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Abstract

Images acquired from rainy scenes usually suffer from bad visibility which may dam-
age the performance of computer vision applications. The rainy scenarios can be cate-
gorized into two classes: moderate rain and heavy rain scenes. Moderate rain scene
mainly consists of rain streaks while heavy rain scene contains both rain streaks and
the veiling effect (similar to haze). Although existing methods have achieved excel-
lent performance on these two cases individually, it still lacks a general architecture
to address both heavy rain and moderate rain scenarios effectively. In this paper, we
construct a hierarchical multi-direction representation network by using the contourlet
transform (CT) to address both moderate rain and heavy rain scenarios. The CT di-
vides the image into the multi-direction subbands (MS) and the semantic subband (SS).
First, the rain streak information is retrieved to the MS based on the multi-orientation
property of the CT. Second, a hierarchical architecture is proposed to reconstruct the
background information including damaged semantic information and the veiling effect
in the SS. Last, the multi-level subband discriminator with the feedback error map is
proposed. By this module, all subbands can be well optimized. This is the first archi-
tecture that can address both of the two scenarios effectively. The code is available in
https://github.com/cctakaet/ContourletNet-BMVC2021.
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(a) Moderate Rain Input (b) MSPFN [16] (c) RCDNet [30] (d) Ours

(e) Heavy Rain Input (f) HRGAN [23] (g) AIO [24] (h) Ours

Figure 1: Visual comparison of the proposed method and state-of-the-art rain removal meth-
ods under moderate rain and heavy rain scenarios. It shows that the proposed method has
generalized ability for addressing various rain scenarios.

1 Introduction
Rain streaks is an atmospheric phenomenon which usually leads to poor visibility. Similar to
haze [3] and snow [5], it may degrade the performance of high-level vision applications, such
as object detection and semantic segmentation. Rainy scenarios can be categorized into: (i)
the moderate rain scene and (ii) the heavy rain scene (please refer Figure 1). The moderate
rain scene mainly consists of rain streaks with irregular distribution and can be modeled as:

I = J+
n

∑
i

Si, (1)

where Si is the rain streak in the ith layer, I is the rain image, and J is the clean image. Several
algorithms have been proposed to address the moderate rain scenario [6, 9, 10, 16, 17, 19, 25,
30, 31, 32, 33, 35, 36]. Kang et al. [19] applied the image decomposition technique based
on dictionary learning and morphology. Fu et al. [10] adopted discriminatively intrinsic
characteristics, Li et al. [25] applied layer separation, and Wang et al. [31] proposed the
SPANet to remove rain streaks. Jiang et al. [16] proposed the multi-scale progressive fusion
strategy to achieve excellent results in moderate rain removal.

Unlike moderate rain scenarios, heavy rain scenes usually contain rain streaks and strong
veiling effect which is similar to the haze. Its formulation can be expressed as [23]:

I = T� (J+
n

∑
i

Si)+(1−T)�A, (2)

where A is the atmospheric light, T is the transmission map, and � is pixel-wise multiplica-
tion. Due to multi-flux scattering and veiling effect, the background information under the
heavy rain scenario is blurrier than that in the moderate rain case. Li et al. [23] proposed a
two-stage optimization strategy termed the HRGAN which extracts T, A, and S for physical
model-based recovery, and applied adversarial learning to optimize the results.

Although existing rain removal methods can reconstruct desirable results for the mod-
erate rain or the heavy rain scenario individually, there exists a limitation. These methods
cannot address both types of rain scenes with the same architecture. In Figure 2, we present
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(a) Input (b) HRGAN (c) MSPFN (d) Ours

(e) Input (f) MSPFN (g) MSPFN+Dehaze (h) HRGAN (i) Ours

Figure 2: Illustration of the limitation in existing methods. (a) and (e): the inputs of
moderate rain and heavy rain. (b)-(d): derained results by the heavy rain removal method
(i.e., HRGAN [23]), MSPFN [16] and the proposed method. (f): derained results by moder-
ate rain removal (i.e., MSPFN). (g): MSPFN + dehazed method [8]. (h): HRGAN and (i):
the proposed method. Note that, for the fair comparison, both (b) and (f) are retrained with
moderate rain and heavy rain (HR) datasets, respectively.

an example that applies a heavy rain removal method (the HRGAN [23]) to address moderate
rain scenes and uses a moderate rain removal method (the MSPFN [16]) to handle the heavy
rain scenes. We can observe that, for the former case, the recovered results tend to have color
distortion problem because the veiling effect removal in the HRGAN may over-dehaze an
moderate rain image. Moreover, the result tends to have residual rain streaks. For the latter
case, the residual veiling effect may exist in the recovered results because the veiling effect
removal is not considered by the moderate rain removal. Moreover, even if we combine
the state-of-the-art veiling effect removal strategy (i.e., dehazing strategy) [8] with moderate
rain removal, the recovered results are still limited because the heavy rain scenario is not
a simple combination of rain streaks and the veiling effect. It suffers from the multi-flux
scattering [23], resulting in blurry problem in the heavy rain scene.

Thus, in this paper, to adequately address both moderate rain and heavy rain scenarios
with one architecture, we propose an effective recovered framework called the Contourlet-
Net. First, the contourlet transform (CT) [7] is embedded in our network to generate several
multi-direction subbands (MS) and one semantic subband (SS). The MS contains the infor-
mation of rain streaks and detail such as edges and textures while the SS mainly consists of
the contextual information and the veiling effect. With the CT, the information of rain streaks
can be well retrieved because rain streaks are usually in different directions. We construct
two sub-networks termed multi-direction subband recovery (MSR) and semantic subband
recovery (SSR) to recover all subbands adequately. Second, to achieve better recovery of the
SS, we investigate both heavy rain and moderate rain images. We find an interesting phe-
nomenon: with the increase of the CT decomposition level, the difference between heavy
rain/haze images and the corresponding ground truths in the SS is reduced. Based on this
observation, we propose to integrate the hierarchical architecture and the CT in our network.
Last, to improve the performance of the ContourletNet, the multi-level semantic subbands
discriminator with the feedback error map is proposed. All semantic subbands and the re-
covered image are distinguished by the multi-level discriminator to enhance the contextual
quality.
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Figure 3: Comparison of using different rain streak extraction methods. One can see that
the CT can achieve better rain streaks retrieval, especially for the bevelled directions. The
rain streaks of input image mainly contain vertical and bevelled direction. Moreover, the
value of SSIM indicates the structural similarity between the rain mask and each subband.
Note that we add two subbands to calculate the SSIM for the CT.

Experiments show that our proposed method achieves superior performance than state-
of-the-art approaches for both moderate rain and heavy rain scenarios. As far as we know,
our method is the first work which can deal with moderate rain and heavy rain with one
architecture effectively.

2 Proposed Method

2.1 Effective rain streak extraction
Rain streak extraction is essential for moderate rain and heavy rain scenarios. We first intro-
duce the contourlet transform (CT) and illustrate why it is helpful for rain streak extraction.
Contourlet Transform. The CT [7] is an effective technique for geometric information
analysis. It can achieve better representation in both locality and directionality. Its detail is
presented in Supplementary Material. It mainly consists of two operations: the Laplacian
pyramid (LP) [2] and directional filter banks (DFB) [1]. Given an image, first, the LP fil-
ter decomposes it into a semantic subband (SS) and a high-frequency subband. Then, the
high-frequency subband is further decomposed into several subspaces with 2k direction via
directional filters. We term these subspaces multi-direction subbands (MSs). With the CT,
the multi-resolution and multi-direction features can be extracted effectively.

Motivation. For both moderate rain and heavy rain removal, rain streak extraction plays a
crucial role. Rain streaks are not uniform but have different directions and intensities. There
are some existing strategies which can extract rain streaks, including high-low frequency
decomposition (HL) [23], the discrete wavelet transform (DWT) [35], and learnable convo-
lution kernels with a guidance [30]. For the DWT and HL, as shown in Figure 3, although
they can extract some rain streaks information, the performance is still limited compared
with the CT. The reason is as follows. The DWT only contains filter with two directions
(i.e., vertical and horizontal), which leads to that the interpretation of bevelled rain streaks is
limited. For HL, the information of rain streaks cannot be retrieved appropriately and stably
because all high-frequency information (e.g., edges, details, and rain streaks) in various di-
rections are included in a single subband. Moreover, it has no lossless inverse transformation,
which limits the performance of reconstruction. For learnable convolution kernels, though
rain information in different directions can be extracted by the well-trained filter from the
CNN, achieving global optimization is challenging since the patterns of rain streak in real-
world scenarios are too complicated to be covered and modeled comprehensively. Therefore,
to address these limitations, we embed the CT into our network to extract rain streaks with
better spatial locality and directionality. With this property, the effective representation of
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Figure 4: Investigating the response of the CT level: The MSE and the SSIM of the rain
images (Rain 100H and heavy rain datasets) and the corresponding ground truths in the
semantic subband (i.e., SS).

rain can be achieved by leveraging the empirical decomposition process based on the prior
knowledge of rain streaks.

2.2 Hierarchical Decomposition for Rain Removal

The CT decomposes an image into multi-direction subbands (MSs) and the semantic subband
(SS). Although appropriate recovery of the MS components can be achieved effectively by
the residual strategy due to their sparsity [14, 20], reconstructing the SS component may be
challenging since it generally contains complicated content such as residual rain streaks, the
degraded background, and the veiling effect. To alleviate this issue, we propose a hierarchical
architecture which only decomposes the SS component in each CT level. Specifically, we
only recover the SS component at the bottom level and reconstruct several MS components
in other levels. This idea is inspired by the investigation on the Rain 100H [34] and heavy
rain datasets [23] which is shown in Figure 4. We observed that the difference between the
rain image and the corresponding ground truth in the SS may decrease with the number of
levels, which means that hierarchical decomposition can benefit the reconstruction of the SS.

For the moderate rain scene, with the hierarchical CT, most rain streaks are retrieved in
MS components, which means that the SS component is closer to the ground truth. For the
heavy rain scenario, rain streaks can be extracted by MS components, too. However, heavy
rain images also contain the veiling effect, which mainly consists of the scene radiance J,
the atmospheric light A, and the transmission T [23]. A is usually assumed as a constant.
Although T is a depth-related feature, it may become a constant-like matrix after an adequate
iteration of decomposition because high-frequency components such as edge or texture are
extracted. Thus, according to the formulation of veiling effect, the relation between the scene
radiance J and the heavy rain image I can be approximated to a constant matrix mapping.
Based on the above analysis, the difficulty of recovering the SS component can be reduced
effectively with the proposed hierarchical CT. Therefore, the combination of the CT and the
hierarchical architecture can both improve the ability of feature representation and achieve a
better local optima.
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Figure 5: The overview of the proposed rain removal network. It consists of the Con-
tourletNet and the multi-level subband discriminator. The ContourletNet contains two main
modules: multi-direction subband recovery (MSR) and semantic subband recovery (SSR).
The feature extractor in multi-level subband discriminator is based on Res2Net [12].

2.3 Network Architecture
The flowchart of the proposed network is shown in Figure 5. It consists of two subnet-
works: (i) the ContourletNet and (ii) the multi-level subband discriminator. We leverage
the GAN [13] to optimize the performance of the ContourletNet. First, the input image is
fed into the ContourletNet to produce the clean image. Then, different from other learning-
based architectures [15, 37], the recovered image and its recovered MS at different levels
are distinguished by the discriminator and the feedback of the error map mechanism. The
architecture is illustrated as follows.
ContourletNet. The ContourletNet can be divided into: i) multi-direction subband recovery
(MSR) and ii) semantic subband recovery (SSR). First, the CT decomposes the input image
into the MS and the SS. Then, the MS is reconstructed by the multi-direction subband recov-
ery network (MSRN). The SS component at the bottom level is recovered by the semantic
subband recovery network (SSRN) with pixel-to-pixel reconstruction. Two sub-networks
are based on the proposed contourlet predictor (CP) architecture to recover the components.
More details about CP, SSRN, and MSRN are presented in the Supplementary Material.
Initially, the input is concatenated with the proposed aggregate contourlet component Gi :

Gi = σ(I)⊕σ(SS1)⊕·· ·⊕σ(SSi−1), (3)

where Gi denotes the aggregate contourlet component at the ith level, ⊕ is the concatenate
operation, I is the rainy image, SSi is the SS component at level i, and σ is the multi-pooling
architecture [4]. The idea in (3) is that, instead of down-sampling the input directly, the
aggregate contourlet component enables the reconstruction network to acquire more infor-
mation from the SS components in previous layers. The SS part contains semantic and con-
textual information which can benefit the reconstruction process. The use of multi-pooling is
to prevent the information loss which usually happens in down-sampling. Then, the MSRN
and SSRN will reconstruct the information in each subband based on the input and the ag-
gregate contourlet component.
Multi-Level subbands Discriminator. To better optimize the recovered results, the multi-
level subbands discriminator is proposed, as shown in the right side of Figure 5. In previous
works, the final recovered result is generally fed into the discriminator directly. This may
limit the performance because it is hard to optimize SS components at all levels based on the
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final recovered result. To address this, we propose to distinguish both the recovered result
and all recovered SS components jointly. Our idea is that the recovered SS is an important in-
formation to evaluate the performance of each level because it contains both multi-direction
information and semantic information in the previous layers of the inverse CT. With the SS,
the information in the previous layer can be optimized simultaneously. It can prevent the
error from amplifying massively if the error is generated at the bottom layer. Moreover,
to improve the performance of the discriminator, inspired by the attention mechanism, the
feedback of the error map is proposed. That is, the input is multiplied by the error map,
which is the L1-norm difference between the input and its ground truth. Then, the inputs are
concatenated with their corresponding attentive component to the discriminator. It can make
the affected regions get more attention from the discriminator.

2.4 Loss Function
In the proposed hierarchical contourlet-based rain removal network, three losses are applied:
(i) contourlet loss, (ii) the perceptual loss, and (iii) the adversarial loss.
Contourlet Loss. The contourlet loss is defined as follows:

LC =
∥∥(SSR

i −SSgt
i )
∥∥

2 +
i

∑
m=1

√∥∥(MSR
m−MSgt

m )
∥∥2

+ ε2, (4)

where SSR
i and SSgt

i are the predicted semantic subband component and its corresponding
ground truth at the ith level. MSR

i and MSgt
i are the predicted multi-direction subbands and

their corresponding ground truths, and ε is the slack value which can keep the values in
multi-direction subbands non-zero to prevent the texture details from vanishing [22].
Adversarial Loss. It is defined as
LAdv =min

G
max

D
[E(JSS+J)∼p(JSS+J) [logD(JSS +J)] +E(ISS+I)∼p(ISS+I) [log(1−D(G(ISS + I))]] ,

(5)
where JSS +J and ISS + I are the sets of the clean images and rain images with their corre-
sponding SS components, respectively. D is the discriminator, and G is the generator. The
overall loss of the proposed network is

LOverall = LC +λ1LPerceptual +λ2LAdv, (6)

where LPerceptual is the perceptual loss [18] and we set the λ1 = 10−3 and λ2 = 10−4.

3 Experimental Result

3.1 Dataset and Implementation Detail
Several rain datasets are leveraged to validate the derained ability of the proposed method.
For the moderate rain, we adopt the Rain100H and Rain100L datasets proposed in [34], and
Rain800 [37] for training and evaluation. For the heavy rain, we adopt the heavy rain dataset
proposed in [23]. The details of the datasets can be found in the Supplementary Material.

For the implementation detail, the initial learning rate is 10−4 and is multiplied by 0.75
after 10 epochs until the 250th epoch. The Adam optimizer [21] is applied, 16 directions and
4 levels are adopted in the CT. The proposed network is implemented on Nvidia RTX Titan
GPU and trained with 1000 epochs. It takes thirty hours for training. Our network is trained
based on PyTorch.
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Table 1: Quantitative evaluation for comparison with other existing methods on the
heavy rain dataset. The DHF and DRF denote dehaze first and derain first, respectively.

Metrics RCDNet [30] MSPFN [16] BRN [27] RCDNet* MSPFN* BRN* CycleGAN [38] Pix2Pix [15] HRGAN [23] AIO [24] Ours
DHF DRF DHF DRF DHF DRF

PSNR 16.42 15.81 16.69 16.03 16.76 16.68 23.15 23.92 22.38 21.62 22.43 24.78 24.71 25.45
SSIM 0.741 0.725 0.776 0.734 0.748 0.726 0.897 0.872 0.874 0.826 0.854 0.882 0.898 0.912

CIEDE 2000 13.32 14.01 12.77 13.69 12.63 13.36 5.14 4.52 6.38 7.23 6.26 7.40 4.89 4.07

Table 2: Quantitative evaluation for comparison with other state-of-the-art methods on
the existing moderate rain datasets. (PSNR/SSIM/CIEDE2000)

Dataset DDN [10] JORDER [34] SPANet [31] PreNet [26] BRN [27] DRDNet [6] RCDNet [30] MSPFN [16] Ours
Rain100L 32.17/0.927/3.73 36.83/0.972/2.08 35.28/0.966/2.21 37.10/0.977/1.52 38.16/0.982/1.11 36.95/0.978/1.18 39.99/0.986/0.48 36.40/0.973/1.27 40.04/0.988/0.43
Rain800 21.97/0.827/6.25 23.62/0.835/5.79 22.41/0.838/5.73 26.61/0.831/4.88 26.72/0.865/4.61 26.32/0.874/4.47 27.33/0.869/4.54 27.50/0.876/4.22 27.89/0.881/4.06

Rain100H 21.87/0.782/6.02 24.52/0.805/4.21 25.02/0.843/4.45 28.98/0.892/3.21 30.47/0.903/2.44 28.33/0.876/3.67 31.28/0.909/2.19 28.66/0.860/3.73 31.44/0.911/2.07

3.2 Comparison with State-of-the-art Methods
1 We evaluate our method on two rain scenarios: moderate rain scenario and heavy rain
scenario. For the moderate rain scenario, we apply several existing methods including
DDN [10], JORDER [34], SPANet [31], PreNet [26], BRN [27], DRDNet [6], RCDNet [30],
and MSPFN [16] for comparison. For fair evaluation, we ensure all models are trained with
the same training set provided by the corresponding dataset.

For the heavy rain scenario, we adopt the HRGAN [23] and AIO [24] for compari-
son. Moreover, referring to the experiments in [23], we also compare our method with other
heavy rain removal strategies: (i) moderate rain removal strategies combined with the dehaz-
ing strategy [8]; (ii) the moderate rain removal methods retrain with the heavy rain dataset;
(iii) the image translation methods (the CycleGAN [38] and Pix2Pix [15]). For better iden-
tification, ’*’ denotes that the models retrain with the heavy rain dataset. Three metrics are
applied for quantitative evaluation: the structural similarity (SSIM), the peak signal to noise
ratio (PSNR), and the CIEDE 2000 color difference. A lower value of CIEDE2000 means
less color distortion.

Analysis on Heavy Rain Scene. The quantitative comparisons are shown in Table 1. From
Table 1, one can see that the proposed method outperforms other state-of-the-art heavy rain
removal strategies in all metrics. Moreover, based on the visual comparison in Figures 6(a)
and 6(b), one can see that, for existing heavy rain removal strategies, the recovered results
tend to have residual rain streaks and color distortion. However, our method can solve these
problems effectively and provide better visual quality compared to other methods.

Analysis on Moderate Rain Scene. Table 2 presents the results of quantitative evaluation
on conventional moderate rain datasets. One can see that the proposed method can achieve
the best performance for moderate rain removal compared with other existing methods in all
datasets and all metrics. Figures 6(c) and 6(d) present the visual comparison on synthesized
and real-world datasets. One can see that, compared with the proposed method, the results
of existing methods may have more residual rain streaks (see the results presented in Fig-
ure 6(d)). These results show that the proposed method can achieve better rain removal and
reconstruct the background effectively.

Based on the analysis above, the proposed method can achieve excellent performance on
both moderate rain and heavy rain scenarios, which proves that the ContourletNet has the
generalized ability on rain removal task.

1Due to the limited space, more experimental results are reported in the supplementary material.
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(a) Synthesized heavy rain images

(b) Real-world heavy rain images

(c) Synthesized moderate rain images.

(d) Real-world moderate rain images

Figure 6: Visual comparison with other state-of-the-arts algorithms for some examples
in heavy rain scenario and moderate rain scenarios.

3.3 Ablation Study

To verify the effectiveness of each of the proposed modules in this paper, five combinations
are performed on the heavy rain and Rain 100H datasets: (1) the proposed ContourletNet
with multi-level discriminator (C) (2) the ContourletNet with single-level discriminator (C
w/o MD); (2) C without the hierarchical architecture (C w/o H); (3) C without the aggregate
contourlet component (C w/o G); (4) C without the contourlet predictor (C w/o CP); (5) C
without the feedback error map mechanism (C w/o FEM). Table 3(a) shows that the best
performance can be achieved if all proposed techniques (the hierarchical architecture, the
aggregate contourlet component, the contourlet predictor, the feedback of error map, and the
multi-level contourlet components discriminator) are adopted.

To prove the effectiveness of the CT, we apply several existing feature extraction tech-
niques instead of the CT in the proposed network for comparison: the vanilla convolution
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(a) Input (b) MSPFN

(c) RCDNet (d) Ours

Figure 7: Failure case of the pro-
posed method and state-of-the-art
rain removal methods under night-
time rain scene.

Table 3: Quantitative evaluation for ablation study.
(a) Effectiveness of the proposed modules

Dataset C C w/o MD C w/o H C w/o G C w/o CP C w/o FEM
Heavy 25.45/0.91 24.98/0.89 25.01/0.89 24.71/0.89 24.88/0.88 25.13/0.90

Rain 100H 31.44/0.91 30.01/0.89 29.88/0.89 30.23/0.90 29.97/0.89 30.41/0.90

(b) Effectiveness of Contourlet Transform
Dataset VConv MConv HL LP DWT Ours
Heavy 21.57/0.85 22.13/0.86 23.38/0.87 24.01/0.88 24.11/0.89 25.45/0.91

Rain 100H 26.21/0.84 27.14/0.85 29.31/0.87 29.51/0.88 29.63/0.88 31.44/0.91

(c) Level of CT decomposition versus the performance of recovery.

Dataset Lv 1 Lv 2 Lv 3 Lv 4 Lv 5 Lv 6
Heavy 21.95/0.86 23.88/0.88 24.79/0.90 25.45/0.91 25.48/0.91 25.50/0.91

Rain100H 29.69/0.87 30.18/0.88 30.72/0.90 31.44/0.91 31.47/0.91 31.48/0.91

operation with a 3×3 kernel (VConv); multi-scale convolution kernel (Mconv) [28]; Lapla-
cian pyramid (LP) [11]; HL [23]; DWT [29]. The results in Table 3(b) indicate that using
the CT as the rain streak extractions can achieve the best result on deraining. Moreover, we
present a visual comparison on the real-world scene in the Supplementary Material.

In Table 3(c), we discuss the effect of decomposition levels for the CT and the recovered
performance. One can see that increasing the levels of decomposition can benefit the recon-
struction quality generally. The more levels of decomposition, the better performance the
proposed method may have.

4 Conclusion

In this paper, to mitigate the limitation in existing rain removal methods, a novel Contourlet-
Net is proposed. First, to address the residual rain streaks in the recovered image, we lever-
age the CT to decompose the input image to several multi-direction subbands and a semantic
subband at each level. Second, based on observing the semantic subbands of rainy images
and their corresponding ground truths, the hierarchical recovery process is proposed. Last,
the multi-level subband discriminator is proposed to suppress the error propagation in each
subband. Extensive experiments prove the effectiveness of the proposed ContourletNet for
both heavy and moderate rain scenarios. In the future work, we will address the limitation of
the proposed method as shown in Figure 7. Specifically, the proposed method may fail for
night-time rainy scene. There still exists residual rain streaks in the recovered images.
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