layers and modalities. Audio-visual
fusion using transformers has also been explored by new architectures such as Perceiver [36]
and MBT [46].
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3 Method
In this section, we describe our proposed method, which we call Audio-Visual Synchronisa-
tion with Transformers (AVST). Our goal is to detect audio-visual synchronisation without
the use of any manual annotation. Similar to prior work [4, 16, 47], we first use CNN
encoders to extract visual and audio representations from unlabelled video (described in sec-
tion 3.1.1). In section 3.1.2, we introduce three variants of our Transformer-based module
that can jointly process visual and audio features, and discuss the pros and cons for each
architecture. Finally in section 3.2, we describe the contrastive learning objective used to
train the model. An overview of our architecture can be found in Figure 2.

3.1 Architecture
3.1.1 Audio and visual representations

The proposed model has two input streams, one ingesting a short video clip vi ∈R3×T×Hv×Wv

consisting of T visual frames and the other taking in an audio spectrogram a j ∈ R1×Ha×Wa ,
where i, j index the source of each modality (e.g. when i = j the visual and audio signals
come from the same video and are temporally aligned). We compute representations for each
modality using functions f (·;θ1) and g(·;θ2), which in this case are instantiated using CNN
encoders:

Vi = f (vi;θ1), Vi ∈ Rc×tv×h×w (1)

A j = g(a j;θ2), Ai ∈ Rc×ta (2)

Both representations Vi and A j have the same number of channels c, which allows us to
jointly model the input video and audio with cross-modal attention.

3.1.2 Synchronisation module

The visual and audio representations are formulated into a sequence of tokens, and passed
through a Transformer [57] consisting of N layers. We introduce three variants of AVST,
each one with a slightly different design choice for modelling audio-visual information.

Encoder variant (AVSTenc). The most straightforward step is to simply treat the dense
visual features as a sequence of “visual tokens”. To that end, the visual features are flattened
over the spatial dimensions and concatenated to the audio features after also prepending a
learnable class token ([CLS]), inspired by the BERT model [25]. In order for the model
to distinguish the signals from the two modalities and maintain spatio-temporal positional
information (as all subsequent Transformer layers are permutation invariant), three types of
encodings are also added to the audio and visual features: modality encodings Em ∈ Rc×2,
that indicate the type of feature (i.e. audio or visual); temporal encodings Et{v,a} ∈ Rc×t{v,a}

and spatial encodings Es ∈ Rc×h×w, that keep track of absolute positions for the tokens:

Vi = FLATTEN(Vi)+Em +Etv +Es, (3)

A j = A j +Em +Eta , (4)

Zi j = [[CLS];Vi;A j] (5)

where [; ] denotes a concatenation operation. The output result, Zi j ∈ Rc×(1+hwtv+ta), is
then fed into a Transformer Encoder [57], that is composed of a stack of Multihead Self-
Attention (MSA), and feed forward networks (FFNs). This module allows the tokens from
both modalities to directly interact with each other through the self-attention operations:

Yi j = TRANSFORMER-ENCODER(Zi j). (6)
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Figure 2: The AVST model architecture and variants. We use AVST to jointly model visual and audio representa-
tions computed from backbone CNNs, with an MLP head to predict audio-visual synchronisation (left). On the right,
we show two variants of the AVST transformer backbone, the Encoder (AVSTenc) and Decoder variant (AVSTdec).
AVSTenc uses self-attention for all audio and visual features, whereas in AVSTdec the visual information is kept
fixed, and the audio latents are used to QUERY the visual information which forms the KEY, VALUE pairs.

Max-pooled encoder variant (AVSTenc-mp). Naively feeding all visual features densely into
the Transformer is computationally expensive, with a quadratic cost, O((hwtv + ta)2), which
significantly limits the scalability to longer video sequences. Thus, although the architecture
is powerful, it heavily limits the audio-visual samples that can be processed in each batch,
which in turn limits the number of negatives that can be used for training, resulting in sub-
optimal performance, as we will show in the experiments (section 4).

Rather than taking dense visual features as input, we propose a cheaper alternative, which
consists of a simple Global Max Pooling (GMP) operation spatially on each frame. This
reduces the length of the sequence that is input to the Transformer from (hwtv + ta + 1) to
(tv + ta +1); and thereby significantly lowers the memory footprint of the MSA module. To
obtain AVSTenc-mp we simply replace the flattening operator in Equation 4 with GMP:

Vi = GMP(Vi)+Em +Etv +Es (7)

Decoder variant (AVSTdec). Using the visual feature from max-pooling is computationally
efficient, however, it also removes spatial information in the visual representations, impairing
the ability of audio features to probe fine-grained visual information, which may be required
for certain general object categories.

To resolve the aforementioned challenge, we consider an alternative architecture that
uses a Transformer decoder [57], as shown in Figure 2 (right), where dense visual features
are kept fixed without self-attention and passed as the KEY and VALUE inputs to every
decoder layer, and audio features (concatenated along a [CLS] token, similarly to AVSTenc)
are passed as the QUERY inputs:

QUERY = CONCAT([CLS],A j), KEY = VALUE =Vi (8)

Yi j = TRANSFORMER-DECODER(QUERY, KEY, VALUE) (9)

3.1.3 Output head

For all variants, we only use the first token (Y 1
i j), of the output of the final encoder (or de-

coder) layer, corresponding to the [CLS] position in the input sequence. This functions as
an aggregate representation of the whole output sequence and is fed to h(·;θ3), which we
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implement as an MLP head. The output is a synchronisation score that indicates to what
degree the inputs vi and ai are in sync, si j = h(Y 1

i j;θ3).

3.2 Training objectives
Given mini-batches B = {(v1,a1),(v2,a2), ...,(vk,ak)} of temporally aligned audio-visual
pairs, the goal is to jointly optimize the entire pipeline in an end-to-end manner, so that
the prediction scores for synchronised pairs (vi,ai) are maximised, while the scores of out-
of-sync pairs (vi,a j) are minimised. Training proceeds by minimising the commonly used
InfoNCE loss, defined as:

L=−1
k

k

∑
i=1

[
log

exp(sii)

∑ j exp(si j)

]

Discussion. Unlike previous works, which simply compute either the Euclidean distance or
the cosine similarity between the audio and visual representations obtained from separate
CNN streams to predict synchronisation, we use a Transformer model that jointly models
the relationship between the audio and visual streams using attention over multiple layers.
This is useful for attending to longer input sequences, where informative audio and video
may only be localised in a short sub-sequence of the video.

4 Experiments
In the following sections, we describe the datasets, evaluation protocol and experimental
details to thoroughly assess our method.

4.1 Datasets
Audio-visual speech datasets: We conduct experiments on two public audio-visual speech
datasets, namely, LRS2 [2, 19, 21] and LRS3 [1], which have been created from British tele-
vision footage and TED talks from YouTube respectively. Both datasets are distributed as
short video clips of tightly cropped face tracks around the active speaker’s head. Since LRS3
is based on public YouTube videos, we also extract full-frame versions of the same clips
for all splits (“pretrain”, “trainval” and “test”). To distinguish between these two versions
of LRS3, we refer to them as “cropped” and “full-frame” respectively. Note that for LRS2,
only the “cropped” version is available.

General sound dataset: Here, we construct a new benchmark called VGG-Sound Sync
using a subset of VGG-Sound [13], which was recently released with over 200k clips, and
each clip is labelled as one of the 300 different sound categories. This dataset is conve-
niently audio-visual, in the sense that the object that emits sound is likely to be visible in the
corresponding video clip. In the next section, we will detail the curation process.

4.2 Evaluation protocol
Depending on the downstream benchmarks, we consider two different evaluation protocols.

4.2.1 Audio-visual synchronisation on speech

For LRS2 and LRS3, we follow previous works and use an input of 5 frames, extracted at
25fps. During testing, the synchronisation scores were computed densely between each 5-
frame video feature and all audio features in ±15 frame range. Synchronisation was then
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determined to be correct if the lip-sync error was not detectable to a human, i.e. the max-
imum score between two streams is within ±1 frame (±0.04s) from the ground truth [22].

4.2.2 Audio-visual synchronisation on general classes

Compared to speech videos with audio-visual cues (the lip motion and speech) spanning
almost the entire clip, evaluating synchronisation on general videos potentially incurs two
challenges: (1) videos with only ambient or uniform sound, e.g. wind, wave, engine sound,
are unlikely to have any cues that can be used for synchronisation; (2) the audio-visual cues
for synchronisation are sometimes instantaneous, e.g. a dog barking may only last for less
than 1s. In the following, we describe the evaluation benchmark and how it was constructed.

Seconds 1s 2s 3s 4s 5s 6s

Audio-visual evident 50% 56% 57% 62% 60% 59%
Uniform/ambient sound 30% 34% 35% 31% 35% 38%
No sound/object 20% 10% 8% 7% 5% 3%

Table 1: Categorisation of video clips as duration of video varies.

Categorising video clips. Here, we analyse the statistics of videos in the VGG-Sound test
set, by categorising each video clip into three classes, namely, audio-visual evident, uniform
/ ambient sound, missing sound / visual object. Specifically, we randomly sample 1200 video
clips, where each clip is of different lengths between 1s and 6s for manual verification. As
shown in Table 1, the following phenomenon can be observed: First, the proportion of clips
with uniform or ambient sound remains roughly constant, as this error is caused by all the
video clips of particular sound categories; Second, as expected, with the increase of temporal
lengths, the chance of having audio-visual cues for synchronisation increases. Notably, when
clips are over 2s, the error rate drops to around 10%.

At this stage, we curate a subset of VGG-Sound by filtering the sound categories to re-
move ones that are potentially dominated by uniform / ambient sound, resulting in a test set
of over 160 classes, 95k training videos and 5k testing videos (each of them lasts 10 seconds).

Verifying synchronisation of YouTube videos. In this section, we conduct manual veri-
fication to serve two purposes: first, as the video clips in VGG-Sound are all sourced from
YouTube, their audio-visual alignments are not always guaranteed, we aim to understand the
chance of these videos being audio-visual synchronised, at least from the perspective of an
ordinary human observer; second, we aim to understand the human tolerance, by that we
mean, how much temporal misalignment is noticeable for human observers. In a practical
evaluation, offsets smaller than such tolerance should be ignored or considered as correct.
In detail, we randomly sample 500 example videos from our test set with 25fps, and create
1000 audio-visual pairs, with each lasting 5s. The temporal offsets between both streams
vary from [−0.8,+0.8] second, for example, for one visual clip sampled at time t, its paired
audio signal can be centered at any time between t−0.8, t+0.8, we feed these pairs to human
observers and ask a binary question: is the given audio-visual pair synchronised ? Please
check the detailed statistics on proportions of videos considered to be syncd by a manual
observer in our ArXiv version.

Summary. To evaluate the synchronisation for videos of general classes, we curate a test
set from VGG-Sound, namely VGG-Sound Sync, with ambient, uniform sound categories
removed. We only include audio-visual pairs of length between 2 - 6 second, that have a
sufficiently high chance of containing informative cues for synchronisation. During evalua-
tion, we decode the videos with 25fps, and construct audio or visual input by taking every
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5th frame, note that, this has the same effect as using input decoded from 5fps. The synchro-
nisation scores are computed for all audio-visual pairs with [−15,−14, . . . ,+14,+15] frame
gaps. Considering the challenging nature for audio-visual synchronisation in natural videos,
synchronisation is determined to be correct if the synchronisation error is not detectable by a
human, i.e. the maximum score between two streams is within ±5 frames (±0.2s) from the
ground truth. We refer the reader to our ArXiv version for the study on human tolerance on
synchronisation in general videos.

4.3 Implementation details
Training curriculum. Following prior work [4, 40], we train our models in two stages: in
the first stage, we construct the mini-batches by sampling audio-visual clips from different
videos, this provides easy (correspondence) negatives that helps the training converge. In the
second stage, all the clips in a mini-batch are sampled from the same video, which provides
harder (synchronisation) negatives.

Training hyper-parameters. On a P40 GPU with 24GB memory, we train AVSTenc with a
batch-size of 4 (due to memory restrictions), for AVSTenc-mp and AVSTdec, we use a batch-
size of 16 and 12 respectively, thereby allowing more negatives per batch.

Architectural Details. Unless otherwise specified, our Transformer encoder consists of 3
layers, 4 attention heads and a hidden unit dimension of 512. Typically H = W = 224 and
h = w = 14. We refer the readers to the ArXiv version for more details.

4.4 Results on speech datasets
We first report experimental results on LRS2 and LRS3, and perform a number of ablations
on different architectural design choices. We also analyse the model’s robustness on cases,
where the visual or audio signal is partially unavailable.

Architectures comparison. To compare our proposed architecture variants and assess their
trade-offs, we train and evaluate them on the “full-frame” version of LRS3 and show re-
sults of all three Transformer variants in Table 2. Due to the memory restrictions, we can
only train AVSTenc with a fixed length of 5 frames, whereas for the other two architectures,
training is done with variable sequence length and larger batch size (see section 4.3). We
observe a large gap (6% – 7%) between the performance of AVSTenc and the other two vari-
ants, which indicates that AVSTenc suffers from the reduced number of negatives. We also
note that AVSTdec can localise sound sources because it preserves spatial information, but
shows slightly worse performance than AVSTenc-mp on speech datasets. We conclude that
AVSTenc-mp is a light-weight solution that offers the best performance when the sounding
objects (e.g. lips) are clear and unique, which need little fine-grained spatial information.

Comparison to the state-of-the-art. We compare our method to previous work on “full-
frame” LRS3 in the top half of Table 2. We show a significant improvement compared to the
AVobjects baseline (16% gain) on short input (5 frames) reaching up to an almost saturated
98.6% accuracy with 15 frames. In the bottom half of Table 2, we further summarise our re-
sults for experiments on the “cropped” LRS2 dataset. Here too, we observe that our method
greatly outperforms both the SyncNet[17] and PM [22] baselines, and achieves almost per-
fect accuracy with 15 frames of input during test time.

Since AVSTenc-mp shows superior performance on speech datasets using a light-weight
architecture, we conduct the rest of the analysis on speech data using AVSTenc-mp. In addi-
tion, in order to compare with SyncNet and PM, we use the same fixed length of 5 frames
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Clip Length in frames (seconds)

Model # Params. Var. Dataset 5(0.2s) 7(0.28s) 9(0.36s) 11(0.44s) 13(0.52s) 15(0.6s)

AVobjects [4] 69.4M 7 LRS3 61.8 72.0 79.7 85.4 89.5 91.8
AVSTenc 42.6M 7 LRS3 70.2 77.1 83.3 88.4 92.0 94.4
AVSTdec 44.5M X LRS3 75.7 86.4 89.4 94.0 95.1 96.9
AVSTenc-mp 42.4M X LRS3 77.3 88.0 93.3 96.4 97.8 98.6

SyncNet [17] 13.6M 7 LRS2 75.8 82.3 87.6 91.8 94.5 96.1
PM [22] 13.6M 7 LRS2 88.1 93.8 96.4 97.9 98.7 99.1
AVSTenc-mp 42.4M X LRS2 91.9 97.0 98.8 99.6 99.8 99.9

Table 2: Architecture comparison on LRS3 and LRS2. We use the ‘full-frame’ dataset. ‘Var’: whether models
are trained and tested using variable length inputs. ‘5-15’ refers to the number of input frames to corresponding
models.

Clip Length (frames)

# Layers 5 7 9 11 13 15

1 89.1 94.0 96.8 98.4 99.1 99.4
2 91.6 95.4 97.6 98.8 99.1 99.6
3 92.0 95.5 97.7 98.8 99.3 99.6

Table 3: Ablation on Transformer depth (LRS2). Per-
formance increases with depth.

Clip Length (frames)

Mask 5 7 9 11 13 15

Audio 73.1 85.3 92.6 96.1 98.0 99.2
Visual 76.5 87.3 93.4 96.9 98.2 99.3
Both 71.7 84.0 91.2 95.6 97.7 99.1

Table 4: Robustness test on LRS2. 1 frame is masked
during train and test.

during training and testing.

Number of Transformer Layers. We ablate the Transformer depth on the LRS2 dataset in
Table 3. As more layers are added, the performance consistently improves, achieving the
best performance with 3 layers. This confirms the effectiveness of self-attention in jointly
modelling audio and visual information.

Robustness test. To mimic real-world scenarios, where sound sources and their correspond-
ing sound might not appear together at every frame, we further conduct experiments to assess
the robustness of our model on the LRS2 dataset by randomly masking input audio or video
frames. We mask 1 frame for each or both modalities. As can be seen in Table 4, we find
that for short inputs this causes a significant performance drop, however with longer inputs,
we achieve comparable results to the non-masked case in Table 2.

4.5 Results on general sound classes

In this section, we report audio-visual synchronisation results on the VGG-Sound Sync
dataset consisting of videos with general sound classes, and compare with several strong
baselines. Results are provided in Table 5. First, while comparing with the recent AVob-
jects [3] method, both of our models show superior results on all input lengths, this is because
(1) we trained on variable input lengths, where longer samples contain richer audio-visual
evidence; and (2) the use of Transformer based architectures (AVSTenc and AVSTdec) can
implicitly discover the important temporal parts in long sequences. Second, in contrast to
the results in speech datasets (Table 2), we note that AVSTdec has higher accuracy than
AVSTenc on general videos. The reason is that general videos contain complex visual scenes
and, compared to other variants, AVSTdec can extract fine-grained spatial information in
such situation by explicitly computing the attention between image regions and the audio
sequence, therefore showing better performance. Finally, we analyse the performance for
each class of VGG-Sound Sync dataset in Figure 3, and find that the performance is highly
class dependant, with the best class (‘child singing’) achieving 75.7%, and most highly per-
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Clip Length in frames (seconds)

Method 10(2s) 15(3s) 20(4s) 25(5s) 30(6s)

AVobjects [4] 37.2 42.6 45.1 47.3 49.4

AVSTenc-mp 39.0 44.1 46.8 49.7 51.8

AVSTdec 40.1 45.6 48.2 50.9 52.9

Table 5: Audio-visual synchronisation results on
VGG-Sound Sync. We show results for sequences of
10− 30 frames. Our model outperforms the state of the
art AVObjects [4] on sequence lengths > 10.

… …

Figure 3: Per-class accuracy on VGG-Sound Sync.

(a) Localise Visual Sound [14]

(b) AVSTdec

Figure 4: Attention heatmaps on VGG-Sound Sync. We compare the heatmaps that we obtain with the
AVSTdec model to the state-of-the-art method for sound source localization [14]. It is interesting to note that
while [14] highlights discriminative parts of the objects that are generally associated with the sound and are there-
fore sufficient to identify it – i.e. the entire musical instrument, firetruck and helicopter – our method focuses on the
parts that exhibit some motion – i.e. the player’s hands, the firetruck siren and the helicopter’s rotor – that modify
or create sound and are necessary to solve the much more challenging synchronisation task.

forming classes containing strong audio-visual correlations, e.g. ‘female singing’,‘playing
steel guitar’, etc.

4.5.1 Visualisation of attention heatmaps

We visualise the attention heatmaps of our model on samples from VGG-Sound Sync in
Figure 4 (refer to the ArXiv version for more qualitative results). For general object classes
in VGG-Sound Sync, the model manages to pick up on interesting sources of motion that
produce sound. When comparing the heatmaps produced by AVSTdec to the current state-of-
the-art sound source localization method [14], we notice that our method attends to regions
that create or modify sound, e.g. hands, lips, helicopter rotor, etc, while [14] tends to localise
the entire object.

5 Conclusion
We revisit the problem of audio-visual synchronisation in human speech and introduce a
new general class audio-visual synchronisation benchmark called VGG-Sound Sync. We ex-
periment with different variants of Transformer-based architectures, analyse several critical
components, and conduct thorough ablation studies to validate their necessity. Consequently,
our proposed architecture sets new state-of-the-art results on LRS2 and LRS3, and provides
baselines for general sound audio-visual synchronisation.
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