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Abstract

Gait recognition is an important biometric technology that identifies a person by us-
ing walking posture. Recently, most gait recognition methods either take the human gait
as a whole to generate Global Feature Representation (GFR) or equivalently divide the
human gait into multiple local regions to establish Local Feature Representation (LFR).
However, we observe that LFR or GFR does not adequately represent the human gait
because that LFR only focuses on the detailed information of each local region and GFR
pays more attention to the global context information. On the other hand, the partition
manner of the local regions is fixed, which only focuses on the local information of sev-
eral specific regions. Motivated by this observation, we propose a novel mask-based
network, named GaitMask, for gait recognition. GaitMask is built based on the Mask-
based Local Augmentation (MLA), which is used to learn more comprehensive feature
representations. MLA is a dual-branch structure consisting of a GFR extraction module
as the trunk and a mask-based LFR extraction module as the branch. Specifically, the
mask-based LFR extraction consists of a pair of complementary masks, where one mask
randomly drops a region of the input feature maps and the other one only preserves this
region. The complementary mask can be used to generate more comprehensive LFR and
enhances the robustness of feature representations of the trunk. Experiments on two pop-
ular datasets demonstrate that our method achieves state-of-the-art results. Specifically,
the proposed method significantly increases the performance in complex environments.

1 Introduction

Different from traditional biometric technologies such as face, fingerprint and iris, gait recog-
nition can be used in long-distance condition and does not need the cooperation of the sub-
jects. Hence, it is widely applied in surveillance systems and identity authentication. How-
ever, the performance of gait recognition suffers from many complicated factors, including
view, carrying and speed, etc [4, 23, 24]. Thus, gait recognition is still a challenging task.
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Recently, researchers propose different deep-learning based methods to generate dis-
criminative feature representations, which can be roughly divided into two categories. One
is Global Feature Representation (GFR) that treats human gait as a whole for feature extrac-
tion [3, 8, 10, 11, 12, 16, 17, 21, 22]. The other one is Local Feature Representation (LFR)
that extracts gait features from multiple local regions [5, 9, 14, 15, 27].

However, we observe that LFR neglects the correlation of different local regions, while
GFR does not take full advantage of detailed information. Moreover, as shown in Fig.1(b),
the local regions are partitioned by a top-to-bottom, equal-size manner [5, 27], which only
focuses on the information of a few specific localized regions.

To solve these problems mentioned above, in this paper, we propose a novel mask-based
LFR extractor to generate more comprehensive LFR. Specifically, the mask-based LFR ex-
tractor is a dual-branch structure including a pair of complementary masks. As shown in
fig.1(c), one mask randomly drops a local region of gait sequences, while the other one
only preserves this region. During the training stage, by using the complementary masks,
this extractor randomly generates a pair of complementary feature maps that can be used
to extract local gait features from arbitrary local regions. Compared to other local partition
patterns that can only utilize information from a few specific regions, the proposed extrac-
tor takes full advantage of the information from different local regions to train the network.
Hence, this extractor can generate more comprehensive LFR during the test stage. Based on
the mask-based LFR extractor, we propose a novel feature extraction module, called Mask-
based Local Augmentation (MLA), to generate more comprehensive feature representations.
MLA includes a GFR extractor and a mask-based LFR extractor. GFR extractor is used as
the trunk to generate GFR from the whole feature maps, while mask-based LFR extractor
generates LFR to enhance the feature representation of the trunk.

The main contributions of our method can be summarized as follows:

• We propose a novel LFR extractor, which can be used to generate more comprehensive
LFR by using a pair of complementary masks. Unlike traditional partitions that only
extract features from several fixed local regions, the proposed LFR extractor efficiently
utilizes gait information from different local regions.

• Based on the proposed mask-based LFR extractor, we develop a novel Mask-based
Local Augmentation, consisting of a trunk and a branch, to generate more discrimi-
native feature representations. The trunk focuses on global context information, while
the branch pays more attention to the detailed information of gait sequences.

• The experimental results on two benchmark datasets demonstrate the proposed method
achieves State-Of-The-Art (SOTA) results. Specifically, our method outperforms other
methods by 1.7% and 5.5% in the carrying condition of bag and coat, respectively.

2 Related Work
Recently, most deep-learning based gait recognition methods take the silhouettes of gait
sequences as input to extract gait features by using 2D or 3D convolutional neural networks
(CNNs). These methods can be roughly divided into two types, i.e., template-based and
sequence-based.

The template-based methods either aggregate temporal information of gait sequences as
Gait Energy Image (GEI) to extract gait features or extract each gait image’s features and
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Figure 1: Visualization of the original gait image, local gait images of different partitions
and mask-based gait image.

then integrate temporal information [1, 3, 5, 7, 16, 22, 25]. For example, Shiraga et al.
[16] propose a template-based network named GEINet to generate feature representations
from GEI. Specifically, they first generate GEI by using the mean function to aggregate
all temporal information of gait sequences and then extract gait features with 2D CNN.
However, the generation process of GEI leads to the loss of a large amount of information.
To better leverage the information of gait sequences, some researchers [3, 5, 27] first use
2D CNN to extract gait features of each gait image and then aggregate temporal information
of gait sequences. For example, Chao et al.[3] propose a novel network named GaitSet to
generate discriminative feature representations. Gaitset first extracts each gait image’s gait
features and then uses the max function to aggregate temporal information. However, they
cannot fully utilize the temporal information of gait sequences. To better take advantage of
this information, some researchers [5, 27] model temporal relationship after spatial feature
extraction. For example, Fan et al.[5] propose a Micro-Motion Capture Module (MCM)
to model the short-range temporal dependence. Zhang et al. [27] use the long short-term
memory (LSTM) units to model temporal relationships.

The sequence-based methods usually take gait sequences as a unit to extract spatial-
temporal gait features by using 3D CNN [12, 13, 19, 20]. For example, Wolf et al.[20]
develop a 3D CNN to generate spatial-temporal gait representations from a fixed-length gait
clip. Thapar et al. [19] first partition gait sequences into multiple fixed-length gait clips and
then use 3D CNN to extract gait features of each clip. Finally, they use an LSTM module
to learn the temporal relationship of different gait clips. However, these works are inflexible
because they need a fixed-length gait clip as input to train their network. To make full use of
the temporal information in 3D CNNs, Lin et al.[12] propose a frame pooling operation to
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aggregate adaptively the temporal information of the whole gait sequences, which take full
advantage of temporal information of a whole gait sequence.

3 Proposed Method
In this section, we first outline the framework of our GaitMask method. Then, we introduce
the proposed Mask-based Local Augmentation (MLA). Finally, we present the implementa-
tion details of the training and test phases.

Figure 2: Overview of the proposed GaitMask.

3.1 Overview
The overview of our GaitMask method is shown in Fig. 2. The whole gait recognition
method is built by 3D convolution, which is similar to [12]. Given a gait sequence, we first
use a 3D convolution to extract the shallow features. Then, a temporal convolution is used
to aggregate the local temporal information of feature maps. Next, multiple MLA modules
are proposed to learn more comprehensive gait features. Finally, we introduce temporal
pooling and Generalized Mean Pooling (GeM) to generate feature representations. During
the training stage, we use the separate triplet loss to train the proposed network [3, 5].

3.2 Mask-based Local Augmentation
As shown in Fig.3, MLA includes two branches: GFR extraction and Mask-based LFR
extraction. GFR extraction extracts gait features directly from the input feature map, while
Mask-based LFR extraction first generates a pair of complementary gait feature maps and
then extracts local gait features from them. Assume that the input feature map of MLA is
Xin ∈RCin×Tin×Hin×Win , where Cin is the number of channels, Tin is the length of feature maps
and (Hin,Win) is the image size of each frame. GFR extraction can be defined as

Yg = c3×3×3(Xin), (1)

where c3×3×3 means 3D convolution with kernel size 3. Yg ∈ RCou×Tin×Hin×Win is the output
of GFR extraction.

On the other hand, Mask-based LFR extraction first generates two complementary masks
M0 ∈ RHin×Win and M1 ∈ RHin×Win , where the element of M0 and M1 is 0 and 1, respec-
tively. Then, we randomly drop a continuous and horizontal region of the mask M1. Mean-
while, we preserve the corresponding region in the mask M0. Specifically, assume that
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Figure 3: Overview of the proposed Mask-based Local Augmentation. Mask-based Local
Augmentation includes two branches: GFR Extraction and Mask-based LFR Extraction.
After GFR and LFR Extractions, we propose two different operations to fuse both feature
representations, called MLA-A and MLA-B. MLA-A means element-wise addition, while
MLA-B means concatenating two feature maps horizontally. During the training stage, the
input of the Mask-based LFR Extraction is a pair of complementary mask-based feature
maps. During the test stage, the input of the Mask-based LFR Extraction is the original
feature maps.

M0 =
{

h0
i |i = 1,2, ...,Hin

}
, where h0

i ∈ R1×Win is the i-th column of the feature map M0.

M1 =
{

h1
j | j = 1,2, ...,Hin

}
, where h1

j ∈R1×Win is the j-th column of the feature map M1. We
first randomly select an interval (k,k+ bd×Hinc), where d means the dropping ratio. Then,
the value of

{
h0

k , ...,h
0
k+bd×Hinc

}
in the mask M0 is set to 1, as a new mask M

′
0 ∈ RHin×Win ,

while the value of
{

h1
k , ...,h

1
k+bd×Hinc

}
is set to 0, as a new mask M

′
1 ∈RHin×Win . Mask-based

LFR extraction can be represented as:

Ym = c3×3×3(
Cin

∑
k=1

Tin

∑
q=1

(Xin⊗M
′
0))+ c3×3×3(

Cin

∑
k=1

Tin

∑
q=1

(Xin⊗M
′
1)), (2)

where ⊗ means element-wise product in the image dimension. Ym ∈ RCou×Tin×Hin×Win is the
output of mask-based LFR extraction.

In this paper, we propose two ways to combine the outputs of two extractions. One is the
element-wise addition (MLA-A), which can be designed as

YMLA−A = Yg +Ym, (3)

where YMLA−A ∈RCou×Tin×Hin×Win is the combined feature maps. The other one is to concate-
nate the feature maps in horizontal axis, which can be represented as

YMLA−B = concat
{

Yg
Ym

}
, (4)
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where concat means concatenation operation in horizontal axis. YMLA−B ∈RCou×Tin×(2∗Hin)×Win

is the combined feature maps.

3.3 Feature Mapping

After feature extraction, we introduce temporal pooling and spatial pooling to generate fea-
ture representations. The temporal pooling aims to aggregate all temporal information of
gait sequences [3, 5, 12]. Assume that X f m ∈ RC f in×Tf in×H f in×W f in is the output of the last
MLA module, where C f in is the number of channels, Tf in is the length of feature maps and
(H f in,Wf in) is the image size of each frame. The temporal pooling can be defined as

Yt p = F
Tf in×1×1
Max (X f m), (5)

where F
Tf in×1×1
Max (·) means max-pooling operation. Yt p ∈ RC f in×1×H f in×W f in is the output of

temporal pooling.
The spatial pooling first partitions the feature map Yt p into multiple horizontal strips

and then uses the Generalized-Mean pooling (GeM) to aggregate adaptively each strip’s
information in the vertical axis. Finally, multiple separate fully connected layers are used
to further integrate the channel information of each strip [3, 5]. The spatial pooling can be
represented as

Ysp = Fs f c((F
1×1×W f in
Avg ((Yt p)

p))
1
p ), (6)

where F
1×1×W f in
Avg (·) means average-pooling operation. Fs f c means multiple separate Fully

Connected (FC) layers. Its size is H f in×C f in×C f ou, where H f in is the number of FC layers,
and C f in and C f ou are the input and output dimensions of each FC layer, respectively. Yt p ∈
RC f ou×1×H f in×1 is the output of spatial pooling.

3.4 Training Details and Test

Training. During the training phase, we first randomly crop a gait clip as an input of the
network. Then, the feature representation Yt p will be generated. Finally, the separate triplet
loss is used to calculate the loss of each strip independently [3, 5, 12]. The triplet loss can
be defined as:

Ltriplet = Max(D(Y α
t p ,Y

β

t p)−D(Y α
t p ,Y

γ

t p)+margin,0) (7)

where α and β are samples from the same class, while γ represents samples from another
class. D(di,d j) is the Euclidean Distance between the sample di and d j. margin is the margin
of the triplet loss. To better train the proposed network, we take the Batch ALL (BA) strategy
as the sampling strategy[6]. Specifically, the number of samples per batch is set to P×K,
where P is the number of subject IDs and K is the number of samples per subject ID. Due to
the limitation of memory size and computational complexity, the length of the input gait clip
is set to T frames.
Test. During the test phase, the network does not need to consider the limitation of memory
size. Hereby, the whole gait sequence can be fed into the proposed GaitMask to generate
the feature representation Yt p ∈ RC f ou×1×H f in×1. Then, we flatten the feature representation
Yt p into a feature vector with dimension C f ou×H f in. To evaluate the performance of our
method, we adopt the gallery-probe mode to calculate Rank-1 accuracy [3, 12].
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Datasets Training Set Test Set Gallery Set Probe Set

CASIA-B 74 50 NM #01-04
NM#05-06
BG#01-02
CL#01-02

OUMVLP 5,153 5,154 Seq #01 Seq #00
Table 1: The evaluation protocol of CASIA-B and OUMVLP datasets.

4 Experiments

4.1 Datasets and Evaluation Protocol

CASIA-B. The CASIA-B dataset [24] is one of the most complex gait datasets, which
includes 124 subjects. Each subject was collected in 10 groups of gait sequences (Normal
walking (NM) #01-06, Walking with a bag (BG) #01-02 and Walking with a coat (CL) #01-
02). Each group of gait sequences includes 11 view angles (0◦,18◦,..., 180◦). In this paper,
we use the same protocol as [5] to evaluate the performance of our method on CASIA-B
dataset, which is shown in Tab.1.
OUMVLP. The OUMVLP dataset [18] is one of the largest gait datasets. It includes 10,307
subjects, each of which contains 2 groups of gait sequences (Seq#00-01). Each group in-
cludes 14 view angles (0◦,15◦,...,90◦ and 180◦,195◦,...,270◦). In this paper, we adopt the
same protocol as [2, 3] for evaluation, which is shown in Tab.1.

CASIA-B OUMVLP
Layer Name In_C Out_C Kernel Layer Name In_C Out_C Kernel

Conv3d 1 32 (3, 3, 3)
Conv3d 1 64 (3, 3, 3)
Conv3d 64 64 (3, 3, 3)

Conv3d 32 32 (3, 1, 1) Conv3d 64 64 (3, 1, 1)

MLA-A 32 32 (3, 3, 3)
MLA-A 64 128 (3, 3, 3)
MLA-A 128 128 (3, 3, 3)

Max Pooling - - (1, 2, 2) Max Pooling - - (1, 2, 2)

MLA-A 64 128 (3, 3, 3)
MLA-A 128 196 (3, 3, 3)
MLA-A 196 196 (3, 3, 3)

MLA-B 128 128 (3, 3, 3)
MLA-A 196 256 (3, 3, 3)
MLA-B 256 256 (3, 3, 3)

Table 2: Network parameters of the proposed method on two datasets. In_C, Out_C and
Kernel mean the input channels, output channels and kernel size, respectively.

4.2 Implementation Details

For all experiments of both datasets, we preprocessed and aligned the gait image into the
same size 64×44 [3]. The margin in Equ.7 is set to 0.2. Adam is treated as the optimizer
and the initialized learning rate is set to 1e-4. During the training phase, the length of the
input sequence T is set to 30. The network parameters are shown in Tab.2. For the CASIA-B
dataset, the batch size P×K is set to 8×16. The iteration is set to 80k and the learning rate
is reset to 1e-5 for the last 10K iterations. For the OUMVLP dataset, the parameters P and
K are set as 32 and 16, respectively. The iteration is set as 250K and the learning rate is reset
to 1e-5 after 150K iterations.
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Gallery NM#1-4 0◦-180◦

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ mean

NM#5-6

CNN-3D 87.1 93.2 97.0 94.6 90.2 88.3 91.1 93.8 96.5 96.0 85.7 92.1
CNN-Ensemble 88.7 95.1 98.2 96.4 94.1 91.5 93.9 97.5 98.4 95.8 85.6 94.1

GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
ACL 92.0 98.5 100.0 98.9 95.7 91.5 94.5 97.7 98.4 96.7 91.9 96.0

GaitPart 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
Ours 94.8 97.5 98.9 97.3 96.2 95.3 97.1 98.7 98.5 98.2 92.0 96.8

BG#1-2

CNN-LB 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4
GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5

Ours 90.7 95.2 95.9 94.1 92.5 87.2 91.6 95.2 97.4 96.7 88.5 93.2

CL#1-2

CNN-LB 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0
GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

Ours 79.4 90.7 92.4 87.6 83.1 79.1 84.2 86.7 88.0 84.0 71.0 84.2

Table 3: Rank-1 accuracy (%) on CASIA-B under all view angles and different conditions,
excluding identical-view case.

Method
Probe View

Mean0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GEINet 23.2 38.1 48.0 51.8 47.5 48.1 43.8 27.3 37.9 46.8 49.9 45.9 45.7 41.0 42.5
GaitSet 79.3 87.9 90.0 90.1 88.0 88.7 87.7 81.8 86.5 89.0 89.2 87.2 87.6 86.2 87.1
GaitPart 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.1 88.2 88.7

GLN 83.8 90.0 91.0 91.2 90.3 90.0 89.4 85.3 89.1 90.5 90.6 89.6 89.3 88.5 89.2
GaitKMM 56.2 73.7 81.4 82.0 78.4 78.0 76.5 60.2 72.0 79.8 80.2 76.7 76.3 73.9 74.7

Ours 86.7 90.8 91.3 91.6 91.4 91.1 90.8 89.9 89.2 90.3 90.5 90.0 89.9 89.4 90.2

GEINet 24.9 40.7 51.6 55.1 49.8 51.1 46.4 29.2 40.7 50.5 53.3 48.4 48.6 43.5 45.3
GaitSet 84.5 93.3 96.7 96.6 93.5 95.3 94.2 87.0 92.5 96.0 96.0 93.0 94.3 92.7 93.3
GaitPart - - - - - - - - - - - - - - 95.1

GLN 89.3 95.8 97.9 97.8 96.0 96.7 96.1 90.7 95.3 97.7 97.5 95.7 96.2 95.3 95.6
Ours 92.3 96.7 98.2 98.3 97.3 97.9 97.6 95.7 95.5 97.5 97.5 96.2 96.9 96.4 96.7

Table 4: Rank-1 accuracy (%) on OUMVLP dataset under different view angles, excluding
identical-view cases. The last five rows show the results excluding invalid probe sequences.

4.3 Comparison with State-of-the-Art

Evaluation on CASIA-B. To evaluate the performance of our method in some complex situ-
ations, we conduct experiments on the CASIA-B dataset. The experimental results are shown
in Tab.3, which includes several gait recognition methods, such as GaitSet [3], CNN-LB,
CNN-3D, CNN-Ensemble [22], ACL [27] and GaitPart [5]. Experimental results demon-
strate that the proposed method achieves the most excellent performance in almost all view
angles. In particular, we observe that the proposed method obtains significant performance
improvements compared to other methods under some unfavorable conditions. For example,
the accuracy of GaitPart is 96.2% in the NM condition, while in the BG and CL cases, its ac-
curacy is only 91.5% and 78.7%. In contrast, the accuracy of the proposed method is 96.8%,
93.2% and 84.2% in the NM, BG and CL conditions, respectively, which outperform the
GaitPart by 0.6%, 1.7% and 5.5%, respectively. On the other hand, we also observe that the
proposed method achieves better performance in some particular view angles, such as 90◦

and 180◦. For example, the average accuracy of GaitMask in the NM condition is 96.8%,
which outperforms the GaitPart by 0.6%. For 90◦ and 180◦, the NM accuracy of GaitMask is
95.3% and 92.0%, which outperform the GaitPart by 3.0% and 1.6%, respectively. The main
reason for the performance improvement is that the proposed method generates more com-
prehensive feature representations by taking full advantage of the local detailed information
and global context information.
Evaluation on OUMVLP. Although it contains several complex conditions, CASIAB dataset
has only 124 subjects. To evaluate the performance of our method in a larger dataset,
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we carry out the experiment on OUMVLP dataset. As shown in Tab.4, we compare our
method with several gait recognition methods, including GEINet [16], GaitSet [3], Gait-
Part [5], GLN[7] and GaitKMM[26]. It can be observed that the proposed method achieves
the highest performance in almost all view angles. Specifically, we also observe that the
proposed method significantly improves the recognition accuracy of some specific view an-
gles. For example, the accuracy of the proposed method in 0◦ and 180◦ is 92.3% and 95.7%,
respectively, which outperforms the GLN by 3.0% and 5.0%.

MLA
NM BG CL MeanGFE LFE

X 96.1 91.9 81.4 89.8
X 96.1 91.8 81.9 89.9

X X 96.8 93.2 84.2 91.4
Table 5: Rank-1 accuracy (%) of different feature extractions

4.4 Ablation Study
In this paper, we propose the GaitMask network, which includes Mask-based Local Aug-
mentation module. To verify the effectiveness of the proposed MLA, we carry out several
ablation studies on CASIA-B dataset.
Analysis of MLA module. In Sec.3.2, we propose a novel MLA module, which includes
GFR extraction and Mask-based LFR extraction. GFR extraction aims to extract global
context information, while LFR extraction is used to extract detailed information of gait
sequences. To explore the contribution of each extraction, we design two ablation studies,
each of which uses only one feature extraction module. The experimental results are shown
in Tab.5. It can be observed that each feature extraction contributes to the overall recognition
accuracy.

Figure 4: Rank-1 accuracy (%) of different dropping ratios.
Analysis of the dropping ratio d. The proposed MLA uses a pair of complementary masks
to drop local regions of gait sequences, which can be used to extract more comprehensive
LFR. In Sec.3.2, the dropping ratio is set to d. To explore the optimal value of d, we design
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several experiments in which the range of values is {0.1,0.2, ...,0.9}. The experimental
results are shown in Fig.4. It can be observed that the setting “d=0.4” achieves the highest
recognition accuracy. Hereby, we set the value d to 0.4 during the training stage.

The number of the MLA NM BG CL Mean

0 96.1 91.9 81.4 89.8
1 96.4 92.3 83.3 90.7
2 96.2 92.7 83.4 90.8
3 96.8 93.2 84.2 91.4

Table 6: Rank-1 accuracy (%) of different MLA number
Analysis of the number of MLAs. To discuss the effect of the number of MLAs in the net-
work, we design the ablation studies by using different numbers of MLAs. The experimental
results are shown in Tab.6. It can be observed that larger number of MLAs can lead to higher
recognition accuracy. Thereby, the number of MLAs on CASIA-B is finally set to three.

5 Conclusion
In this paper, we propose a novel perspective that utilizes a pair of complementary masks
to extract more effective local feature representations from arbitrary local regions. Based on
this perspective, we present a Mask-based Local Augmentation consisting of GFR and LFR
extractions to generate more comprehensive gait feature representations. GFR extraction
aims to capture the global context information, while LFR extraction is used to extract the
detailed information of gait sequences. Experiments on two datasets demonstrate that the
proposed method achieves state-of-the-art recognition accuracy.
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