STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 1

Generative Dynamic Patch Attack

Xiang Li Department of Computer Science
xlis2@gsu.edu Georgia State University
Shihao Ji Atlanta, GA, USA
sji@gsu.edu
Abstract

Adversarial patch attack is a family of attack algorithms that perturb a part of im-
age to fool a deep neural network model. Existing patch attacks mostly consider in-
jecting adversarial patches at input-agnostic locations: either a predefined location or
a random location. This attack setup may be sufficient for attack but has considerable
limitations when using it for adversarial training. Thus, robust models trained with ex-
isting patch attacks cannot effectively defend other adversarial attacks. In this paper, we
first propose an end-to-end patch attack algorithm, Generative Dynamic Patch Attack
(GDPA), which generates both patch pattern and patch location adversarially for each
input image. We show that GDPA is a generic attack framework that can produce dy-
namic/static and visible/invisible patches with a few configuration changes. Secondly,
GDPA can be readily integrated for adversarial training to improve model robustness to
various adversarial attacks. Extensive experiments on VGGFace, Traffic Sign and Im-
ageNet show that GDPA achieves higher attack success rates than state-of-the-art patch
attacks, while adversarially trained model with GDPA demonstrates superior robustness
to adversarial patch attacks than competing methods. Our source code can be found at
https://github.com/lxuniverse/gdpa.

1 Introduction

(a) Eyeglasses Attack (b) Sticker Attack (c) Advrsarial Patch (d) GDPA (our)
Figure 1: Different types of patch attacks: (a) Eyeglasses Attack [28], (b) Sticker Attack [8],
(c) Adversarial Patch [3], and (d) GDPA (ours).

Deep neural networks (DNNs) have demonstrated remarkable success in solving com-
plex prediction tasks in a variety of fields: computer vision [5], natural language process-
ing [30] and speech recognition [26]. However, recent studies show that they are particularly
vulnerable to adversarial examples [12] in the form of small perturbations to inputs that lead
DNNSs to predict incorrect outputs.

Recent works [3, 8, 17, 28, 36, 37], show that perturbing part of an image with perceiv-
able noise is another effective method to attack neural network models. Typically, attackers

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

Citation
Citation
{Brown, Man{é}, Roy, Abadi, and Gilmer} 2017

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Sutskever, Vinyals, and Le} 2014

Citation
Citation
{Senior, Vanhoucke, Nguyen, Sainath, etprotect unhbox voidb@x protect penalty @M {}al.} 2012

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Brown, Man{é}, Roy, Abadi, and Gilmer} 2017

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

Citation
Citation
{Karmon, Zoran, and Goldberg} 2018

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Yang, Kortylewski, Xie, Cao, and Yuille} 2020

Citation
Citation
{Yang, Wei, and Zhang} 2019

https://github.com/lxuniverse/gdpa

2 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

can craft perceivable patches to replace part of images for adversarial attack. The advant:
of this perceivable patch attack is that it is more practical than the imperceptible adversa
ial attacks in the real world: adversaries can paste a sticker on a traf ¢ sign to attack th
autopilot system of autonomous vehicles. There are several situations where patch attacl
signi cant concerning due to its security threats: 1) an attacker uses adversarially designe
eyeglass frames [28] to fool face recognition (Fig. 1a), 2) an attacker pastes adversaria
crafted stickers [8] on stop signs to fool traf ¢ sign classi cation (Fig. 1b), and 3) a universal
adversarial patch [3] causes targeted misclassi cation of any object (Fig. 1c).

However, it is a signi cant limitation that most patch attack algorithms do not consider
the problem of nding the best location in an image to inject the patch. Existing patch attacl
algorithms either use a xed position as patch location [8, 28, 37] or learn patches that ar
universal across different locations [3, 17, 36]. The xed location methods show high attacl
success rates but are poorly performed at other locations, while the random location patct
do not have competitive attack success rates compared to the xed location methods. -
address this issue, in this paper we propose a Generative Dynamic Patch Attack (GDP/
which learns image-dependent patch pattern and patch location altogether. GDPA is inspir
by the idea that different images have different sets of weak pixels since DNN classi er:
typically focus on different image regions when queried by differentimages [29]. Therefore
an image-dependent dynamic patch attack would be more effective than a xed location ¢
random location patch attack.

On the other hand, due to the security threats of adversarial attacks, a variety of advers,
ial defense algorithms have been developed recently [12, 21, 27], among which adversar
training (AT) [12] has been proved the most effective one for hardening neural network
against adversarial attacks. Although AT with the PGD attack [22] is the most scalable an
effective method for learning robust models, a recent work of Wu et al. [33] shows that AT
exhibits limited effectiveness against three high-pro le physically realizable patch attacks
eyeglasses attack [28], sticker attack [8] and adversarial patch [3]. To overcome this limit
tion, Wu et al. [33] propose a Rectangular Occlusion Attack (ROA) for adversarial training,
which yields models highly robust to patch attacks. ROA is a two-stage patch attack algc
rithm, which rst uses gyray patternto nd the location in image that maximizes the cross-
entropy loss via grid search, and then optimizes the patch pattern at the identi ed positiol
However, this two-stage patch attack method is suboptimal and has quite a few limitatior
(see a discussion in Sec. 2), which motivates us to propose GDPA that learns patch patte
and patch location simultaneously. Moreover, to improve the inference ef ciency, GDPA
employs a generator to generate patch pattern and location with one forward propagatic
without expensive iterative optimizations that are employed by other attack algorithms, suc
as PGD [22] and ROA [33]. Concretely, we make the following contributions:

* We introduce a generic patch attack method GDPA that can generate dynamic/stat
and visible/invisible patch attacks with a few con guration changes.

« GDPA employs a generator to generate patch pattern and patch location altogether
image, and reduces the inference time substantially (e.g., 40-50x faster).

« GDPA is an end-to-end differentiable patch attack algorithm and can be readily inte
grated for adversarial training to defend against high-pro le patch attacks.

« Experiments show that GDPA has superior attack success rates over strong patch
tack baselines, and the adversarially trained model with GDPA is more robust to vari
ous adversarial attacks than state-of-the-art methods.

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

Citation
Citation
{Brown, Man{é}, Roy, Abadi, and Gilmer} 2017

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Yang, Wei, and Zhang} 2019

Citation
Citation
{Brown, Man{é}, Roy, Abadi, and Gilmer} 2017

Citation
Citation
{Karmon, Zoran, and Goldberg} 2018

Citation
Citation
{Yang, Kortylewski, Xie, Cao, and Yuille} 2020

Citation
Citation
{Simonyan, Vedaldi, and Zisserman} 2013

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Lyu, Huang, and Liang} 2015

Citation
Citation
{Shaham, Yamada, and Negahban} 2018

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Wu, Tong, and Vorobeychik} 2020

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 3

2 Related Works

Adversarial Attack Most adversarial attack methods focus on adding imperceptible pe
turbation covering the entire image [10, 12, 31]. Recently, researchers have shown
perturbing a part of image with perceptible noise is another practical method to attack D
models [3, 8, 17, 18, 19, 28, 33, 36, 37]. Sharif et al. [28] propose to add eyeglasses \
a specially constructed frame texture to attack face recognition. Eykholt et al. [8] show t
adding speci ¢ rectangular solid-colored patches on traf ¢ signs can fool traf ¢ sign class
cation. LAVAN [17] learns visible and localized patches that are transferable across imag
and locations by training the pattern at a random location with a randomly picked image
each iteration. Recently, Wu et al. [33] propose a Rectangle Occlusion Attack (ROA) to g
erate adversarial patches for adversarial training. ROA uses an exhaustive search (ROA-
or a gradient guided search (ROA-Grad) to nd the location that maximizes the cross-entr
(CE) loss and optimizes the patch pattern afterwards. Speci cally, ROA-Exh exhaustiv
searches on images with a stride, and ROA-Grad uses the magnitude of gradient of the
loss as the sensitivity of regions to identify the top candidate regions to accelerate the loce
search. However, ROA has some considerable limitations. Firstly, it employs a two-st:
attack generation, which separates the process of nding the patch location and patch pa
into two steps: it rst nds the position using gray patternand then optimizes the patch
pattern at that position. Hence, the location identi ed byray patternmay not be the best
patch location for the optimized pattern. Secondly, the two-stage optimization of ROA
computationally expensive and slows down the patch generation process during infere
Different from these algorithms, our GDPA trains a generator to generate the patch pat
and location altogether for each input image. Moreover, GDPA is end to end differential
which entails an ef cient optimization and easy integration for adversarial training.

Before GDPA, several works [2, 24, 25, 34] have proposed to train generators to g
erate perturbation to improve the fooling rate and inference speed. Poursaeed et al.
present a trainable network to transform input images to adversarial perturbations. Ba
and Fischer [2] train feed-forward neural networks in a self-supervised manner to gel
ate adversarial examples against a target network. Different to these generator-based ¢
methods, our GDPA generates both patch pattern and patch location altogether, and en
an af ne transform to synthesize adversarial patch examples.

Adversarial Defense Defending against adversarial attacks is a challenging task. Diffe
ent types of defense algorithms have been proposed in the past few years [1, 4, 7, 9
14,14, 15, 20, 21, 23, 33, 35], among which adversarial training (AT) [22] has been proy
the most effective one against adversarial attacks. AT employs adversarial examples as
augmentation to train a robust model. It has been shown that this method can improve
defense accuracy effectively and sometimes can even improve the accuracy upon the n
trained only on the original clean dataset [32]. However, a recent work of Wu et al. [3
shows that robust models trained by AT exhibit limited effectiveness against high-pro
patch attacks [3, 8, 28]. As the rst work attempting to defend patch attacks, Wu et al. =
propose DOA, which performs a standard adversarial training with Rectangle Occlusion
tack (ROA). As we discussed earlier in this section, ROA has some considerable limitatic
which limit its performance on adversarial defense. Our GDPA does not suffer from thc
limitations of ROA, and is end-to-end differentiable and more amenable for adversarial tre

ing.

4 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

3 The GDPA Framework

Figure 2: The GDPA generation pipeline. Given an imag8DPA generates a patch pattern
and a patch location for weighted adversarial patch injecto? [0; 1] controls the visibility
of the patch attack. The pipeline is fully differentiable.

GDPA is a framework that aims to conduct dynamic patch attack by generating adversa
ial patch pattern and patch location altogether for each input image. It has a generic form
lation that can generate dynamic/static and visible/invisible patch attacks. As an overvie\
Figure 2 illustrates the GDPA generation pipeline, while Figure 3 demonstrates how GDP;
can be utilized to train an adversarially robust model.

3.1 Problem Formulation

We start with the de nition of dynamic patch attack. WBt= fX ;Yg denote a training
dataset, wherX is a set of images of siag& h, andY are their corresponding labels. Let
T:X 'Y denote a target model that we attempt to attack. Given an im@g¢ and a
target modeT, ourdynamic patch attackims to nd a pattern of size® h%and a position
in image that once placed on imagé can mislead the target model.

3.2 Localized Pattern Generation

One crucial component of GDPA is the generator that generates patch pattern and pat
location for a given image. Since patch pattern and patch location are coupled to a give
image, we design a generat@mwith two heads that share the same latent features extractec
by an encoder. Speci cally, our generator includes an enc@geto extract the feature
representation of image followed by a location decodés, and a pattern decod&p to
generate location and pattern of the adversarial patch:

Ix;ly = tanh(G(Ge(X))=b); 1)
pattern= 0:5 tanh(Gp(Gg(X)))+ 0:5; (2)

wherely andly are the location (2D coordinates) of a patch in imageth the origin at the

center of image, angatternis the patch pattern of siz¢® h® To keep the patch locatidg

andly within the boundary of image, we use a tanh function to conslxaindly in the range

of [1;1], whereb is a hyperparameter that controls the slope of tanh. All experiments in

this paper usé = 3000, which we found to work well across a variety of architectures and

datasets. Similarly, we use another tanh to impose the pattern values in the r§ddg'of
Specially, we use a convolutional neural network as our encoder nef@grkvith an

architecture adapted from the work of image-to-image translation [39]. On tQg oive

use two fully-connected networks as our decodessand G, respectively. Due to page

limit, details of the network architectures are provided in the Appendix.

1As a preprocessing step, all images are normalized to have pixel values in the rifidé of

STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 5

3.3 Weighted Adversarial Patch Injection

With the generated patch location and patch pattern, we then de ne a function to inject
patch into image. Standard adversarial attacks [22] employ an additive function to inje
noise: xX°= x+ p, wherep is an imperceptible adversarial perturbation. Recently, othe
forms of perturbations, such as multiplicative ox@s x m [38], have been explored to
inject perturbations. In addition, LAVAN [17] employd m) x+ m p with a binary
maskm 2 f 0; 1gWO " to generate patch attack adversarial examples. Inspired by LAVAI
we extend this function by relaxing the binary mask to a continuous masko; 1]""0 " for
adversarial patch injection. Speci cally, we employ the weighted adversarial patch injecti
¥V=(1 m) x+m p withm2 [0;:1*° " which is a convex combination of original
imagex and patch patterp with the weight de ned bym. We nd this relaxed version is
more exible and easier to optimize than the one LAVAN explored. Next, we discuss how
use the generate; ly) andpatternto inject an adversarial patch to image

3.4 Differentiable Af ne Transformation

We employ an af ne transformation in GDPA to inject adversarial patches into images.
make the whole pipeline differentiable w.r.ky andly, a bilinear interpolation is used to
estimate the pixel values that are not on the pixel grids after transformation. By doing tl
the whole pipeline is fully differentiable and the gradient can be back-propagated end
end to update parameters of generdorSpeci cally, we adopt the af ne transformation
and image sampling method of Spatial Transformer Networks [16] to de ne a differentiat
translate operator, which can translate a source image to a target image by a displaceme
Iy; 1y).

_(\)//\3e rst use an af ne transform to compute the gixellindex relationship between sour
image and target image: Lo #

X
¥ _ Ou Oz O : g . 3
¥ Go1 G2 O3 %)j ' @

where(x;) is the pixel index of target image, aiief; y?) is the corresponding pixel index
in source image. We s€fi1 = 1,021 = 0;012= 0;022 = Loz = w2 Iy andgps = h%=2 |

for translation purpose Thus, we haved = X + w2 I, andy$ = y* + h%2 |y, where
Ix;ly2 [1;1]. Since(x?;y?) are continuous variables, we can use a bilinear interpolation |

sample the pixel values from source image:
w 1lh 1

vi=a duxmax0lj X jmax0lj v k) 4)
j=0k=0
whereuj is the pixel value at indegj; k) of the source image, anglis the output value of
pixeli atindex(x;yt) of the translated image. With the af ne transform and bilinear sample
described above, we have a differentiable translate operator, which we defotmakat€)
in the rest part of the paper.

3.5 Generative Dynamic Patch Attack

Figure 2 illustrates the GDPA generation pipeline, which includes the three components
described above: patch pattern and location generator, differentiable af ne transform, anc
weighted adversarial patch injection to produce an image-dependent dynamic patch atte

2Note that we can also leam; q12; Go1; 022 to rotate, dilate or shear an adversarial patch to further improve
GDPAs performance. For simplicity and also because we can already achieve state-of-the-art attack succes
(ASR) with translation, in this paper we only consider translation and will leave advanced af ne transform to fut
work.

6 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

Figure 3: The GDPA-AT pipeline. Given an image, GDPA generates an adversarial patch
maximize the loss of classi €F, while classi erT learns from the patch attack to minimize
its loss.

As shown in Figure 2, we introduce an initial maskenter of the same size of input
image, and the center part of the mask has value 1 and rest of 0. Then we use the af |
transformTranslat€) to translatanenter by a displacement dfy; ly):

m= a Translatdmeentes Ix;ly); %)

wherea 2 [0; 1] is a hyperparameter that controls the visibility of adversarial patches. Wher
a = 1, the patch would be completely visible and replace the original image pixel values
otherwise, the visibility of the adversarial patch will be lower. In practice, we can use a smal
value ofa to generate human imperceptible adversarial patches.

Similarly, we can generate a translated patch pattern. As shown in Figure Zyattem
is generated, we zero-pad it to create a patf®Renier of the same size of input image with
patternat the center. We then translapgenter by (Ix;ly) via the af ne transform: p =
Translate peenter Ix; ly):

Finally, we can generate a GDPA adversarial example for imagex@®=(1 m)
x+ m p: As we can see, all the components in Figure 2 are differentiable. Therefore, th
whole GPDA generation pipeline is fully differentiable and can be optimized ef ciently with

gradient-based methods.) q
argminL cg(T;x@%y): (6)
G

We can also launch a targeted patch attack to fool the target riaahisclassify an input
x as target class
argGminL ce(T;3; Viarget): (7

Details of the GDPA training algorithm can be found in Algorithm 1.
3.6 Adversarial Training with GDPA

Adversarial training with the PGD attack exhibits limited effectiveness against high-pro le
patch attacks [33]. In this section, we discuss how to utilize GDPA for adversarial training
to improve model robustness against high-pro le patch attacks.

Figure 3 illustrates the GDPA adversarial training (GDPA-AT) pipeline to train a robust
model against patch attacks. Similar to Generative Adversarial Networks [11], GDPA-AT
trains generato® and target classi efl iteratively to optimize the following minimax ob-
jective:

J I’T)I_ianaXE(X;y) plL CE(T;XadV§ vl (8)

where the inner maximization step optimizes gener@tty maximize the classi cation loss
of T, while the outer minimization step optimizes target classTeio minimize the classi -
cation loss. Unlike the traditional adversarial training, in which the inner maximization stef

STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 7

usually optimizes an adversarial examgié" directly, our GDPA-AT optimizes a generator
G to generate patch attack with one forward propagation. As the iterative training procee
the generatoG searches for the weakest image region to attack clasgiareach iteration,
while T learns from the current patch attacks and becomes more resilient to these att:
over time. Details of our GDPA-AT algorithm are described in Algorithm 2.

Algorithm 1: GDPA Training Algorithm 2: GDPA-AT Training
Input: training setD; target moder ; Input: training setD
visibility a Output: target classi efT; generatoiG
Output: generatolG initialize classi er T and generato®;
initialize generato(G; for number of training epochdo
for number of training epochdo for each(x;y) 2 D do
for each(x;y) 2 D do X2V = GDPA(G;X) ;
I ly = GL((GE(X); loss= Lcg(T;x@y) ;
pattern= Gp(Gg(X)); = ge Irg TlossMog;
m= a Translat€Mcenter Ix;ly); xadv = GDPAG;X) ;
paszranSIatf{ Peenter: Ix; ly); loss= L cg(T:x2V:y) ;
AH=(L M) xtmop; gr=ar Irr Tlossfar
if targeted attackhen end
loss= LCE(T;XadV;Ytarget)? end
else
| loss= Lce(T;x@y);
end
dc=0dc Ir TlossTqs
end
end

4 Experimental Results

We now validate GDPA on benchmark datasets for adversarial patch attack and advers
defense. Speci cally, we evaluate the performance of GDPA on patch attack in Section
and GDPA-AT on improving model robustness in Section 4.2. To evaluate the inferer
ef ciency, we also compare the run-times of GPDA and state-of-the-art attack algorithms
Section 4.3. All our experiments are performed with PyTorch on Nvidia RTX GPUs. O
source code is provided as a part of supplementary materials.

Experimental Setup We evaluate GDPA and GDPA-AT on three benchmark dataset
VGGFace [28], Traf ¢ Sign [8] and ImageNet [5]. To evaluate GDPA's attack performanc
we compare GDPA with LAVAN [17] and ROA [33], two state-of-the-art patch attack algc
rithms that generate patches based on iterative optimizations. Following their experime
settings, we run LAVAN and ROA for 50 optimization iterations with a learning rate of 4. Fc
adversarial defense experiments, we compare GDPA-AT with DOA [33] and PGD-AT |[2:
The former is a state-of-the-art defense algorithm for patch attacks, while the latter i
well-established defense algorithm for adversarial attacks. We evaluate the robustness
models under eyeglasses attack [28], sticker attack [8]. Following the settings in DOA [3
we use 70 70 patches with stride 5 for VGGFace and 7 patches with stride 2 for Traf ¢
Sign to generate ROA attacks. We set 16 for PGD-AT since this yields the best results
of PGD-AT. We use attack success rate (ASR) [6] as the metric to evaluate the effectivel
of an attack, and use classi cation accuracy to evaluate the robustness of a model wher
der adversarial attacks. Details of benchmark datasets, high-pro le patch attacks, netv
architectures and training procedures can be found in the Appendix.

8 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

4.1 Dynamic Patch Attack

We rst evaluate the performance of GDPA on non-targeted and targeted patch attacks al
compare it with the state-of-the-arts: LAVAN [17] and ROA [33]. We provide results of two
versions of ROA: ROA-Exh and ROA-Grad, where the former exhaustively searches for
patch location in images with a xed stride, and the latter uses the magnitude of gradient &
the sensitivity of regions to identify top regions to accelerate the location search. We evalua
the effectiveness of the attack algorithms when perturbing different percentages of pixels.
interpret the results, we also visualize the perturbed images generated by GDPA.

Percentage of Attacked Pixels

Dataset | Algorithm | Non-Targeted Attack Targeted Attack
‘ ‘ 1% 2% 5% 10% 1% 2% 5% 10%
LAVAN [17] 33.4 587 851 0939 322 48.180.9 89.9

Traf c Sign | ROA-Grad [33] | 36.2 61.8 87.3 93.6 29.8 446 745 905
ROA-Exh[33] | 37.1 63.0 894 938 313 459 76.2 917
GDPA 39.6 641 91.3 943 339 504775 928

LAVAN [17] 319 427 563 920 378 579 67.2 946
VGGFace | ROA-Grad [33]| 37.5 62.3 84.2 99.6 46.3 756 89.0 99.2
ROA-Exh[33] | 38.3 64.5 86.0 99.6 48.2 76.7 91.1 99.3
GDPA 46.3 76.4 884 995 505 834 955 99.8

LAVAN [17] 89.2 92.8 97.8 99.9 86.3 93.8 99.7 99.8
ImageNet | ROA-Grad [33]| 93.5 946 98.7 99.7 79.6 883 975 99.8
ROA-Exh[33] | 94.8 953 99.2 99.7 811 89.6 984 99.8
GDPA 96.3 96.9 99.7 99.8 89.3 944 99.6 99.9

Table 1. The ASRs of different patch attack algorithms on datasets Traf ¢ Sign, VGGFace
and ImageNet. Both non-targeted attack and targeted attack are considered. The perf
mances are evaluated with patches of different sizes.

Table 1 reports the ASRs of GDPA and the other competing algorithms for non-targete
and targeted patch attacks. The ASRs of an attack algorithm are evaluated on a model trair
with cross-entropy (CE) loss when attacked with patches of different sizes (1%, 2%, 5% ¢
10% of pixels). Speci cally, We use square patches of width 3, 5, 7, 10 for Traf ¢ Sign and
23, 32,50, 71 for VGGFace and ImageNet. For targeted attacks, we choose the rst class f
each of the three datasets as the target class, i.e., “AddedLine", “Aamir Khan" and “tencl
Tinca tinca", respectively. As expected, the larger patch size is, the higher ASR is achieve
for all patch attack algorithms. In most of the cases, GDPA achieves higher ASRs than tt
competing algorithms.

Figure 4: Perturbed images of VGGFace and ImageNet generated by GDPA with differel
patch sizes. The last column of targeted attack are example images of target classes.

