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Abstract

We consider the problem of obese human mesh recovery, i.e., fitting a parametric
human mesh to images of obese people. Despite obese person mesh fitting being an
important problem with numerous applications (e.g., healthcare), much recent progress
in mesh recovery has been restricted to images of non-obese people. In this work, we
identify this crucial gap in the current literature by presenting and discussing limitations
of existing algorithms. Next, we present a simple baseline to address this problem that is
scalable and can be easily used in conjunction with existing algorithms to improve their
performance. Finally, we present a generalized human mesh optimization algorithm that
substantially improves the performance of existing methods on both obese person images
as well as community-standard benchmark datasets. A key innovation of this technique is
that it does not rely on supervision from expensive-to-create mesh parameters. Instead,
starting from widely and cheaply available 2D annotations, our method automatically
generates mesh parameters that can in turn be used to re-train and fine-tune any existing
mesh estimation algorithm. This way, we show our method acts as a drop-in to im-
prove the performance of a wide variety of contemporary mesh estimation methods. We
conduct extensive experiments on multiple datasets comprising both standard and obese
person images and demonstrate the efficacy of our proposed techniques.

1 Introduction

We consider the problem of human mesh estimation. Given a person image and a functionally-
known parametric human mesh, the problem is to fit the mesh (i.e., estimate its parameters)
so as to best explain the 3D pose and shape of the person. With many important real-world
applications, including in healthcare for the ongoing COVID-19 pandemic, [6, 8, 18, 39],
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Figure 1: Our method produces improved 3D mesh fits without needing 3D annotations
across standard benchmark data and application-specific data such as obese person images.

there has been much recent progress in this field [9, 16, 21]. These applications, e.g., health-
care, demand systems that are robust on a wide variety of data. One such dimension of
diversity is the physical size of the person of interest. With obesity prevailing in a consid-
erable section of the world population [19], it is critical that the underlying mesh estimation
algorithms work well on images of such people. However, this problem has not attracted
much attention in the research community, with Fig. 1 showing some unsatisfactory results
with the current state of the art, leading to biased estimates for obese person images.

In this paper, we identify this crucial gap in the literature, and present and discuss the
problem of obese human mesh recovery. As noted in prior work [16], training reliable convo-
lutional neural network (CNN) models requires large amounts of data annotated with mesh
parameters. However, obtaining these annotations for non-obese person images is not trivial,
let alone obese person images (e.g., for SMPL [26], this is an elaborate process involving
ground-truth MoCap data and custom marker-based algorithms like MoSH [25]). On the
other hand, obtaining 2D annotations, e.g., image keypoints and segmentation, is relatively
inexpensive as this can be accomplished using crowdsourcing platforms, e.g., Mechanical
Turk. Consequently, while datasets with 2D keypoint annotations can be found in abundance
[1, 13, 14, 24], those with full mesh annotations are substantially fewer [10], with obese
mesh annotations even more difficult to obtain. Given these considerations, we ask two key
questions- (a) given abundant 2D annotations, can we automatically generate mesh param-
eters?, and (b) can we develop an algorithm that is flexible to address the question above for
both standard/non-obese person images in general and obese person images in particular?

There has been some recent work [4, 15] that propose optimization-based strategies for
generating mesh parameters from 2D keypoints. However, a number of issues preclude their
use for both general as well as obese mesh fitting. First, the work of Bogo et al. [4] does not
use the full context information provided by an input image, instead optimizing only a 2D-
keypoint-based reprojection error objective, leading to the classic issue of depth ambiguity
where multiple 3D configurations may correspond to the same 2D projection. While 3D pose
and shape priors may alleviate this issue to a certain extent, these constraints can only ensure
the resulting fits belong to a pre-defined distribution. Furthermore, the current community-
standard priors used for this purpose [4, 16], however, are not sufficiently representative of
obese person images, leading to the unsatisfactory results of Fig. 1 discussed earlier. Next,
while the work of Joo et al. [15] addresses some of the aforementioned issues by optimizing
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the reprojection error cost function for the CNN model parameters (instead of SMPL mesh
parameters as in Bogo et al. [4]), its performance is also impacted by the priors issue noted
above (see Fig. 1 for results) since it starts the optimization from a CNN model that has been
pre-trained on the same kind of data. Furthermore, there is a trade-off between performance
and number of iterations, increasing which can result in overfitting the reprojection objective.
We take a structured approach to address the questions and issues noted above. First,
we present a simple baseline approach that focuses on improving shape fits for obese person
images. We achieve this by proposing a loss term that penalizes incorrect shape predictions
by means of explicit 2D shape constraints. Next, we propose a generalization of this base-
line that inherits the benefits of each strategy as part of an alternating directions scheme
that optimizes for both mesh- and CNN-parameters jointly (instead of separately as above).
Our key insight is that such an alternating iterative

/ framework leads to a virtuous cycle (see Fig 2)

_ s where the limitations discussed above can be ad-
e e o dressed in a principled manner. Specifically, the
issue of depth ambiguity with Bogo et al. [4] can

A I \ be alleviated with a pre-trained data-driven CNN
model like in Joo et al. [15], whereas the overfit-
:{_\; ater ;:‘;"W;:kp‘mm l ting problem of Joo et al. [15] can be addressed by

using the pose and shape fits generated by Bogo et

cost function, leading to both standard/non-obese
as well as specific obese mesh fitting (see Fig 1 for
improvements with our method).

We conduct numerous experiments to evaluate
our proposed techniques. First, we discuss limi-
tations of the standard MPJPE metric in capturing
shape deviations (from ground truth) in obese im-
ages, leading to a new metric. Next, we show that the mesh fits produced by our shape-
constraint baseline as well as its generalization outperform both Bogo et al. [4] and Joo et
al. [15] individually on both obese as well as standard benchmark data. Starting from ex-
isting pre-trained mesh fitting methods, we then generate inference-time mesh fits with our
generalization that result in substantial improvements over the baseline pre-trained models.
Specifically, given a test image, we first generate mesh parameters with baseline/pretrained
models. We then compute the mesh parameters with our proposed method and compare to
the baseline’s predictions, showing our method’s results substantially outperform the base-
line. We call this “inference-time" since our method does not involve any training, requiring
only image-specific optimization steps during testing. Finally, since we are able to generate
mesh parameters for datasets with only 2D annotations, we can retrain CNN models previ-
ously trained using only 2D ground truth, showing substantial performance improvements
over the corresponding baselines.

& @ @ @ 0 (o (@  al[4]asanexplicit regularization term. Our shape
Y \ [&\ { I3 ! g\ constraints can be optionally added to the resulting
S W W WV W

Figure 2: Proposed method; bottom
row: iterations

2 Related Work

There is much recent work in human mesh recovery [4, 9, 12, 16, 21, 22, 23, 30, 32, 33, 35,
37, 38, 40, 41]. Here, we discuss a few closely related methods.
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Direct mesh regression. Following the end-to-end regression design of Kanazawa et al.
[16], much effort has been expended in novel architectures, with graph-based [22], structure-
based [9], and even video-based [2, 20] approaches being some notable examples. However,
as noted in Section 1, these and other related [21] methods produce biased (see Section 3.2)
results on obese data while also requiring 3D annotations. In contrast, our method addresses
this with a generic framework while only requiring 2D annotations.

Lifting 2D keypoints. There has been some prior work in “lifting" 2D keypoints to
3D data, with approaches based on a direct learning of 2D-3D mapping [3, 17, 27, 31] and
a nearest neighbor search in a database of 2D projections [5, 11, 34] being representative
examples. However, a key difference is our method is able to exploit the context provided
by a full image (as opposed to only 2D keypoints) and recover a complete body mesh. An
early method to fit the full body mesh given 2D keypoints was presented in Bogo et al. [4]
where a cost function based on the 2D reprojection loss and pose/shape priors was optimized,
whereas Joo et al. [15], optimized the parameters of a pre-trained CNN at test time given 2D
keypoints. While these methods present alternative views, we take a more holistic view,
arguing that optimizing for both parameter sets jointly leads to substantially improved fits.

3 Method

3.1 Parametric Human Body Representation

We use the Skinned Multi-Person Linear (SMPL) model [26] to represent the 3D human
mesh. Given the shape parameters B € R!?, pose parameters @ € R, and a fixed pre-trained
parameter set Y, SMPL defines the mapping M(B,0) : R%? — R3N to compute N = 6890
3D body mesh vertices. Given these N vertices J € RV, the K = 24 joints X € R3X defined
by the model are obtained as X = WJ, where W is a learned joint regression matrix. Finally,
the 2D image points x € R?X can be determined with a known camera model, e.g., a weak-
perspective model [16] by defining a function P(X) that operates on the 3D joints X as:

x=sII(X)+t (1)

where t € R? and s € R are translation and scale, and IT is an orthographic projection. There-
fore, the complete recovery of the 3D mesh corresponding to a person image involves es-
timating the set of 85 dimensional parameters ® € R®, ie., ® = {0,B,s,¢}. Note that
for notational simplicity in the subsequent sections, we define a function f that takes the
O® parameters as input and produces the K 3D joints X. Given this, the representation
P(f(®)) : R® — R?X represents a mapping from the 85-dimensional @ parameters to the K
2D image points x.

3.2 Current Open Problems and Biased Estimators

Given a training set of n images I;,i = 1,...,n and their associated parametric annotations
®;,i=1,...,n, the currently dominant paradigm is to train a model to regress the parameters
(e.g., with a Euclidean loss between ground-truth and predicted parameters [9, 16, 22]).
However, as noted in Section 1, these mesh annotations are either scarcely available or are
very expensive to create (e.g., see Loper ef al. [25]). These issues are only exacerbated for
obese person images with little-to-no data available for training obese mesh estimators. On
the other hand, 2D annotations can be obtained rather inexpensively. If we can generate
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reliable 3D mesh estimates from them, we automatically create annotations for retraining
existing models, helping take a step towards unbiased mesh estimators (see Figure 1).

An early approach to address the issue was proposed in Bogo ef al. [4], where a cost
function comprising the 2D reprojection error and associated pose and shape priors was
optimized for the mesh parameters @. Concretely, this optimization problem is:

®" = argmin Lyp(x,%), )
[C]

where Lyp(x,X) measures the deviation of the predicted r 2D keypoints & € R™? from the
ground truth x € R™*2. There are a number of issues with this formulation for both obese
as well as general mesh fitting. First, the prior terms used in this cost function are not
representative of obese person data [16] and the effective shape constrains are missing. Next,
as established in recent work [21], the optimization results depend on good initialization,
which is not trivial to determine particularly for obese or in-the-wild images. Finally, while
minimizing the reprojection error can lead to perfect 2D fits (i.e., 2D loss near zero), the
resulting @ can still be off due to the classic depth ambiguity problem.

While recent follow-up optimization approaches, e.g., EFT [15], attempt to address some
of these issues (e.g., depth ambiguity), the crucial problem of biased estimation remains (see
EFT results in Figure 1). Specifically, given a pre-trained mesh regressor (e.g., HMR [16])
@ : RM>XNx3 4 R3S trained to predict ® € R, typically realized as a CNN, this method
optimizes a similar 2D reprojection objective with the difference being parameters of opti-
mization are the CNN parameters (instead of the mesh parameters ® above). Representing
all parameters of the CNN @ as the vector @, the optimization problem is:

o = argmin Lyp(P(f(®(1))),x), 3)

o

where ®(I), as noted above, computes the parameters @ = [0, B,s,t] € R given the image
1. As noted in Section 3.1, given the parameters @, the function f then computes the 3D
joints X € R3*K_ which are then projected to 2D image points using the function P from
Equation 1. Note that this projection uses the camera parameters s € R and ¢ € R? estimated
as part of ® above. Given @*, and hence the CNN ®*, the mesh parameters for the image 1
are then obtained as @* = ®*(I).

Since this formulation relies on a pre-trained mesh estimator (e.g., HMR [16]), the prob-
lem of depth ambiguity can be alleviated to a certain extent with such a data-driven model.
Crucially, however, these pre-trained models also rely on the same priors and loss items as
above, resulting in the same issue of biased estimation for obese data as above. Further,
given that one needs a large number of iterations to obtain good fits, and that the objective
comprises only a 2D term, this leads to the risk of overfitting the 2D cost function (i.e., 2D
loss can be zero while resulting in an incorrect shape).

3.3 Proposed Method

We take a structured approach to address the issues discussed above. We first propose learn-
able 2D shape constraints that can be easily integrated into the objective functions of the
approaches discussed above, leading immediately to unbiased mesh estimation for obese
person images. We then propose a generalized algorithm that optimizes for both mesh and
CNN parameters, leading to a holistic optimization-based mesh fitting technique and im-
proved (w.r.t. corresponding base methods) mesh fits for standard benchmark images.
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3.3.1 Differentiable 2D shape constraints

To address the issue of bias discussed above, we propose a 2D shape loss term that can be
easily added to the training objectives of equations 2 or 3. Specifically, given a 2D binary
part segmentation mask S; (i = 1, - -, 6 for six parts following LSP’s definition [13, 14]) for
an image I, we define a 2D shape loss as:

mn mn
Zmn : i

qhape Z 1- &I

S LS +S"’”fsm” s

“

where 87" is the (m, n) pixel of the ground-truth mask and 8" is the (m, n) pixel of the mask

estimated during the course of the optimization process. Note this can be easily obtained after

the mesh vertices are computed based on the estimated @. Given Lgpape, We can easily adapt

EqS 2and 3 as @ = arg min L2D (x’j;) +Lshape and o* = arg min L2D(7tf(q>(1))7x) + Lshape
(¢] o

respectively.

3.3.2 Generalizing mesh and CNN optimization

While our shape constraints help alleviate the bias issues, they do not help tackle the afore-
mentioned problems of depth ambiguity and overfitting. In order to alleviate these issues
while also being able to generate unbiased meshes for both obese and non-obese data, we
propose optimization for mesh recovery (OMR), a generalized mesh fitting algorithm that
considers both mesh parameters ® and model parameters ¢ as an explicit part of the opti-
mization problem. Our core argument is two-fold: (a) the issue of depth ambiguity can be
alleviated by using a data-driven predictor, and (b) the issue of overfitting can be tackled by
using explicit pose and shape regularizers in the cost function. This leads to our proposed
formulation that employs the classical alternating directions scheme as part of a multi-step
optimization strategy. Crucially, our proposed Lghape can also be optionally integrated in this
pipeline, resulting in a generic framework for unbiased mesh estimation.

Given ®, I, and x, we first optimize the reprojection loss for @, giving an updated CNN:

a' = argor‘nin Lop(P(f(®(I))),x). 5)

Note that this first step represents the same process, i.e., optimizing for CNN parameters, we
previously explained in Equation 3 above. Given ®*, we compute the @ prediction for the
image I as: ® = [0",B",s*,t*] = ®*(I). @ is then used to initialize a new optimization
problem with respect to mesh parameters:

GT = argénin Lp (P(f(@)),x) +Lg (6) JFLshape» (6)

where Lg(0) stands for the pose prior (see supplementary material for details). This opti-
mization order provides a good starting point, helping address the initialization issue noted
in Section 3.2. Specifically, unlike existing work [4] that uses a mean SMPL pose as the
starting point of optimization, using the result of Eq 5 provides a more data-driven (i.e.,
image-specific) initial pose vector.

Next, we use the @] from Eq 6 as an explicit regularization to optimize the CNN param-
eters, which we realize by modifying the problem of Eq 3 as:

a*:arggliang(P(f(d>(1))) x)+]0— ®H2+Lghape @)
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Given this @, we obtain a new @ as @5 = [0", B",s*,#*] = ®*(I). This can now be used
to solve a new optimization problem of Eq 6 above, whose solution can be used to solve a
new optimization problem of Eq 7, thereby leading to an iterative alternating optimization of
O and a. While the procedure above can give the desired final ®* and ®*, we can further
finetune the shape values by integrating our proposed Lshape into OMR. To do this, we simply
consider the shape-only part B* from @" and use it as a starting point to further minimize
our shape loss: rrbin Lghape, giving the final shape vector along with the other parameters.

OMR addresses limitations of prior work in a principled manner. First, step 0 ensures
a good pose initialization for step 1. Since this only depends on @, OMR can be used as a
drop-in to improve any pre-trained model’s performance (e.g., we show results with SPIN
[21], CMR [22], and HKMR [9]). Next, step 1 provides explicit regularization to address
EFT’s overfitting issue. Finally, OMR is flexible to be optimized with Lgyape, Tesulting in a
framework for both obese and general data, leading to reduced bias. Since OMR starts with
a P-iteration solution for Eq 5 and subsequently alternates between an Q-iteration Eq 6 and
an P-iteration Eq 7, we use the notation (n+ 1)PnQ to refer to the number of OMR steps (in
our experiments, n = 4 and each P/Q step has 20 iterations unless mentioned otherwise).

4 Experiments and Results

In this section, we discuss the results of a number of experiments we conducted to demon-
strate the efficacy of both our shape constraints as well as OMR.

4.1 Datasets, Evaluation, and a New Metric

For datasets with only 2D keypoint annotations, we use LSP [13], LSP-extended [14], MPII
[1] and MS COCO [24]. For datasets with both 2D and 3D keypoint annotations, we use
MPI-INF-3DHP [28] and Human3.6M [10]. Furthermore, to demonstrate results on obese
person data, we use SSP-3D [36] as well as an internally collected (by scraping the web
and manually filtering) LargeSize dataset (see supplementary for some examples and all
results on LargeSize). While SSP-3D has a varied set of annotated images, we only use data
with extreme shape parameters for obese person evaluation, whereas our LargeSize dataset
has 2D keypoints and body-part segmentation masks.

We report results with the standard mean per-joint-position-error (MPJPE) metric and its
procrustes-aligned variant (PA-MPJPE) [16]. Since they only measure deviation between a
set of sparse keypoints, they are insufficient to quantify shape errors.

To address this issue, we propose a new met-
Prediction  Groundtruth  mpipEvspve-T  T1C, called per-vertex-error-T-pose (PVE-T). Given

Py A& 4 two shape vectors, PVE-T first computes one mesh
AN o s62 116 . :
N ) N/ corresponding to each vector (by setting the pose

- A , ' : ) to mean pose, i.e., zero vector) and rescales the es-
a & § :" 571 279 timated one according to the height of the ground

AN - & truth. Given the two meshes, it considers all pairs

of corresponding vertices, measures their devi-

ation using the Euclidean metric, and returns a

Figure 3: MPJPE vs. PVE-T. mean over all these values. From Fig 3, PVE-T
helps capture shape errors more representatively


Citation
Citation
{Kolotouros, Pavlakos, Black, and Daniilidis} 2019{}

Citation
Citation
{Kolotouros, Pavlakos, and Daniilidis} 2019{}

Citation
Citation
{Georgakis, Li, Karanam, Chen, Kosecka, and Wu} 2020

Citation
Citation
{Johnson and Everingham} 2010

Citation
Citation
{Johnson and Everingham} 2011

Citation
Citation
{Andriluka, Pishchulin, Gehler, and Schiele} 2014

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Mehta, Rhodin, Casas, Fua, Sotnychenko, Xu, and Theobalt} 2017{}

Citation
Citation
{Ionescu, Papava, Olaru, and Sminchisescu} 2013

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2020{}

Citation
Citation
{Kanazawa, Black, Jacobs, and Malik} 2018


8 LI, KARANAM, ZHENG, CHEN, WU: TOWARDS UNBIASED HUMAN MESH RECOVERY

0MR+L{shape)

EFT+ Lishape) EFT SMPLIfy +Lshape)

/'

SMPLify

Figure 4: Improvements with our proposed Lgpape-

(e.g., MPJPE values are almost similar but PVE-T values are more different, thereby being
more representative of the deviations between the prediction and the ground truth). Note that
such per-vertex comparisons are fairly standard in mesh recovery [20]. Further, unlike tra-
ditional 3D surface comparisons (e.g., with Hausdorff), here, given the 8 and 8, the SMPL
model produces the same number of vertices (6890) each time. This means the problem of
sampling from a continuous 3D surface is not as pronounced as in other surface comparison
problems. Since the 6890 SMPL vertices depend on both pose and shape, this “entangle-
ment” is not helpful to isolate shape errors. To this end, with PVE-T, when computing the
6890 vertices, we use the same pose value (i.e., mean pose) across all cases, with shape be-
ing the only variation. This helps isolate shape’s impact and capture shape deviations more
precisely (e.g., as in Fig 3).

4.2 Evaluating Shape Constraints

We first present results of Lgpape when used with SMPLify [4] and EFT [15]. While we use
SPIN [21] as the base model, our method is applicable to and improves the performance
of other methods as well (see supplementary for these results). Table 1 shows results on
SSP-3D where we see the Lshape consistently reduces both PA-MPJPE and PVE-T errors
across all methods (the right part of the table shows per-body-part PVE-T values to help
understand local shape improvements with Lgpape). Crucially, Lgnape helps even a relatively
weaker baseline (SMPLify) outperform SPIN on PA-MPJPE. Furthermore, the proposed
OMR generalization outperforms both SMPLify and EFT with and without Lgp,pe While also
substantially reducing the error w.r.t. SPIN (46.26 mm PA-MPJPE vs. 53.57 for SPIN).

SSP-3D PA-MPJPE (mm) PVE-T (mm) SSP-3D (PVE-T)  Torso Legs Arms Head
SPIN 53.57 35.68 SPIN 5356 2615 38.00 32.16
SMPLify W/0 Lypape 56.78 31.86 SMPLIfy W/o Lyape  50.09 19.99 36.68 24.79
SMPLIify+Lgpape 53.23 28.99 SMPLify+Lgpe 4631 19.06 3432 23.68
EFT W/0 Lyhape 51.96 34.03 EFT Wio Lywpe 5487 2254 3823 29.11
EFT+Lnape 50.68 32.56 EFT+Lghape 5199 21.61 35.08 29.90
OMR W/0 Lypape 49.67 3271 OMR W/0 Lyppe 5232 21.68 3535 29.88
OMR+Lype 46.26 21.52 OMR+Lpe 2641 19.69 2070 21.53

Table 1: Improving SMPLify and EFT with Lgpape. OMR outperforms both.

Finally, from Figure 4, one can note how Lgpape helps improve the shape fits of EFT
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and SMPLify. Crucially, while Lgape helps improve SMPLify/EFT’s shape, the pose gets
degraded (see side views). This is addressed by OMR where we see much better results
since the P-iteration step explores reasonable poses and provides better initialization for the
Q-iteration step, which in turn recovers better shape to guide the P-iteration step.

4.3 Generalized Model Fitting Evaluation

We next evaluate OMR’s ability to be used in conjunction with existing methods.
To this end, we start with pre-trained base models (we

show SPIN [21] in Table 2, and CMR [22] and HKMR
[9] in supplementary) and run SMPLify/EFT/OMR on
Human3.6M to infer ® and compute the 3D keypoints
(see Section 3.1). Note that while 3D keypoints ground
truth are available, we do not use them in any capac-
ity during the optimization process (i.e., they are only
used for reporting evaluation metrics). We repeat this
for all images in the evaluation set and report average

Human3.6M  MPJPE PA-MPIJPE
SPIN [21] 64.95 43.78

SMPLIfy - 20 71.99 45.17
SMPLify - 100 82.90 50.23

EFT - 20 61.24 40.82
EFT - 100 63.26 37.95

OMR (1P1Q) 63.18 40.80
OMR (5P4Q) 61.07 37.70

Table 2: OMR vs. SMPLIify/EFT.

error values. From Table 2, increasing the number of
iterations (from 20 to 100) in both SMPLify and EFT leads to overfitting (note increasing
errors), whereas OMR is able to address this issue with a decrease in MPJPE/PA-MPJPE.

Note that OMR’s 5P4Q strategy gives the low-
est errors that are each substantially better than
the corresponding base model’s performance (e.g.,
64.95 mm for SPIN vs. 61.07 mm for OMR), sug-
gesting OMR’s flexibility to be used as a drop-in
across multiple different techniques (see supple-
mentary for more results). Finally, the strong per-
formance of OMR across both Tables 1 and 2 sug-
gest its generalizability for both (specific) obese

Human3.6M Protocol #1  Protocol #2

PA-MPJPE  PA-MPJPE
SPIN [21] 44.1 41.1
SPIN - SMPLify 452 42.6
SPIN - EFT 443 41.5
SPIN - OMR 43.7 41.0
HKMR [9] 459 432
HKMR - SMPLify 473 44.4
HKMR - EFT 46.3 43.4
HKMR - OMR 45.6 429

Table 3: Improving baseline models.

mesh fitting and (generic) non-obese mesh fitting.

4.4 Generating Annotations and Model Retraining

Input Before After Input Before After
. : ‘(\ ’_ﬁ

Huy
)
O/

J

Figure 5: Before and after retraining.

As noted previously, current state-of-the-
art methods fail to fit accurate meshes to
obese data, leading to biased estimation
(see Section 3.2 and Figure 1). Further-
more, as noted in Section 1, while accu-
rate mesh fitting needs 3D parameter su-
pervision, it is expensive to generate these.
To address both these issues, we use our
proposed OMR algorithm and Lgpape tO
automatically generate ©® parameters for
LargeSize, LSP, LSP-extended, MPII and
MSCOCO. We then retrain state-of-the-art
methods with these automatically gener-

ated parameters. To demonstrate how this leads to reduced bias on obese data and improved
standard benchmark performance, we use HMR [16], CMR [22], SPIN [21] and HKMR
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[9]. The corresponding default training configurations are used for a fair evaluation. Fig-
ure 5 shows substantially improved shape fits with HKMR and SPIN when compared to
their corresponding baseline versions, qualitatively demonstrating the impact of our pro-
posed method. To quantify these gains, in Table 3, we show results on Human3.6M proto-
cols 1 (data from all cameras) and 2 (only data from frontal camera) (more results, including
on SSP-3D, in supplementary), where one can note substantial performance improvements
after retraining across all the baseline methods. Finally, OMR-generated parameters give im-
proved performance compared to the corresponding SMPLify and EFT versions (see SPIN
and HKMR in Table 3), further validating OMR’s design.

We finally compare OMR-retrained models with the state of the art. Table 4 shows our
results on four test sets, where one can note clear performance improvements. For instance,
SPIN-OMR obtains the lowest error on Human 3.6M whereas HKMR-OMR obtains the
highest part segmentation accuracy on LSP.

Human3.6M Protocol #2 MPL-INF-3DHP  MPJPE 3DPW PA-MPJPE LSP Part acc.
AP Mehta eral. 28]  117.6 HMR [16] 81.3 Oracle [4] 88.82
HMR [16] 56.8 chta el a. 12 i CMR [22] 70.2 race ’
VNect [29] 124.7 SMPLify [4]  87.71
CMR [22] 50.1 HKMR [9] 76.7
HMR [16] 124.2 HMR [16] 87.12
SPIN [21] 41.1 SPIN [21] 59.2
HKMR [9] 108.9 SPIN [21] 89.41
HKMR [9] 432 SPIN 1] 1052 Pose2Mesh [7] 58.9 HKMR [9] 2950
Pose2Mesh [7] 470 > I2LMeshNet [30] 577 _ RVRPL BT
HKMR - OMR 429 HS];IIVINR:OCI)\EIVIIKR }gg; HKMR - OMR 561 I-ISI;II\I/{IR:O?\EIV}[{R gg.gg
SPIN - OMR 41.0 - SPIN - OMR 56.5 _ PN OVR B0

Table 4: Comparison with competing state-of-the art methods.

S Summary

In this work, we considered the problem of human mesh recovery with a particular emphasis
on mesh estimation for images of obese people. We noted that the current state-of-the-art
methods produce biased estimates for obese images, discussed our reasoning behind this is-
sue, and proposed ways to overcome this problem. Specifically, we first proposed new 2D
shape constraints that can be flexibly used in conjunction with existing mesh fitting algo-
rithms. We showed how this results in an immediate improvement in baseline performance.
We then proposed a generalized mesh fitting algorithm, called OMR, that optimizes a repro-
jection error cost function in a space of both mesh parameters and CNN model parameters,
showing how this results in a holistic approach that addresses the limitations of existing mesh
optimization algorithms. We then showed the proposed 2D shape constraints can be easily
integrated into OMR while also having the flexibility to be used with any contemporary
regression-based mesh recovery algorithm. We demonstrated the efficacy of our algorithms
by means of extensive experiments on both obese person data and standard benchmark data,
establishing new baseline results for obese mesh recovery and state-of-the-art performance
of benchmark human mesh recovery. While the proposed method is able to generate rea-
sonably reliable annotations, this depends on the 2D data (e.g., keypoints) being relatively
accurate. In cases when this does not happen (e.g., occlusions), one possible direction for
future research can be to exploit adjacent or additional data modalities (e.g., depth or multi-
view RGB) to “fill-in" the missing/noisy data.
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