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Abstract

Most of existing video action recognition models ingest raw RGB frames. However,
the raw video stream requires enormous storage and contains significant temporal re-
dundancy. Video compression (e.g., H.264, MPEG-4) reduces superfluous information
by representing the raw video stream using the concept of Group of Pictures (GOP).
Each GOP is composed of the first I-frame (aka RGB image) followed by a number
of P-frames, represented by motion vectors and residuals, which can be regarded and
used as pre-extracted features. In this work, we 1) introduce sampling the input for
the network from partially decoded videos based on the GOP-level, and 2) propose a
plug-and-play mulTi-modal IEArning Module (TEAM) for training the network using
information from I-frames and P-frames in an end-to-end manner. We demonstrate the
superior performance of TEAM-Net compared to the baseline using RGB only. TEAM-
Net also achieves the state-of-the-art performance in the area of video action recognition
with partial decoding. Code is provided at https://github.com/villawang/
TEAM-Net.

1 Introduction

Video understanding has drawn an increasing amount of attention, since video data accounts
for 82% of all Internet traffic by 2022 [4]. For instance, millions of videos are uploaded to
TikTok, Douyin, and Xigua Video to be processed everyday, wherein understanding video
content acts a pivotal part. One of the most important tasks in video understanding is to
understand human actions, which has many real-world applications, such as Virtual Real-
ity/Augmented Reality (VR/AR) and human computer interaction. Video data contains a
rich source of visual content including appearance information in each individual frame and
motion information across consecutive frames, which poses challenges for effectively ex-
tracting information from video data.

Traditional action recognition approaches [2, 5, 19, 20, 38] investigated better model-
ing video data either by designing new architectures [5] or embedded modules [20]. These
architectures and embedded modules are designed for highlighting the spatio-temporal per-
spective contained in videos. Most of these approaches are directly designed for images to
parse a video frame by frame. However, video data contains significant redundancy both on
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the spatial and the temporal dimension. For instance, an 1h of 720p video can be compressed
from 222GB raw to 1GB [42], which indicates redundant information contained in videos.

Performing action recognition in the partially compressed domain becomes a recent in-
terest [1, 11, 18, 28, 42]. The difference between performing in the raw domain (full de-
coding) and partially compressed domain (partial decoding) is illustrated in Figure 1. In
terms of partial decoding on the right, video data is parsed by a stream of Group of Pic-
tures (GOPs). Each GOP starts with an intra-frame (I-frame, aka an independently encoded
RGB image) followed by n P-frames (n = 11 in this work). Regarding full decoding, RGB
images (highlighted in red on the left top) can be reconstructed from the first I-frame and
following consecutive P-frames in the corresponding GOP shown on the bottom left [42]. In
other words, highlighted RGB images in red only depend on the first I-frame and a number
of P-frames in the current GOP. Traditional action recognition approaches randomly sam-
ple from these RGB images. However, it would make more sense to sample images from
different GOPs and to perform on the GOP-level. Further, on the GOP-level, we are able
to take benefits from additional information provided by P-frames i.e., two extra modali-
ties Motion Vectors (MVs) and residuals. These two modalities represent motion and tex-
ture/color change information between the current decoded RGB image and its reference
I-frame, which are very useful for action reasoning. This information can be regarded and
used as pre-extracted features to improve the network performance. It should be noticed that
previous works [1, 11, 18, 28, 42] term this type of action recognition as ‘compressed video
action recognition’. We argue the terminology ‘compressed’ is not fully correct because
original compressed video formats such as MPEG-4 and H.264 stored in the Video Cod-
ing Layer (VCL) do not contain decoded frames i.e., they are compressed bit streams [40].
All previous works used decoded I-frames, and computed representative images from de-
coded MVs and residuals for training the network but not the compressed bit stream data
directly. Unlike traditional action recognition that decodes every RGB image, this operation
decodes the first I-frame and some information from P-frames in each GOP. So we name
such a domain for processing video data as ‘partially compressed domain’, which refers to
‘compressed domain’ in previous works.

Full Decoding

P-frame,

I-frame, MV, Residualy,, I-framey, MV,

Figure 1: Comparison between traditional video action recognition (left) and partially de-
coded video action recognition (right). Left: Decoded RGB images are fed to the network.
RGB images highlighted in red are reconstructed from the first I-frame and consecutive P-
frames [42] in the corresponding GOP. Right: Without decoding every RGB image in a GOP,
the partial decoding uses the first decoded I-frame and partial information from one P-frame
(including MV and residual) in a GOP as an input.
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Previous works [1, 11, 18, 28, 42] investigated adding two extra modalities MVs and
residuals in the partially compressed domain to improve the model performance. Most of
current approaches [11, 28, 42] require training separated backbones for I-frames, MVs and
residuals respectively, in which fusion only comes at the inference stage. This operation
causes expensive computation for training models especially for a large-scale dataset. The
fusion capability is also constrained by omitting mid-level fusion during training. In this
work, we propose a plug-and-play mulTi-modal IEArning Module (TEAM) to help train the
network with three modalities by ingesting partially decoded videos in an end-to-end manner.
We study the TEAM by adopting the widely adopted Temporal Segment Network (TSN)
framework [35] in the partially compressed domain. It is worth nothing that our TEAM
can be embedded to other advanced action recognition frameworks such as TSM [20]. To
this end, we find the network equipped with our TEAM (TEAM-Net) outperforms the TSN
in the raw domain i.e., using RGB only, and CoViAR in the partially compressed domain.
Figure 2 shows the visualization for well-trained TSN, CoViAR and TEAM-Net. It can be
seen that TEAM-Net successfully makes use of MV and residual modalities for better action
reasoning compared to the other two baselines. In summary, our contributions are three-fold:

* We propose a novel plug-and-play module for fusing three modalities, which enables
training the network with I-frames, MVs and residuals in an end-to-end manner for
video action recognition with partial decoding.

 Unlike traditional action recognition that samples inputs on the frame-level, we intro-
duce sampling inputs on the GOP-level for training the network, which can be under-
stood as an extension of TSN in the partially compressed domain.

» Extensive experiments have been conducted to show that our proposed TEAM-Net
outperforms the traditional action recognition baseline TSN and is superior to current
state-of-the-art in video action recognition with partial decoding.

Shuffling cards Ski jumping Skiing (not slalom or cross country)
- —

/v i
TEAM-Net b, M
—

Figure 2: Visualization for 51gn1ﬁcant features extracted by TSN CoViAR and TEAM-Net.
Features extracted by each method are visualized by using CAM [46]. It should be noted
that our TEAM-Net does not contain any temporal modeling module for capturing motion
information in videos, but uses the pre-extracted motion features from the MVs.

2 Related Works

Traditional Video Action Recognition. Recent video action recognition approaches nor-
mally operate in the raw video domain i.e., RGB images decoded from videos are fed to the
network [5, 33, 35]. Current approaches can be mainly divided into two categories 1) 3D
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CNN-based approaches (clip level) [5, 7, 33], and 2) 2D CNN with efficient temporal module
design (frame level) [13, 19, 20, 38]. Different from image data, videos contain both spatial
information in each individual frame and temporal information in the sequence i.e., move-
ments. 3D CNNss utilize 3D convolutions to characterize spatio-temporal information for the
clip input directly (a clip contains a number of frames). 13D [2] inflated the ImageNet pre-
trained 2D convolution to a 3D convolution. SlowFast networks [5] were proposed to model
inconsistent action tempos e.g., ‘running vs walking’. It comprised a slow path for modeling
slow actions and a fast path for modeling fast actions respectively. While 3D CNN-based ap-
proaches have achieved exciting performance on several benchmark datasets, these models
contain massive parameters and require expensive computation. Various problems may arise,
such as overfitting [7], difficulty in converging [34] and slow inference [47]. Even though
recent works [26, 34] have demonstrated that the 3D convolution can be factorized to lessen
computations to some extent, the computation of 3D CNN-based models is still much more
of a burden compared to 2D CNN-based models. Different from optimizing 3D CNNs on
clips directly, 2D CNNs deploy 2D convolutions in a frame-level manner. TSN [35] applied
2D CNNs to video action recognition and introduced the concept of ‘segment’ to sample
frames from videos i.e., extract short snippets over a long video sequence with a uniform
sparse sampling scheme. Direct use of 2D CNNss is difficult to fully capture the temporal
information of video. Current mainstream methods focus on designing an efficient module
that can be embedded into 2D CNNs for temporal reasoning. TSM [20] introduced a shift
operation for a part of channels along the temporal dimension. TEA [19] proposed a motion
excitation module for short range temporal modeling and a multiple temporal aggregation
module for long range temporal modeling. These two modules are connected sequentially.
ACTION-Net [38] proposed a multipath excitation module for spatio-temporal, channel and
motion modeling. These proposed modules can be inserted into 2D CNNss, in which tempo-
ral modeling is introduced to the network.

Action Recognition from Partially Decoded Video. Apart from manually designing meth-
ods for extracting inherent information in videos, video data itself contains useful informa-
tion that previous approaches aim to model, such as motion information. Two-stream [2]
approaches have demonstrated that augmenting input data by adding optical flow [12] is able
to significantly enhance the performance for video action recognition. However, computa-
tion of optical flow is very expensive, which is not feasible for those applications requiring
low latency in real life. On the other hand, exploiting information computed for encoding of
video [29] recently comes into focus for video action recognition [11, 18, 28, 42, 44, 45].
Previous works [11, 18, 28, 42] tackled video action recognition using I-frames, MVs and
residuals. Works [44, 45] extracted MVs from videos to replace the optical flow. Wu et
al. [42] proposed the CoViAR model that contained three 2D CNNs for ingesting three
modalities respectively. It is worth nothing that these three 2D CNNs were trained inde-
pendently, in which fusion of three modalities was only performed at the inference phase.
Huo et al. [11] proposed an Aligned Temporal Trilinear Pooling (ATTP) module for better
fusing three modalities at the inference stage. Due to the low resolution of MVs, the DMC-
Net [28] applied Generative Adversarial Networks (GANs) [6, 39] for generating motion
cues by adopting the information of MVs, residuals and optical flow. Inspired by SlowFast
networks [5], Li et al. [18] proposed an end-to-end Slow-I-Fast-P (SIFP) framework that
treated I-frames as the slow pathway and P-frames as the fast pathway. Battash ef al. [1]
proposed an end-to-end framework that ingests a clip input as one GOP, in which a teacher-
student distillation strategy was utilized for improving the model performance. IMRNet [43]
employed bidirectional dynamic connections between I-frame & MV pathways and between
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I-frame & residual pathways.

Multi-modal Action Recognition. Previous works have studied learning of multiple streams
present in video [15, 22, 24, 25]. Most of these works deployed the audio stream as com-
plementary information to enhance the performance. Our work makes use of inherent visual
information, which exists in partially decoded video, and can be integrated to frameworks
mentioned above. In this work, we tackle the multi-modal learning side that improves the
network performance on action recognition by adopting multi-modal data in partially de-
coded videos. Previous works [1, 18] investigated the feasibility of training models in the
partially compressed domain in an end-to-end manner. [18] is only suitable for a SlowFast-
like architecture while the upper bound performance of [1] the teacher model trained in the
raw domain. Luvizon et al. [23] proposed a multi-task framework jointly trained by pose
estimation and action recognition tasks. PoseMap [21] employed a two-stream network to
process spatio-temporal pose heatmaps and inaccurate poses separately. Wang et al. [37]
presented a two-stream network for processing RGB and depth modalities in videos. A bi-
linear pooling block was investigated for RGB-D video action recognition in [9]. Wang et
al. [36] proposed gradient blending for avoiding overfitting in multi-modal networks.
Attention Mechanisms. Attention mechanisms [17] have been widely adopted in com-
puter vision tasks. Hu et al. [10] proposed a SE block for explicitly modeling channel in-
terdependencies using the attention mechanism for the channel dimension. CBAM [41] was
proposed beyond the SE block by adding an extra attention map along the spatial dimension.
Joze et al. [14] investigated attention mechanisms for fusing multi-modal features from the
channel perspective and proposed a MMTM module beyond the SE. Inspired by previous
works [10, 14, 41], we propose a mulTi-modal IEArning Module (TEAM) for fusing I-
frames, MVs and residuals with respect to the channel dimension and the spatial dimension
at different levels inside an end-to-end model.

3 Design of TEAM

We first clarify notations to be used in this section: N (batch size), T (temporal length),
C (channel), H (height), W (width) and r (reduction ratio). Given input feature maps to
TEAM: F| € RNTXCxHXW |, « RNTXQXHXW and Fy € RVNTXCGXHXW for three modalities
I-frames, M Vs and residuals respectively (the spatial size for three modalities is equal but the
channel number is different due to different backbones that are used for different modalities),
we aim to optimize the entire model jointly using three modalities. To achieve this, we
construct joint feature representations along the channel and the spatial dimension to be
processed by a channel fusion module and a spatial fusion module respectively.

Channel Fusion. Figure 3(a) illustrates the channel fusion module. As we only care about
channel information at this stage, we average each modality feature on the spatial dimension

H W
Y Y Fil:om,n], (D

m=1n=1

where {c,i} indicates the channel fusion (to be distinguished from the spatial fusion) and
modality type i.e., i = 1 for I-frames, i = 2 for MVs, and i = 3 for residuals, and F; is
the input for the corresponding modality. We then construct a joint channel representation
z. € RNT*C (C, = Cy + C, + C3) by concatenating three feature maps along the channel
dimension. We follow the same squeeze strategy as in [10] to reduce the channel dimension
for the joint channel representation as

z; =ReLU(z,W,), 2)

1
F ;=
ST HXW
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Figure 3: Schematics of channel fusion, spatial fusion and TEAM module. The TEAM

module in (c) involves two-stage fusion of (a) the channel fusion module and (b) the spatial
fusion module.

where z; € RV *C/" and W, € R&*C/7 is the FC weight. The squeezed representation z;
is then expanded by three FC layers followed by a Sigmoid to generate three attention maps
for each modality as follows

zc;=0o(z;W;), 3

where z.; € RNT*Gi is the attention map and W,.; € R%/"Ci is the FC weight for the cor-
responding modality. o is the Sigmoid function. The final output for each modality can be
computed as

F! =Fi0z,, “

where © is the element-wise multiplication, F; is the same input as mentioned in eq (1), fed
to the channel fusion module corresponding to each modality, and Fo4 € RNT*CiHXW haq
the same dimension as the input F; € RNT*CHxW,

Spatial Fusion. The channel fusion ignores local spatial information, which will be ad-
dressed by the spatial fusion module as seen in Figure 3(b). We first globally average the
output F"”’ of the channel fusion module over the channel dimension

fZF”“’ i, S

where Fy; € RVNTXIXHXW \We then concatenate these three feature maps over the channel
dimension to get a joint spatial representation z, € RNT*3*HxW We generate three spatial
attention maps for each modality using the joint representation zg

Zs; = G(Ws,i *Zs)a (6)
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where z,; € RNT*DXHXW W is a 3 x 3 2D convolution kernel for modality i, and * is the
convolution operation. Similar to the channel fusion, the final output of the spatial fusion
can be computed as

F =¥ Oz, )

where Fo4 € RV TxCixHxW hag the same dimension as the input F; € RNTxCixHxW
Instantiations. The TEAM module is composed of the channel and the spatial fusion in
a sequential manner as seen in Figure 3(c). TEAM ingests three modalities and outputs
interacted features for each modality. Our idea of TEAM is generic, and it can be instantiated
with different backbones (e.g., [8, 27, 31]) and action recognition implementation specifics
(e.g., [19, 20, 35, 38]). In this work, we demonstrate instantiation of our TEAM-Net on
the ResNet architecture for action recognition. TEAM is inserted after Conv;, Res,, Res;3
and Resy respectively. Details of the instantiation can be referred to Figure 1 and Table 2 in
Supplementary Materials A.

4 Experiments

4.1 Setups

Datasets. We evaluate the performance of the proposed TEAM-Net on three public action
recognition datasets Kinetics-400 [2], UCF-101 [30] and HMDB-51 [16]. Kinetics-400 con-
tains 400 human action categories and provides URL links for ~240k training videos and
~20k validation videos. We successfully collected 213,991 training videos and 17,575 vali-
dation videos since around 10% of URLSs are no longer valid. We directly report the accuracy
on the validation set for Kinetics-400. UCF-101 contains 101 classes with 13,320 videos.
HMDB-51 includes 51 classes with 6,766 videos. For these two datasets, we follow previous
works [11, 18, 42] to utilize three splits for training and evaluation. The average accuracy on
three splits is reported. Following previous works [28, 42], we use MPEG-4 encoded videos,
which have on average 11 P-frames for every I-frame in each GOP.

Training and Inference. We prepared partially decoded videos to conduct our experiments
on video action recognition tasks by using the same encoding tool as CoViAR [42]. Given a
partially decoded video input, we firstly divided it into 7 segments of equal duration. Then
we randomly selected one GOP from each segment to obtain a clip input with 7 GOPs. The
first frame in each GOP was chosen as an I-frame. The MV and residual were obtained
from a randomly picked P-frame in each GOP. In other words, one partially decoded video
clip input contains T I-frames, T MVs and T residuals to be fed to the network. The size
of the shorter side of these frames was fixed to 256, and corner cropping and scale-jittering
were utilized for data augmentation. Each cropped frame was finally resized to 224 x 224
for training the network. We utilized 2D ResNet-50 as a backbone for the I-frame modality,
and 2D ResNet-18 as backbones for MV and residual modalities for both TEAM-Net and
CoViAR baseline. For TSN, we used 2D ResNet-50 as the backbone. Models were trained
on a NVIDIA DGX station with four Tesla V100 GPUs. We adopted SGD as the optimizer
with a momentum of 0.9 and a weight decay of 5 x 10~%. Batch size was set to N = 80. For
Kinetics, network weights were initialized using ImageNet pretrained weights. We started an
initial learning rate of 0.01 and reduced it by a factor of 10 at 30, 40, 45 epochs and stopped
at 50 epochs. For UCF-101 and HMDB-51, the network was finetuned using a pretrained
Kinetics model. We started an initial learning rate of 0.005 and reduced it by a factor of 10
at 15, 20, 25 and stopped at 30 epochs. Following previous works [42], we used 25 segments
with a center-crop strategy for inference.
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4.2 TImproving Baselines

Action Recognition Performance. We compare TEAM-Net with two fundamental base-
lines with full decoding (TSN) and partial decoding (CoViAR) on three datasets in Table 1.
It can be noticed that both TEAM-Net and CoViAR are able to improve the performance on
UCF-101 and HMDB-51, which indicates that MVs and residuals contained in the partially
decoded videos help the action reasoning. Interestingly, we observe there is a performance
drop (0.9%) of CoViAR on Kinetics compared to TSN. On the contrary, our TEAM-Net
is still able to improve the performance by 2.2% compared to TSN. This demonstrates that
TEAM-Net is more robust on different datasets compared to CoViAR. Our findings here are
consistent with previous research [35, 42] that proves consecutive frames are highly redun-
dant in videos. Proper use of P-frames in partially decoded videos is able to boost the model
performance [11, 18, 28, 42].

Computational Efficiency. Current frameworks [19, 35, 38] usually sample frames sparsely
from videos, that means there is no significant difference on the computation when the model
ingests raw videos or partially decoded videos i.e., the number of sampled frames is same
if excluding P-frames. However, the computation is a bit heavier when taking P-frames into
account. Table 1 shows the inference speed of TEAM-Net and two baselines. TSN is about
1.5 times faster compared to TEAM-Net. TEAM-Net performs closely to CoViAR but saves
the training cost significantly i.e., only need to train one model instead of three.

Table 1: TEAM-Net consistently outperforms baselines on three representative datasets. All
methods use 8 frames for fair comparison.

Model Kinetics-400 UCF-101 HMDB-51 Speed
TSN! 70.0 89.7 66.8 45 V/s
CoViAR? 69.1 (10.9) 91.0 (11.3) 73.2 (16.4) 31 V/s
TEAM-Net 72.2 (12.2) 94.3 (14.6) 73.8 (17.0) 30 V/s

I Different from [35], TSN on UCF-101 and HMDB-51 are finetuned using a pretrained
model on Kinetics-400 in this work, which give higher accuracies compared to [35].

2 We re-implemented CoViAR using the official code in [42] by replacing ResNet-152
with ResNet-50 for the I-frame modality for fair comparison.

Table 2: Comparison with state-of-the-arts using partially decoded videos on Kinetics, UCF
and HMDB. Our TEAM-Net is an end-to-end (ETE) network and optical flow (OF) free.

Method OF ETE Backbone Kinetics UCF HMDB

DMC-Net [28]| v | X ResNet152 (I), ResNet18 (P) - 923 71.8
ATTP[11] |V | X EfficientNet (I), EfficientNet (P) - 91.1 629
IMRNet [43] | v | v |3D-ResNet50 (I), 3D-ResNet50 (P) - 95.1 722
CoViIAR [42] | X | X ResNet50 (I), ResNet18 (P) 69.1 91.0 732
SIFP [18] X| v SlowFast-ResNet50 - 940 723
MFCD-Net [1]| X | V Multi-Fiber Network [3] 683 932 669
IMRNet [43] | X | v |3D-ResNet50 (I), 3D-ResNet50 (P) - 92,6 67.8
TEAM-Net | X | v/ ResNet50 (I), ResNet18 (P) 72.2 943 738

4.3 Comparison with State-of-the-Arts

We compare our approach with current state-of-the-arts in the area of action recognition
using partially decoded videos on Kinetics-400, UCF-101 and HMDB-51 in Table 2. Un-
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like recent works [11, 18, 43] that utilize advanced backbones such as 3D CNN [7], Slow-
Fast Networks [5] and EfficientNet [32], it is worth nothing that our TEAM-Net utilizes 2D
ResNet as backbones for three modalities. TEAM-Net learns the informatively fused features
from I-frames and P-frames through the TEAM module. More advanced backbones are able
to boost the performance for TEAM-Net. Our TEAM-Net, together with SIFP [18], MFCD-
Net [1] and IMRNet [43], enjoys end-to-end training. It can be seen that our TEAM-Net out-
performs current state-of-the-arts without optical flow and achieves competitive results even
compared to those approaches with optical flow. Regarding HMDB-51, TEAM-Net outper-
forms all previous approaches with/without optical flow. In terms of UCF-101, TEAM-Net
performs closely to IMRNet (3D CNN backbone) with optical flow. Only few methods are
evaluated on Kinetics-400 since many approaches suffer from expensive training i.e., require
training three separated backbones for each modality. Our TEAM-Net also performs well on
Kinetcs-400, which demonstrates good ability for generalization across datasets.

4.4 Ablation Study

Arrangements of Channel and Spatial Fusion. We investigate different arrangements
of channel and spatial fusion from a network engineering side. Table 3 shows 5 possible
arrangements for formulating a TEAM module. TEAM, and TEAM; indicate channel fusion
only or spatial fusion only contained in the module. TEAM_ refers to connecting channel
and spatial module in a parallel way. TEAM,_, indicates channel fusion followed by spatial
fusion, vice versa for TEAM;_,.. It can be seen that three possible combinations of channel
and spatial fusion work better than channel fusion only and spatial fusion only on both UCF
and HMDB in Table 3. The sequential arrangement, in which the channel fusion is followed
by the spatial fusion TEAM,._,, performs the best compared to the other two.

Table 3: Arrangements of channel and spatial fusion. Performances are evaluated on UCF
and HMDB using 8-frame inputs for training. Average accuracy for three splits is reported.
Dataset =~ TEAM, TEAM; TEAM., TEAM,,., TEAM.,

UCF-101 93.7 93.7 94.0 94.1 94.3
HMDB-51 73.0 72.9 73.1 73.2 73.8

Table 4: Performance of different embedded locations.
Dataset Stager, Stager; ) Stager; 3y Stagerpz4)  Stager;rzasy

UCF-101 93.6 93.2 93.3 94.3 91.7
HMDB-51 72.8 73.1 72.7 73.8 70.4

Location of TEAM. The default embedded locations of TEAM are after Convy, Res,, Ress
and Resy respectively i.e., Stagey; ; 3 41, Which is shown in Figure 1 in Supplementary Ma-
terials A. We find that including the last stage fusion (Ress) deteriorates the fusion perfor-
mance. We suppose this may be caused by the fact that the spatial resolution is too low at
the last stage, which causes inaccurate spatial fusion and degrades the performance. The
location Stagey 5 3 4 Works the best, which indicates the efficacy of the mid-level fusion for
these three modalities.

Understanding of TEAM. Previous experimental results show the promising performance
of TEAM-Net. Here we provide insights behind the TEAM-Net and the effectiveness of
the two fusion modules. Regarding the channel fusion, it takes global spatial information
(see eq (1)) into account to fuse each modality i.e., it focuses on ‘what’ is meaningful given
a frame. This indicates that the channel fusion has low spatial resolution, which results in
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inaccurate local information reasoning. As seen on the 3rd row in Figure 4(a), there is a
strong activation on the right for each frame detected by the channel fusion, while the main
action is happening in the middle. The spatial fusion and TEAM characterize these actions
happening in the local spatial space successfully, which suggests that spatial fusion focuses
on ‘where’ is an informative part. However, it could be sensitive to unrelated movements
in video. For instance, in the 2nd row in Figure 4(b), the spatial fusion falls into paying
attention to the edge on several frames, which is probably caused by camera movement.
Our proposed TEAM module takes ‘what’ and ‘where’ into account while fusing different
modalities by incorporating two modules. Both recognition performance and visualization
results confirm the effectiveness of the proposed approach. We provide more visualization
results in Supplementary Materials C.

o m @ m . o . E . ‘ u
I
cmnwumn q E k H o Fuswn' ' E . u
-
TEAM Rad - ' TEAM a
| | if ‘
i

(a) Cricket Shot (b) Pizza Tossing

P

Figure 4: Class-specific visualization for channel fusion only, spatial fusion only and our
proposed TEAM module.

5 Conclusion

In this work, we visit video action recognition in the partially compressed domain. We
introduce a sampling strategy for inputs that comprises I-frames, MVs and residuals based
on GOPs. We propose a novel TEAM module that is able to fuse three modalities effectively.
The TEAM module comprises the channel fusion and the spatial fusion sequentially, and is
embedded to the network in a plug-and-play manner as instantiations of TEAM-Net, which
enables training an end-to-end network for three modalities. We demonstrate that TEAM-
Net outperforms the baseline TSN in the raw domain and current state-of-the-arts in the
partially compressed domain on all three public datasets presented in this work.
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