
STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 1

Generative Dynamic Patch Attack
Xiang Li
xli62@gsu.edu

Shihao Ji
sji@gsu.edu

Department of Computer Science
Georgia State University
Atlanta, GA, USA

Abstract
Adversarial patch attack is a family of attack algorithms that perturb a part of im-

age to fool a deep neural network model. Existing patch attacks mostly consider in-
jecting adversarial patches at input-agnostic locations: either a predefined location or
a random location. This attack setup may be sufficient for attack but has considerable
limitations when using it for adversarial training. Thus, robust models trained with ex-
isting patch attacks cannot effectively defend other adversarial attacks. In this paper, we
first propose an end-to-end patch attack algorithm, Generative Dynamic Patch Attack
(GDPA), which generates both patch pattern and patch location adversarially for each
input image. We show that GDPA is a generic attack framework that can produce dy-
namic/static and visible/invisible patches with a few configuration changes. Secondly,
GDPA can be readily integrated for adversarial training to improve model robustness to
various adversarial attacks. Extensive experiments on VGGFace, Traffic Sign and Im-
ageNet show that GDPA achieves higher attack success rates than state-of-the-art patch
attacks, while adversarially trained model with GDPA demonstrates superior robustness
to adversarial patch attacks than competing methods. Our source code can be found at
https://github.com/lxuniverse/gdpa.

1 Introduction

(a) Eyeglasses Attack (b) Sticker Attack (c) Adversarial Patch (d) GDPA (our)

Figure 1: Different types of patch attacks: (a) Eyeglasses Attack [28], (b) Sticker Attack [8],
(c) Adversarial Patch [3], and (d) GDPA (ours).

Deep neural networks (DNNs) have demonstrated remarkable success in solving com-
plex prediction tasks in a variety of fields: computer vision [5], natural language process-
ing [30] and speech recognition [26]. However, recent studies show that they are particularly
vulnerable to adversarial examples [12] in the form of small perturbations to inputs that lead
DNNs to predict incorrect outputs.

Recent works [3, 8, 17, 28, 36, 37], show that perturbing part of an image with perceiv-
able noise is another effective method to attack neural network models. Typically, attackers

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

Citation
Citation
{Brown, Man{é}, Roy, Abadi, and Gilmer} 2017

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Sutskever, Vinyals, and Le} 2014

Citation
Citation
{Senior, Vanhoucke, Nguyen, Sainath, etprotect unhbox voidb@x protect penalty @M {}al.} 2012

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Brown, Man{é}, Roy, Abadi, and Gilmer} 2017

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

Citation
Citation
{Karmon, Zoran, and Goldberg} 2018

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Yang, Kortylewski, Xie, Cao, and Yuille} 2020

Citation
Citation
{Yang, Wei, and Zhang} 2019

https://github.com/lxuniverse/gdpa

2 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

can craft perceivable patches to replace part of images for adversarial attack. The advantage
of this perceivable patch attack is that it is more practical than the imperceptible adversar-
ial attacks in the real world: adversaries can paste a sticker on a traf�c sign to attack the
autopilot system of autonomous vehicles. There are several situations where patch attack is
signi�cant concerning due to its security threats: 1) an attacker uses adversarially designed
eyeglass frames [28] to fool face recognition (Fig. 1a), 2) an attacker pastes adversarially
crafted stickers [8] on stop signs to fool traf�c sign classi�cation (Fig. 1b), and 3) a universal
adversarial patch [3] causes targeted misclassi�cation of any object (Fig. 1c).

However, it is a signi�cant limitation that most patch attack algorithms do not consider
the problem of �nding the best location in an image to inject the patch. Existing patch attack
algorithms either use a �xed position as patch location [8, 28, 37] or learn patches that are
universal across different locations [3, 17, 36]. The �xed location methods show high attack
success rates but are poorly performed at other locations, while the random location patches
do not have competitive attack success rates compared to the �xed location methods. To
address this issue, in this paper we propose a Generative Dynamic Patch Attack (GDPA),
which learns image-dependent patch pattern and patch location altogether. GDPA is inspired
by the idea that different images have different sets of weak pixels since DNN classi�ers
typically focus on different image regions when queried by different images [29]. Therefore,
an image-dependent dynamic patch attack would be more effective than a �xed location or
random location patch attack.

On the other hand, due to the security threats of adversarial attacks, a variety of adversar-
ial defense algorithms have been developed recently [12, 21, 27], among which adversarial
training (AT) [12] has been proved the most effective one for hardening neural networks
against adversarial attacks. Although AT with the PGD attack [22] is the most scalable and
effective method for learning robust models, a recent work of Wu et al. [33] shows that AT
exhibits limited effectiveness against three high-pro�le physically realizable patch attacks:
eyeglasses attack [28], sticker attack [8] and adversarial patch [3]. To overcome this limita-
tion, Wu et al. [33] propose a Rectangular Occlusion Attack (ROA) for adversarial training,
which yields models highly robust to patch attacks. ROA is a two-stage patch attack algo-
rithm, which �rst uses agray patternto �nd the location in image that maximizes the cross-
entropy loss via grid search, and then optimizes the patch pattern at the identi�ed position.
However, this two-stage patch attack method is suboptimal and has quite a few limitations
(see a discussion in Sec. 2), which motivates us to propose GDPA that learns patch pattern
and patch location simultaneously. Moreover, to improve the inference ef�ciency, GDPA
employs a generator to generate patch pattern and location with one forward propagation,
without expensive iterative optimizations that are employed by other attack algorithms, such
as PGD [22] and ROA [33]. Concretely, we make the following contributions:

• We introduce a generic patch attack method GDPA that can generate dynamic/static
and visible/invisible patch attacks with a few con�guration changes.

• GDPA employs a generator to generate patch pattern and patch location altogether per
image, and reduces the inference time substantially (e.g., 40-50x faster).

• GDPA is an end-to-end differentiable patch attack algorithm and can be readily inte-
grated for adversarial training to defend against high-pro�le patch attacks.

• Experiments show that GDPA has superior attack success rates over strong patch at-
tack baselines, and the adversarially trained model with GDPA is more robust to vari-
ous adversarial attacks than state-of-the-art methods.

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

Citation
Citation
{Brown, Man{é}, Roy, Abadi, and Gilmer} 2017

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Yang, Wei, and Zhang} 2019

Citation
Citation
{Brown, Man{é}, Roy, Abadi, and Gilmer} 2017

Citation
Citation
{Karmon, Zoran, and Goldberg} 2018

Citation
Citation
{Yang, Kortylewski, Xie, Cao, and Yuille} 2020

Citation
Citation
{Simonyan, Vedaldi, and Zisserman} 2013

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Lyu, Huang, and Liang} 2015

Citation
Citation
{Shaham, Yamada, and Negahban} 2018

Citation
Citation
{Goodfellow, Shlens, and Szegedy} 2015

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Wu, Tong, and Vorobeychik} 2020

Citation
Citation
{Sharif, Bhagavatula, Bauer, and Reiter} 2016

Citation
Citation
{Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash, Rahmati, and Song} 2017

STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 3

2 Related Works

Adversarial Attack Most adversarial attack methods focus on adding imperceptible per-
turbation covering the entire image [10, 12, 31]. Recently, researchers have shown that
perturbing a part of image with perceptible noise is another practical method to attack DNN
models [3, 8, 17, 18, 19, 28, 33, 36, 37]. Sharif et al. [28] propose to add eyeglasses with
a specially constructed frame texture to attack face recognition. Eykholt et al. [8] show that
adding speci�c rectangular solid-colored patches on traf�c signs can fool traf�c sign classi-
�cation. LAVAN [17] learns visible and localized patches that are transferable across images
and locations by training the pattern at a random location with a randomly picked image in
each iteration. Recently, Wu et al. [33] propose a Rectangle Occlusion Attack (ROA) to gen-
erate adversarial patches for adversarial training. ROA uses an exhaustive search (ROA-Exh)
or a gradient guided search (ROA-Grad) to �nd the location that maximizes the cross-entropy
(CE) loss and optimizes the patch pattern afterwards. Speci�cally, ROA-Exh exhaustively
searches on images with a stride, and ROA-Grad uses the magnitude of gradient of the CE
loss as the sensitivity of regions to identify the top candidate regions to accelerate the location
search. However, ROA has some considerable limitations. Firstly, it employs a two-stage
attack generation, which separates the process of �nding the patch location and patch pattern
into two steps: it �rst �nds the position using agray patternand then optimizes the patch
pattern at that position. Hence, the location identi�ed by agray patternmay not be the best
patch location for the optimized pattern. Secondly, the two-stage optimization of ROA is
computationally expensive and slows down the patch generation process during inference.
Different from these algorithms, our GDPA trains a generator to generate the patch pattern
and location altogether for each input image. Moreover, GDPA is end to end differentiable,
which entails an ef�cient optimization and easy integration for adversarial training.

Before GDPA, several works [2, 24, 25, 34] have proposed to train generators to gen-
erate perturbation to improve the fooling rate and inference speed. Poursaeed et al. [24]
present a trainable network to transform input images to adversarial perturbations. Baluja
and Fischer [2] train feed-forward neural networks in a self-supervised manner to gener-
ate adversarial examples against a target network. Different to these generator-based attack
methods, our GDPA generates both patch pattern and patch location altogether, and employ
an af�ne transform to synthesize adversarial patch examples.

Adversarial Defense Defending against adversarial attacks is a challenging task. Differ-
ent types of defense algorithms have been proposed in the past few years [1, 4, 7, 9, 13,
14, 14, 15, 20, 21, 23, 33, 35], among which adversarial training (AT) [22] has been proved
the most effective one against adversarial attacks. AT employs adversarial examples as data
augmentation to train a robust model. It has been shown that this method can improve the
defense accuracy effectively and sometimes can even improve the accuracy upon the model
trained only on the original clean dataset [32]. However, a recent work of Wu et al. [33]
shows that robust models trained by AT exhibit limited effectiveness against high-pro�le
patch attacks [3, 8, 28]. As the �rst work attempting to defend patch attacks, Wu et al. [33]
propose DOA, which performs a standard adversarial training with Rectangle Occlusion At-
tack (ROA). As we discussed earlier in this section, ROA has some considerable limitations,
which limit its performance on adversarial defense. Our GDPA does not suffer from those
limitations of ROA, and is end-to-end differentiable and more amenable for adversarial train-
ing.

4 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

3 The GDPA Framework

Figure 2: The GDPA generation pipeline. Given an imagex, GDPA generates a patch pattern
and a patch location for weighted adversarial patch injection.a 2 [0;1] controls the visibility
of the patch attack. The pipeline is fully differentiable.

GDPA is a framework that aims to conduct dynamic patch attack by generating adversar-
ial patch pattern and patch location altogether for each input image. It has a generic formu-
lation that can generate dynamic/static and visible/invisible patch attacks. As an overview,
Figure 2 illustrates the GDPA generation pipeline, while Figure 3 demonstrates how GDPA
can be utilized to train an adversarially robust model.

3.1 Problem Formulation

We start with the de�nition of dynamic patch attack. LetD = fX ;Yg denote a training
dataset, whereX is a set of images of sizew� h, andY are their corresponding labels. Let
T : X ! Y denote a target model that we attempt to attack. Given an imagex 2 X and a
target modelT, ourdynamic patch attackaims to �nd a pattern of sizew0� h0and a position
in image that once placed on imagex it can mislead the target model.

3.2 Localized Pattern Generation

One crucial component of GDPA is the generator that generates patch pattern and patch
location for a given image. Since patch pattern and patch location are coupled to a given
image, we design a generatorG with two heads that share the same latent features extracted
by an encoder. Speci�cally, our generator includes an encoderGE to extract the feature
representation of imagex, followed by a location decoderGL and a pattern decoderGP to
generate location and pattern of the adversarial patch:

lx; ly = tanh(GL(GE(x))=b); (1)

pattern= 0:5� tanh(GP(GE(x)))+ 0:5; (2)

wherelx andly are the location (2D coordinates) of a patch in imagex with the origin at the
center of image, andpatternis the patch pattern of sizew0� h0. To keep the patch locationlx
andly within the boundary of image, we use a tanh function to constrainlx andly in the range
of [� 1;1], whereb is a hyperparameter that controls the slope of tanh. All experiments in
this paper useb = 3000, which we found to work well across a variety of architectures and
datasets. Similarly, we use another tanh to impose the pattern values in the range of[0;1]1.

Specially, we use a convolutional neural network as our encoder networkGE, with an
architecture adapted from the work of image-to-image translation [39]. On top ofGE, we
use two fully-connected networks as our decodersGP andGL, respectively. Due to page
limit, details of the network architectures are provided in the Appendix.

1As a preprocessing step, all images are normalized to have pixel values in the range of[0;1].

STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 5

3.3 Weighted Adversarial Patch Injection

With the generated patch location and patch pattern, we then de�ne a function to inject the
patch into imagex. Standard adversarial attacks [22] employ an additive function to inject
noise: x0 = x+ p, where p is an imperceptible adversarial perturbation. Recently, other
forms of perturbations, such as multiplicative onesx0= x� m [38], have been explored to
inject perturbations. In addition, LAVAN [17] employs(1� m) � x+ m� p with a binary
maskm 2 f 0;1gw0� h0

to generate patch attack adversarial examples. Inspired by LAVAN,
we extend this function by relaxing the binary mask to a continuous maskm2 [0;1]w

0� h0
for

adversarial patch injection. Speci�cally, we employ the weighted adversarial patch injection
xadv = (1� m) � x+ m� p, with m2 [0;1]w

0� h0
; which is a convex combination of original

imagex and patch patternp with the weight de�ned bym. We �nd this relaxed version is
more �exible and easier to optimize than the one LAVAN explored. Next, we discuss how to
use the generated(lx; ly) andpatternto inject an adversarial patch to imagex.

3.4 Differentiable Af�ne Transformation

We employ an af�ne transformation in GDPA to inject adversarial patches into images. To
make the whole pipeline differentiable w.r.t.lx and ly, a bilinear interpolation is used to
estimate the pixel values that are not on the pixel grids after transformation. By doing this,
the whole pipeline is fully differentiable and the gradient can be back-propagated end-to-
end to update parameters of generatorG. Speci�cally, we adopt the af�ne transformation
and image sampling method of Spatial Transformer Networks [16] to de�ne a differentiable
translate operator, which can translate a source image to a target image by a displacement of
(lx; ly).

We �rst use an af�ne transform to compute the pixel index relationship between source
image and target image:

xs
i

ys
i

!

=

"
q11 q12 q13

q21 q22 q23

#
0

B
@

xt
i

yt
i

1

1

C
A ; (3)

where(xt
i ;y

t
i) is the pixel index of target image, and(xs

i ;y
s
i) is the corresponding pixel index

in source image. We setq11 = 1;q21 = 0;q12 = 0;q22 = 1;q13 = w0=2� lx andq23 = h0=2� ly
for translation purpose2. Thus, we havexs

i = xt
i + w0=2 � lx and ys

i = yt
i + h0=2 � ly, where

lx; ly 2 [� 1;1]. Since(xs
i ;y

s
i) are continuous variables, we can use a bilinear interpolation to

sample the pixel values from source image:

vi =
w� 1

å
j= 0

h� 1

å
k= 0

u jk max(0;1�j xs
i � j j) max(0;1�j ys

i � kj); (4)

whereu jk is the pixel value at index(j;k) of the source image, andvi is the output value of
pixel i at index(xt

i ;y
t
i) of the translated image. With the af�ne transform and bilinear sampler

described above, we have a differentiable translate operator, which we denote asTranslate()
in the rest part of the paper.

3.5 Generative Dynamic Patch Attack

Figure 2 illustrates the GDPA generation pipeline, which includes the three components we
described above: patch pattern and location generator, differentiable af�ne transform, and the
weighted adversarial patch injection to produce an image-dependent dynamic patch attack.

2Note that we can also learnq11;q12;q21;q22 to rotate, dilate or shear an adversarial patch to further improve
GDPA's performance. For simplicity and also because we can already achieve state-of-the-art attack success rate
(ASR) with translation, in this paper we only consider translation and will leave advanced af�ne transform to future
work.

6 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

Figure 3: The GDPA-AT pipeline. Given an image, GDPA generates an adversarial patch to
maximize the loss of classi�erT, while classi�erT learns from the patch attack to minimize
its loss.

As shown in Figure 2, we introduce an initial maskmcenter of the same size of input
image, and the center part of the mask has value 1 and rest of 0. Then we use the af�ne
transformTranslate() to translatemcenterby a displacement of(lx; ly):

m= a � Translate(mcenter; lx; ly); (5)

wherea 2 [0;1] is a hyperparameter that controls the visibility of adversarial patches. When
a = 1, the patch would be completely visible and replace the original image pixel values;
otherwise, the visibility of the adversarial patch will be lower. In practice, we can use a small
value ofa to generate human imperceptible adversarial patches.

Similarly, we can generate a translated patch pattern. As shown in Figure 2, oncepattern
is generated, we zero-pad it to create a patternpcenter of the same size of input image with
pattern at the center. We then translatepcenter by (lx; ly) via the af�ne transform: p =
Translate(pcenter; lx; ly):

Finally, we can generate a GDPA adversarial example for imagex by xadv = (1� m) �
x+ m� p: As we can see, all the components in Figure 2 are differentiable. Therefore, the
whole GPDA generation pipeline is fully differentiable and can be optimized ef�ciently with
gradient-based methods.

argmin
G

�L CE(T;xadv;y): (6)

We can also launch a targeted patch attack to fool the target modelT to misclassify an input
x as target class

argmin
G

L CE(T;xadv;ytarget): (7)

Details of the GDPA training algorithm can be found in Algorithm 1.

3.6 Adversarial Training with GDPA

Adversarial training with the PGD attack exhibits limited effectiveness against high-pro�le
patch attacks [33]. In this section, we discuss how to utilize GDPA for adversarial training
to improve model robustness against high-pro�le patch attacks.

Figure 3 illustrates the GDPA adversarial training (GDPA-AT) pipeline to train a robust
model against patch attacks. Similar to Generative Adversarial Networks [11], GDPA-AT
trains generatorG and target classi�erT iteratively to optimize the following minimax ob-
jective:

min
T

max
G

E(x;y)� D[L CE(T;xadv;y)]; (8)

where the inner maximization step optimizes generatorG to maximize the classi�cation loss
of T, while the outer minimization step optimizes target classi�erT to minimize the classi�-
cation loss. Unlike the traditional adversarial training, in which the inner maximization step

STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 7

usually optimizes an adversarial examplexadv directly, our GDPA-AT optimizes a generator
G to generate patch attack with one forward propagation. As the iterative training proceeds,
the generatorG searches for the weakest image region to attack classi�erT at each iteration,
while T learns from the current patch attacks and becomes more resilient to these attacks
over time. Details of our GDPA-AT algorithm are described in Algorithm 2.

Algorithm 1: GDPA Training
Input: training setD; target modelT;

visibility a
Output: generatorG
initialize generatorG;
for number of training epochsdo

for each(x;y) 2 D do
lx; ly = GL((GE(x)) ;
pattern= GP(GE(x)) ;
m= a � Translate(mcenter; lx; ly);
p = Translate(pcenter; lx; ly);
xadv = (1� m) � x+ m� p;
if targeted attackthen

loss= L CE(T;xadv;ytarget);
else

loss= � L CE(T;xadv;y);
end
qG = qG � lr � ¶loss=¶qG

end
end

Algorithm 2: GDPA-AT Training
Input: training setD
Output: target classi�erT; generatorG
initialize classi�erT and generatorG;
for number of training epochsdo

for each(x;y) 2 D do
xadv = GDPA(G;x) ;
loss= � L CE(T;xadv;y) ;
qG = qG � lrG � ¶loss=¶qG ;
xadv = GDPA(G;x) ;
loss= L CE(T;xadv;y) ;
qT = qT � lrT � ¶loss=¶qT

end
end

4 Experimental Results

We now validate GDPA on benchmark datasets for adversarial patch attack and adversarial
defense. Speci�cally, we evaluate the performance of GDPA on patch attack in Section 4.1
and GDPA-AT on improving model robustness in Section 4.2. To evaluate the inference
ef�ciency, we also compare the run-times of GPDA and state-of-the-art attack algorithms in
Section 4.3. All our experiments are performed with PyTorch on Nvidia RTX GPUs. Our
source code is provided as a part of supplementary materials.

Experimental Setup We evaluate GDPA and GDPA-AT on three benchmark datasets:
VGGFace [28], Traf�c Sign [8] and ImageNet [5]. To evaluate GDPA's attack performance,
we compare GDPA with LAVAN [17] and ROA [33], two state-of-the-art patch attack algo-
rithms that generate patches based on iterative optimizations. Following their experimental
settings, we run LAVAN and ROA for 50 optimization iterations with a learning rate of 4. For
adversarial defense experiments, we compare GDPA-AT with DOA [33] and PGD-AT [22].
The former is a state-of-the-art defense algorithm for patch attacks, while the latter is a
well-established defense algorithm for adversarial attacks. We evaluate the robustness of the
models under eyeglasses attack [28], sticker attack [8]. Following the settings in DOA [33],
we use 70� 70 patches with stride 5 for VGGFace and 7� 7 patches with stride 2 for Traf�c
Sign to generate ROA attacks. We sete= 16 for PGD-AT since this yields the best results
of PGD-AT. We use attack success rate (ASR) [6] as the metric to evaluate the effectiveness
of an attack, and use classi�cation accuracy to evaluate the robustness of a model when un-
der adversarial attacks. Details of benchmark datasets, high-pro�le patch attacks, network
architectures and training procedures can be found in the Appendix.

8 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

4.1 Dynamic Patch Attack

We �rst evaluate the performance of GDPA on non-targeted and targeted patch attacks and
compare it with the state-of-the-arts: LAVAN [17] and ROA [33]. We provide results of two
versions of ROA: ROA-Exh and ROA-Grad, where the former exhaustively searches for a
patch location in images with a �xed stride, and the latter uses the magnitude of gradient as
the sensitivity of regions to identify top regions to accelerate the location search. We evaluate
the effectiveness of the attack algorithms when perturbing different percentages of pixels. To
interpret the results, we also visualize the perturbed images generated by GDPA.

Percentage of Attacked Pixels

Dataset Algorithm Non-Targeted Attack Targeted Attack

1% 2% 5% 10% 1% 2% 5% 10%

Traf�c Sign
LAVAN [17] 33.4 58.7 85.1 93.9 32.2 48.180.9 89.9
ROA-Grad [33] 36.2 61.8 87.3 93.6 29.8 44.6 74.5 90.5
ROA-Exh [33] 37.1 63.0 89.4 93.8 31.3 45.9 76.2 91.7
GDPA 39.6 64.1 91.3 94.3 33.9 50.477.5 92.8

VGGFace
LAVAN [17] 31.9 42.7 56.3 92.0 37.8 57.9 67.2 94.6
ROA-Grad [33] 37.5 62.3 84.2 99.6 46.3 75.6 89.0 99.2
ROA-Exh [33] 38.3 64.5 86.0 99.6 48.2 76.7 91.1 99.3
GDPA 46.3 76.4 88.4 99.5 50.5 83.4 95.5 99.8

ImageNet
LAVAN [17] 89.2 92.8 97.8 99.9 86.3 93.8 99.7 99.8
ROA-Grad [33] 93.5 94.6 98.7 99.7 79.6 88.3 97.5 99.8
ROA-Exh [33] 94.8 95.3 99.2 99.7 81.1 89.6 98.4 99.8
GDPA 96.3 96.9 99.7 99.8 89.3 94.4 99.6 99.9

Table 1: The ASRs of different patch attack algorithms on datasets Traf�c Sign, VGGFace
and ImageNet. Both non-targeted attack and targeted attack are considered. The perfor-
mances are evaluated with patches of different sizes.

Table 1 reports the ASRs of GDPA and the other competing algorithms for non-targeted
and targeted patch attacks. The ASRs of an attack algorithm are evaluated on a model trained
with cross-entropy (CE) loss when attacked with patches of different sizes (1%, 2%, 5% or
10% of pixels). Speci�cally, We use square patches of width 3, 5, 7, 10 for Traf�c Sign and
23, 32, 50, 71 for VGGFace and ImageNet. For targeted attacks, we choose the �rst class for
each of the three datasets as the target class, i.e., “AddedLine", “Aamir Khan" and “tench,
Tinca tinca", respectively. As expected, the larger patch size is, the higher ASR is achieved
for all patch attack algorithms. In most of the cases, GDPA achieves higher ASRs than the
competing algorithms.

Figure 4: Perturbed images of VGGFace and ImageNet generated by GDPA with different
patch sizes. The last column of targeted attack are example images of target classes.

