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Abstract

Spatio-temporal action recognition has been a challenging task that involves detect-
ing where and when actions occur. Current state-of-the-art action detectors are mostly
anchor-based, requiring sensitive anchor designs and huge computations due to calculat-
ing large numbers of anchor boxes. Motivated by nascent anchor-free approaches, we
propose Point3D, a flexible and computationally efficient network with high precision
for spatio-temporal action recognition. Our Point3D consists of a Point Head for ac-
tion localization and a 3D Head for action classification. Firstly, Point Head is used to
track center points and knot key points of humans to localize the bounding box of an ac-
tion. These location features are then piped into a time-wise attention to learn long-range
dependencies across frames. The 3D Head is later deployed for the final action classifi-
cation. Our Point3D achieves state-of-the-art performance on the JHMDB, UCF101-24,
and AVA benchmarks in terms of frame-mAP and video-mAP. Comprehensive ablation
studies also demonstrate the effectiveness of each module proposed in our Point3D.

1 Introduction
Spatio-temporal action recognition has attracted much attention in the field of computer
vision. It aims to locate and detect action instances of interest in a video in both space
and time. The applications can range from human-computer interaction [23, 28], video
surveillance [21, 26], to social activity recognition [3, 4]. Videos, unlike images, are time
series of images that consist of both spatial components and temporal components. Hence,
spatio-temporal action recognition requires both spatial information from key frames as well
as temporal information from their previous frames [19].

Early attempts for spatio-temporal action recognition typically apply an object detec-
tor at each frame of a video clip independently and then link those frame-wise detection
results to generate action tubes [12, 27, 34, 41]. However, those methods fail to consider
temporal features across frames and are cumbersome to deploy in a real-time setting. Later,
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Figure 1: Motivation illustration. Our proposed anchor-free network Point3D achieves
high action detection precision by tracking the center point (red dot) and key points (green
dots) with 3D-CNNs. The example figures are from the JHMDB dataset.

approaches [15, 17, 19, 33, 35, 45, 48] aim to capture temporal information in videos by con-
ducting clip-level action recognition. These tubelet detection methods, however, are anchor-
based detectors that heavily rely on a large number of pre-defined anchor boxes as candidates
for calculating bounding boxes. They can be highly sensitive and computationally inefficient
as they exhaust all potential actor locations in an image and perform classification for each
location [22].

Recently, anchor-free approaches have gained increasing popularity in the computer vi-
sion community for their relatively simple network structures and computational efficiency
[5, 20, 22, 39, 49, 50]. By eliminating the anchor boxes, anchor-free methods avoids the
intense computation as well as hyper-parameters tuning related to anchor boxes, resulting
in a more robust performance [22]. However, there has been little work on spatio-temporal
action recognition under this framework.

Motivated by the nascent anchor-free framework, we propose a flexible and computa-
tionally efficient end-to-end detector called Point3D for the task of spatio-temporal action
recognition. Our motivation is illustrated in Figure 1. Specifically, our Point3D performs
the task of spatio-temporal action recognition by solving the localization and classification
problems separately. Point3D consists of a Point Head for action localization and a 3D Head
for action classification. Specifically, the Point Head is used to track center points and knot
key points of humans to localize the bounding box of an action. These location features are
then piped into a time-wise attention mechanism to learn the dependencies between frames
in a clip. The 3D Head is later deployed for the final action classification. We conduct ex-
tensive experiments on the JHMDB and UCF101-24 datasets as well as ablation studies to
demonstrate the effectiveness of each part of our network.

The major contributions of this paper are summarized as follows: 1. We present Point3D,
an anchor-free end-to-end architecture with high precision for spatio-temporal action recog-
nition. 2. Our Point3D is the first of its kind to incorporate center points and knot key points
together to localize the bounding box of an action without any anchors. 3. We apply a time-
wise attention mechanism to learn the temporal dependencies of each frame in an input clip
to boost the performance. 4. Our Point3D achieves competitive performance on the JHMDB,
UCF101-24 and AVA datasets and extensive ablation studies show each part of our Point3D.

2 Related Works
2.1 Anchor-based Object Detection
R-CNN [11], Fast R-CNN, [10] and Faster R-CNN [32] are three of the pioneering works
to introduce CNNs into the field of object detection. These three algorithms all fall into the
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category of two-stage object detectors that first generate regions of interest and then pipe
those region proposals for object classification and bounding-box regression. The need for
a two-stage network was eliminated by the YOLO architecture [31] where the task of object
detection is regarded as a simple regression problem by taking an input image and learning its
class probabilities and bounding box coordinates. Later improvements [1, 29, 30] in YOLO
involve optimizing small object localization, anchor boxes, and network structure.

2.2 Anchor-free Object Detection
Recent advances in anchor-free object detection show surprisingly competitive performance
without the need of computing expensive anchors [20, 46, 49, 50]. CornerNet [20] detects
an object bounding box as a pair of key points using a single convolution neural network.
CenterNet [49] detects an object as a point in an image with a focus on modeling the center
of a box as an object and uses this predicted center to get the bounding box coordinates.
RepPoints [46] instead uses multiple points to automatically learn the spatial extent of an
object. CenterTrack [50] tracks objects from frame to frame by using the displacement of a
point between adjacent frames.

2.3 Spatio-temporal Action Recognition
Most spatio-temporal action detectors build their work in videos based on object detec-
tors [9, 13, 15, 17, 22, 37, 40, 42]. Traditional anchor-based approaches conduct frame-
level action detection by combining independent frame-level detection with linking algo-
rithms to generate final tubes [12, 27, 34, 40, 41]. More recent works place more fo-
cus on incorporating temporal information to better the recognition of actions in videos
[15, 17, 19, 24, 33, 35, 45, 48]. Typically, 3D CNN [6] and LSTM [14] are used to extract
temporal features. AIA [38] also applies memory mechanism to model long-term interac-
tion. However, many of these works apply a two-stage architecture, where proposals are first
generated by RPN and then the tasks of action classification and localization are performed
accordingly [15, 27, 43]. Because the proposal network and the classification network are
trained separately, the results may not be optimal. Plus, as the RPN only focuses on spatial
information of actors in each frame, relationships between frames are largely neglected, fail-
ing to incorporate important temporal information for action classification and localization.

More recently, an end-to-end detector called YOWO [19] has been proposed which uses
a 2D-CNN branch and a 3D-CNN [18] branch to extract spatial and temporal features re-
spectively on video data. YOWO is flexible in that its 2D-CNN and 3D-CNN branches can
be replaced by any CNN architectures of interest [19]. Inspired by anchor-free object detec-
tors, MOC Detector [22] incorporates movement information along with center detection and
spatial extent detection by treating an action instance as a trajectory of moving points. How-
ever, limited works have been proposed in the field of spatio-temporal action localization
with anchor-free architectures. In this work, we propose an anchor-free end-to-end network,
termed as Point3D, motivated jointly by the conceptually simple CenterNet [49], the recent
excellent performance of 3D-CNNs [18], as well as the flexible two-branch YOWO [19].
Besides, our Point3D can be trained in an end-to-end manner, compactly incorporating both
spatial and temporal information of a video clip.

3 Method
3.1 Overview
In this work, we aim to solve the problems of localization of action bounding boxes in a
video clip together with classification of the action categories. To address this problem,
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Figure 2: Point3D network overview. An input clip is fed into Feature Extractor to obtain
features of each frame. These features will then be used to solve the task of action location
and classification separately. Point Head is applied to these features on each frame to track
center points and knot key points of humans for action localization, where those features are
piped into Time-wise Attention and a 3D Head for action classification.

we propose an anchor-free architecture called Point3D, that operates by tracking actions as
moving points and achieves better performance with the help of 3D-CNNs.

As illustrated in Figure 2, Point3D consists of four components: (1) Feature Extractor:
an input clip is fed into Feature Extractor to obtain spatial features of each frame. (2) Point
Head: Point Head is applied for the localization task to track center points and knot key
points of actors on each frame in a video clip. (3) Time-wise Attention: Time-wise Attention
is designed to aggregate the correlation and continuity across frames for incorporating more
context information. (4) 3D Head: 3D Head with a 3D-CNN backbone is applied to improve
the performance of action classification. Our Point3D is trained in an end-to-end manner,
such that these components collaboratively work together to generate a more stable and
accurate recognition in a video. We describe the technical details in the following sections.

3.2 Feature Extractor
Assume an input frame as I ∈ R3×H×W , where H and W are the height and width of the
frame. There are N actors in each frame and there are T frames in a clip. We implement
a widely-used network in pose estimation, the Hourglass architecture [25] as our backbone
for feature extraction. Following [49], the input frames are first downsampled by four times,
and then they are passed through a two-stacked Hourglass structure to extract features for
future localization and classification tasks. We denote the generated features of each frame
to be of f ∈ RC×H

R ×
W
R where C denotes number of channels and is set as 128, and R denotes

stride factor and is set as 4 following [22, 49].

3.3 Point Head
Point Head is applied for the localization task to track center points and knot key points
of actors on each frame in a video clip. Specifically, our Point Head consists of two main
detectors, a Center-Point (CP) and a Knot-Point (KP) detector, as shown in Figure 3.
Center-Point (CP) detector. In the CP detector, there are three types of outputs. The first
type is a center point heatmap, denoted as OCP

h ∈ R1×H
R ×

W
R , for localizing the center point

of an actor in the current frame. Following [2, 20, 49], we apply a Gaussian kernel on the
ground-truths of generated heatmaps. We define the pixel-wise logistic regression loss LCP

h
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between center point heatmaps as:

LCP
h =− 1

N

1×H
R ×

W
R

∑
j=1


(1− ĝ j)

α log(ĝ j) if g j = 1
(1−g j)

β (ĝ j)
α

log(1− ĝ j)
otherwise (1)

where N denotes the number of actors in the frame. g j and ĝ j are the ground truth and
prediction of the center point for pixel j on heatmap OCP

h . Following [20, 49], we set α = 2
and β = 4 in our experiments. The second type of output is the shape prediction of a detected
actor, denoted as OCP

s ∈ R2×H
R ×

W
R , which determines the height and width of the detected

actor. The shape prediction loss LCP
s is computed as

LCP
s =

1
N

N

∑
i=1
|ŝi− si| (2)

Feature 
Map

Conv layer

Knot-Point 
detector (KP) 

Center-Point 
detector (CP) 

Center point 
heatmap (1)

Shape (2) Offset (2) Knot point 
heatmap (𝐾)

Distance 
(2𝐾)

Offset (2)

Figure 3: Point Head structure including CP detector (Left) and KP detector (Right).

where si = (x(i)1 −x(i)2 ,y(i)1 −y(i)2 ) and
(

x(i)1 ,y(i)1 ,x(i)2 ,y(i)2

)
is the bounding box for ith actor. We

denote its prediction as ŝi. The third type of output is an offset refinement along the height
and width of the actor, denoted as OCP

o ∈R2×H
R ×

W
R , to minimize the effect caused by strides.

When information of the detected actor projects back to the original frame, we apply this
offset along x and y axes to make our localization result more accurate. We define the offset
loss LCP

o inside each actor as

LCP
o =

1
N

N

∑
i

∣∣∣ôi−
( pi

R
− p̂i

)∣∣∣ (3)

where ôi and p̂i are the predictions of the offset and the center point for ith actor. We denote
pi as the ground-truth of the center point and R as the stride size.

As a result, the CP detector loss LCP
loc is given by

LCP
loc = λ

CP
h LCP

h +λ
c
s LCP

s +λ
CP
o LCP

o , (4)
where λ CP

h ,λ CP
s ,λ CP

o denote the weight hyper-parameter for the heatmap, shape and offset
loss. We set λ CP

h = 1,λ CP
s = 0.1,λ CP

o = 1 in our all experiments.
Knot-Point (KP) detector. To make the action localization more accurate, we generate three
types of outputs from the KP detector. The first output includes K-dimensional knot point
heatmap, denoted as OKP

h ∈ RK×H
R ×

W
R , which localizes K knot points of the detected actor.

The second output is K distances of knot points from the center point along the x and y axes,
denoted as OKP

d ∈ R2K×H
R ×

W
R . The third output is an offset refinement along the height and

width of each key point, denoted as OKP
o ∈ R2×H

R ×
W
R . For the KP detector losses LKP

h , we
have similar loss calculation as the CP detector and the only difference is that we need to add
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the loss of K points together. The the KP detector loss LKP
loc is computed as

LKP
loc = λ

KP
h LKP

h +λ
KP
d LKP

d +λ
KP
o LKP

o (5)
where λ KP

h , λ KP
d and λ KP

o denote the weight hyper-parameter for the knot point heatmap,
distance and offset loss. We set λ KP

h = 1,λ KP
d = 1,λ KP

o = 1 in our all experiments.

...

reshape & transpose

reshape softmax
Gram 
Matrix

reshape 

...

T ⨉ T

T ⨉ C ⨉ H/R ⨉ W/R T ⨉ C ⨉ H/R ⨉ W/R

Figure 4: Time-wise attention

Figure 4: Time-wise Attention (TWA) mechanism for modeling dependencies across frames.

3.4 Time-wise Attention (TWA)
In order to capture the long-range dependencies across frames, we introduce a Time-wise
Attention module in our Point3D, as shown in Figure 4. Specifically, we first stack features
f∈RC×H

R ×
W
R of T timestamps generated from Feature Extractor together as F∈RT×C×H

R ×
W
R

before feeding them into TWA module. Then, we reshape F into F̃∈RT×(C×H
R ×

W
R ). We take

the matrix multiplication between this reshaped matrix F̃ and its transpose to get the Gram
matrix G, which indicates the correlations among each time step. The Gram matrix is then
passed through a softmax layer and get the time-wise attention M, where each entry inside
M measures how one frame is related to another. To avoid gradient vanishing on the original
feature map, F̃ is multiplied by the Gram matrix G to generate matrix Ŝ. Finally, we reshape
Ŝ back to the shape of original matrix as S and add the original matrix F to get output Y. In
this way, temporal information between frames has been enhanced to help the 3D Head for
later action classification.

Figure 5: 3D Head () loss

3D 
Feature 
Extractor

Conv
Layer

FC 
Layer

Cross 
Entropy 

Loss...

T ⨉ C ⨉ H/R ⨉ W/R

Figure 5: Pipeline of 3D head. The output from TWA are fed into a 3D CNN backbone to
extract the features, then we input these features to two convolutional layers and one fully-
connected layer to do the class prediction. Finally, a cross entropy loss is applied to the
output for better classification.

3.5 3D Head
To improve the performance of action classification, we introduce 3D CNNs in our 3D Head
in Figure 5. Concretely, we first feed the output Y from TWA into a 3D backbone as the
feature extractor for its robust performance [44]. Then, we pipe these generated 3D features
into two convolutional layers followed by a fully-connected layer and obtain action label
index. During the training process, cross entropy loss is used to train the 3D Head. Assume
D is the one-hot encoding vector of ground truth class label. We define the classification loss
Lcls on the output of 3D Head as

Lcls =− log(d̂) (6)
where d̂ be the softmax output for the correct class entry in D.

Putting localization and classification loss together, the overall lossLoverall of our Point3D
is simply computed as

Loverall = λlocLloc +λclsLcls, (7)
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where λloc,λcls denote the weight hyper-parameter of localization and classification loss.
In order to explore how much each loss affects the final performance of our Point3D, we
perform extensive experiments on each parameter in the supplementary.
Tubelet linking. After obtaining the bounding box on each frame, we need to link each
frame together into the video clip. We use the linking algorithm from [12] and compute
scores with the definition in [19]. After all the linking scores are computed, the Viterbi
algorithm [8] is applied to find the optimal action tube.

4 Experiments
4.1 Experiments Settings
Datasets and Metrics. We perform experiments on the UCF101-24 [36], JHMDB [16],
and AVA [13] datasets. UCF101-24 consists of 3207 temporally untrimmed videos from
24 sports classes [36]. We report the action detection performance for the first split only
following the common settings as in [17, 19, 22, 27]. JHMDB is a subset of the HMDB-51
dataset and consists of 928 short videos with 21 action categories in daily life [16]. Each
video of JHMDB is well trimmed and has a single action instance across all the frames. We
report results averaged over three splits following the common settings as in [17, 19, 22, 27].
Following state-of-the-art methods [12, 17, 19, 22, 41], we adopt frame mAP and video mAP
to evaluate action detection accuracy. AVA is a more challenging dataset consisting of 211k
training and 57k validation video segments, where each actor in the key frame is labeled at
1 FPS and with one bounding box and multiple classes from 80 atomic action categories.
Following the common protocol [13, 19, 38], we report frame mAP performance with an
IoU threshold of 0.5 over the top 60 action classes on AVA v2.1 and v2.2 benchmarks.
Implementation Details. We employ the Hourglass-104 [25] as the feature extractor net-
work, closely following the same setting as the current state-of-the-art methods [19, 22] for
a fair comparison. The frame is resized to 256×256 for effective computations. The spatial
down-sampling ratio R is set to 4 and the resulted feature map size is 64×64. The number
of input frames T is 16. We use Adam with a learning rate of 5e-4 to optimize the feature
extractor and the Point Head. The 3D Head is optimized by using a SGD with a learning
rate of 1e-3. The overall network is trained in an end-to-end manner. The learning rate ad-
justs to convergence on the validation set and decreases by a factor of 10 when performance
saturates. For a fair comparison, we closely follow previous work [22, 38, 43] to train 12
epochs on UCF101-24 [36], 20 epochs on JHMDB [16], and 15 epochs on AVA [13]. The
total training time on 8 Tesla V100 GPUs is 153 hours.

4.2 Comparison with State of the Arts
JHMDB. We compare our method to the current state-of-the-art methods, including 2D
backbone methods (SSD+ACT [17], TACNet [35], Dance+Flow [48], MOC [22]) and 3D
backbone methods (C3D [15], I3D [13], S3D-G [37]). Table 1 shows the results on the JH-
MDB benchmark. Our method outperforms the state-of-the-art methods by a large margin
in terms of both frame-mAP and three video-mAP metrics. Except for video-mAP with a
threshold of 0.75 where we achieve a comparable result as MOC [22], our Point3D outper-
forms all other methods.
UCF101-24. We compare our method with the state-of-the-art methods in Table 1. Our
Point3D outperforms the current state-of-the-art methods by a significant margin over all
metrics. This direct comparisons demonstrate the improvement using Point3D. Introducing
the 3D Head in Point3D helps to outperform the 2D detectors [17, 22, 27, 34, 35, 48] by a
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Table 1: Comparison with state-of-the-art methods on the JHMDB and UCF101-24 bench-
mark. Bold and underlined numbers denote the first and second place.

Method
JHMDB UCF101-24

Frame-mAP Video-mAP(%) Frame-mAP Video-mAP(%)
0.5(%) 0.2 0.5 0.75 0.5:0.95 0.5(%) 0.1 0.2 0.5 0.75 0.5:0.95

2D backbone:
MR-TS R-CNN [27] 58.5 74.3 73.1 - - 39.9 50.4 42.3 - - -
A+AF [34] - 73.8 72 44.5 41.6 - - 73.5 46.3 15.0 20.4
SSD+ACT [17] 65.7 74.2 73.7 52.1 44.8 69.5 - 76.5 49.2 19.7 23.4
TACNet [35] 65.5 74.1 73.4 52.5 44.8 72.1 - 77.5 52.9 21.8 24.1
Dance+Flow [48] - - 74.7 53.3 45.0 - - 78.5 50.3 22.2 24.5
MOC [22] 70.8 77.3 77.2 71.7 59.1 78.0 - 82.8 53.8 29.6 28.3
3D backbone:
C3D [15] 61.3 78.4 76.9 - - 41.4 - 47.1 - - -
I3D [13] 73.3 - 78.6 - - 76.3 - - 59.9 - -
S3D-G [37] 77.9 - 80.1 - - - - - - - -
2D+3D backbone:
YOWO [19] 74.4 87.8 85.7 58.1 - 80.4 82.5 75.8 48.8 - -
Point3D (ours) 79.2 89.1 86.1 71.5 60.9 83.5 85.4 84.5 55.1 33.4 31.8

large margin. We also achieve a better performance than YOWO [19] with the 3D detector
with the help of our Point Head that tracks actions as moving points.
AVA. Following previous work [19, 38, 43], we report comparison results on the AVA v2.1
and v2.2 benchmarks in Table 2. As we can see, our Point3D pre-trained on Kinetics-
400 [18] outperforms YOWO [19] by 10.3% mAP, which verifies the effectiveness of the pro-
posed anchor-free architecture in spatio-temporal action localization. Typically, our Point3D
pre-trained on Kinetics-700 [18] achieves a new state-of-the-art performance on both bench-
marks. We also achieve comparable results as AIA [38], although we did not leverage dif-
ferent interactions to improve action detection performance.

Table 2: Comparison with state-of-the-art methods on the AVA v2.1 and v2.2 benchmark.
Method Pretrain v2.1 v2.2

2D backbone:
Relation Graph [47] Kinetics-400 22.2 -
LFB [42] Kinetics-400 27.7 -
SlowFast [7] Kinetics-600 28.2 29.1
3D backbone:
I3D [13] Kinetics-400 15.6 -
S3D [37] Kinetics-400 17.4 -
VAT [9] Kinetics-400 25.0 -
C-A RCNN [43] Kinetics-400 28.0 -
AIA [38] Kinetics-700 31.2 32.3
2D+3D backbone:
YOWO [19] Kinetics-400 19.2 20.2
Point3D (ours) Kinetics-400 29.5 30.6
Point3D (ours) Kinetics-700 31.6 32.8

Visualizations. In Figure 6, we visualize some qualitative examples of action detection on
JHMDB and UCF101-24 datasets. In general, our Point3D architecture exhibits a decent
job at localizing actions in videos. As can be seen in the heatmaps on the top row, our
Point3D get rid of the anchor to localize and classify the action by tracking the spatial and
temporal changes of key points in the frames. We defer more visualization examples to the
supplementary materials. We also visualize failure cases in the last row in Figure 6. Our
Point3D sometimes makes some false positive classifications at initial frames since it is hard
to recognize the action before it happens.
4.3 Ablation Study
In this section, we explore extensive ablation studies on each part of our Point3D, including
the Point Head, the backbone and the input of the 3D Head, the temporal length of input
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t1 t2 t3 t4 t5

Figure 6: Visualization results. The first row denotes the heatmaps generated from our KP
detector. The blue bounding boxes are ground truth while red and green are true and false
positive detections, respectively. Zoom in for a better view.

clips, and the hyper-parameters for weighting the overall loss. Unless specified, we conduct
all ablation studies on the JHMDB benchmark.
Each component of Point3D. In Table 3, we explore each part of our Point3D, including
CP detector, KP detector, 3D Head, and TWA. Introducing KP in the CP and CP+3D Head
increase the frame-mAP by 0.4% and 1.3%, respectively. Adding 3D Head to CP and CP+KP
improve the frame-mAP by 6.7% and 7.6%, respectively. This demonstrates the advantage
of 3D Head in action classification. Adding TWA to CP+KP and CP+KP+3D Head further
increases the frame-mAP by 2.0% and 1.1%, respectively, which shows the validity of the
proposed Time-wise Attention in our Point3D. Similar improvements are also shown in the
four video-mAP metrics.

Table 3: Exploration study on each part of our Point3D.
CP KP 3D TWA Frame-mAP(%) Video-mAP(%)

Head 0.5 0.2 0.5 0.75 0.5:0.95

X 70.1 76.5 77.2 69.1 58.3
X X 70.5 77.8 78.3 69.9 58.5
X X X 72.5 79.3 80.1 70.4 59.3
X X 76.8 85.6 82.7 70.7 59.8
X X X 78.1 88.2 85.6 70.8 60.4
X X X X 79.2 89.1 86.1 71.5 60.9

Table 4: Exploration study on the temporal length T of input clips.
T Speed(fps) Frame-mAP(%) Video-mAP(%)

0.5 0.2 0.5 0.75 0.5:0.95

1 38 69.8 78.5 77.4 63.2 53.8
3 32 72.1 81.4 80.8 66.4 56.7
5 27 76.3 85.2 83.6 69.5 59.6
7 23 78.6 88.5 85.4 70.8 60.3
9 19 78.8 88.7 85.8 71.1 60.5

13 15 78.9 88.9 85.9 71.2 60.7
16 13 79.2 89.1 86.1 71.5 60.9
32 7 79.8 89.6 86.5 71.9 61.4

Temporal Length of Input Clip. In this study, we explore the temporal length T of the
input clip in our Point3D. We vary T from 1 to 32 and report the results in Table 4. First,
we observe that when T = 7, our Point3D outperforms the single-frame detector by a large
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margin in terms of frame-mAP and video-mAP metrics. This confirms the importance of
temporal information for action recognition, which agrees with the motivation of adding a
3D Head to our Point3D. Second, we note that the detection performance will increase as
we vary T from 1 to 32 and the performance increase scope becomes smaller. Third, when
T = 32, we follow [19] and introduce the long-term feature bank [42] in the input of 3D
Head, which brings further improvements on the performance.

5 Conclusion

In this paper, we propose Point3D, a novel anchor-free architecture that is flexible in structure
and enjoy good computation efficiency for the task of spatio-temporal action localization.
Point3D consists of a Point Head for action localization and a 3D Head for action classifica-
tion. We conduct extensive experiments on the JHMDB, UCF101-24 and AVA benchmarks
where our method achieves the state-of-the-art results in terms of frame-mAP and video-
mAP. Comprehensive ablation studies also demonstrate the effectiveness of the Point Head,
the 3D Head, and TWA proposed in our Point3D.
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