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Abstract

Visual Place Recognition (VPR) is generally concerned with localizing outdoor im-
ages. However, localizing indoor scenes that contain part of an outdoor scene can be
of large value for a wide range of applications. In this paper, we introduce Inside
Out Visual Place Recognition (IOVPR), a task aiming to localize images based on out-
door scenes visible through windows. For this task we present the new large-scale
dataset Amsterdam-XXXL, with images taken in Amsterdam, that consists of 6.4 million
panoramic street-view images and 1000 user-generated indoor queries. Additionally, we
introduce a new training protocol Inside Out Data Augmentation to adapt Visual Place
Recognition methods for localizing indoor images, demonstrating the potential of In-
side Out Visual Place Recognition. We empirically show the benefits of our proposed
data augmentation scheme on a smaller scale, whilst demonstrating the difficulty of this
large-scale dataset for existing methods. With this new task we aim to encourage devel-
opment of methods for IOVPR. The dataset and code are available for research purposes
at https://github.com/saibr/IOVPR.

1 Introduction
In Visual Place Recognition the goal is to match a query image, for which the location is un-
known, through Instance Search to a gallery of images with known geolocations. Application
areas for this task include autonomous driving [4], SLAM [18], and matching historical ar-
chitectural images to modern images [29]. Research to develop VPR models has focused on
several directions ranging from recognizing popular landmarks [15, 19, 20] to arbitrary street
scene localization with street-view images [1, 26, 27]. Until now place recognition methods
have been exclusively developed with outdoor images as queries, yet often times indoor im-
ages provide information about the outside world through a window. Current methods fail
to localize these images. We introduce the new task Inside Out Visual Place Recognition
(IOVPR). The goal for this task is to match the outdoor content that is visible in an indoor
query image to a gallery of outdoor images, making it possible to localize images taken in
an indoor setting. Figure 1(a) shows such indoor queries with their ground truth location.

IOVPR can be employed for a wide range of applications, such as automated tagging
of user-images on e.g. travel platforms or social media. More specifically it is useful for
forensics, where localizing crime scenes is of great importance. Photographic evidence of
indoor environments is common, since these criminal activities usually take place behind
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(a) (b)
Figure 1: (a) Examples of images taken in Amsterdam that are localized in the Inside Out
Visual Place Recognition task. (b) Visualization of the Amsterdam-XXXL dataset. The
green points indicate the Outdoor-Ams locations. The blue and pink points are the locations
of the query images from Indoor-Ams validation set and test set respectively. The black
boundary indicates the neighbourhood for the Ams30k partition.

closed doors. In some cases, part of the outdoor environment is visible through a window.
Organizations such as Bellingcat and Homeland Security Investigations have been involved
in cases where images taken in an indoor environment as a house or car that contain a win-
dow have contributed to solving the case [6, 10]. The amount of available relevant indoor
images in a case varies, but as shown in the Sunflower Case [10], one suitable image can
already make a difference. For human trafficking or child abuse human lives can be saved
when images depicting victims are localized [24]. Another forensic application for IOVPR
is the detection of housing fraud, where house owners exceed legal rental restrictions. Since
address information is only released to tenants, IOVPR can be used to localize publicly ad-
vertised images. Localizing these images takes a lot of manual effort and time that we aim
to reduce by introducing IOVPR. To support the investigative efforts in this direction, which
are not supported by regular Visual Place Recognition, we explicitly focus on indoor envi-
ronments by releasing a new dataset Amsterdam-XXXL, as well as a novel training protocol
Inside Out Data Augmentation, that makes it possible to train Instance Search models for
IOVPR. We empirically show the benefits of this training protocol on a smaller scale and
show the difficulty of this large-scale dataset for existing methods.

The dataset introduced in this paper, Amsterdam-XXXL, consists of a spatially dense
collection of 6.4 million panoramic street-view images and user photos from indoor loca-
tions, as visualized in Figure 1(b). This dataset is 80 times larger on city-level than widely
used VPR datasets, to provide a full coverage of the central part of Amsterdam. A second
important aspect is the domain shift between the queries and the gallery. We are the first
to present a large-scale VPR dataset with such a domain shift. Additionally, we propose a
novel data augmentation technique to adapt VPR models such that they are suitable for this
new task. Specifically, we propose Inside Out Data Augmentation which we use to overlay
indoor scenes onto street-view images with known geo-locations, synthetically creating ‘in-
door’ query images with recognizable outdoor content. In this work we explore whether this
data augmentation scheme is suitable for synthesizing training data for focusing the attention
of existing VPR models on the window content. By using synthesized content it is possible
to avoid the costly data collection and annotation process.

Our contributions are the following. (i) We introduce Inside Out Visual Place Recogni-
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tion as a new task to localize indoor images through Instance Search. (ii) We release a new
dataset, Amsterdam-XXXL, to encourage the development of new and improved techniques
for IOVPR. (iii) We propose Inside Out Data Augmentation to train VPR models on syn-
thetically generated indoor images and present baseline results to show the potential of our
method and challenges on the large-scale aspects of this task.

2 Related Work

Datasets. Popular datasets that accelerated the development of Visual Place Recognition
models for landmarks are Oxford Buildings [20], Paris [21] and Holidays [11]. Each of these
datasets consists of a few thousand images and were suitable for early retrieval techniques
because of their size and large number of positives for each query [22]. Deep Learning
techniques required larger datasets which resulted in an extension of the Oxford and Paris
datasets by the use of 1M distractor images [22]. Other landmark datasets that have been
created for retrieval purposes are the Google Landmarks Dataset v1 [19] with 1M images and
15k distinct landmarks and its second version with over 5M images and over 200k distinct
landmarks [31]. Another fruitful direction in VPR research has been related to the use of
(panoramic) street-view images. Starting from NetVLAD[1], street-view datasets such as
Pittsburgh 250k and Tokyo 24/7 use large amounts of images depicting the same places over
time with the help of the Google Street View Time Machine. The Mapillary Street-level
Sequences dataset is a more diverse dataset for VPR, with 1.6 million images from different
cameras, captured over different times [30]. With data from different cities and continents, it
aims to create models that generalize better to new environments. A recent variation of VPR
is ground-to-aerial image geo-localization, where ground-view query images are compared
to aerial image in a reference set [2, 9, 16]. Popular datasets for this task, e.g. CVUSA [32]
and Vo and Hays’ dataset [28], use street-view images as query images.

Methods. For VPR, we distinguish supervised and weakly-supervised methods. Super-
vised methods rely on a strong ground truth label, such as the class label for a landmark,
to perform the optimization. These methods typically use local-feature based descriptors
[12, 25], global descriptors [8, 23], or both [3, 19, 22]. Differently, when dealing with street-
view images, the geolocation is used to select nearby images, but within this subset there is
no ground-truth for visual matches. Therefore it is necessary to employ weakly-supervised
methods. A common aspect of weakly-supervised models for VPR is the use of a triplet-
based ranking loss. As one of the first methods that used triplet-based ranking for VPR,
NetVLAD [1] uses a learnable layer based on VLAD [12] to aggregate local descriptors and
assign them to cluster centers. Extensions of NetVLAD are SARE [17], CRN [14], SFRS
[5], and Patch-NetVLAD [7]. SARE [17] adds additional constrains on intra-place and inter-
place feature embeddings, and CRN [14] uses context-aware feature reweighting to select the
most relevant contexts for localization through efficient hard negative mining. SFRS [5] uses
the NetVLAD backbone with self-supervised image-to-region similarities. These similari-
ties return soft labels that further help the system find difficult positive images. This can
be seen as additional, weak, training supervision which could help in refining fine-grained
similarities. Patch-NetVLAD [7] is a patch-based local descriptor method that reranks the
top-100 results retrieved by NetVLAD. Our work adapts existing VPR models, making them
suitable for the localization of indoor images, demonstrating the potential of IOVPR.

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2007

Citation
Citation
{Philbin, Chum, Isard, Sivic, and Zisserman} 2008

Citation
Citation
{J{é}gou, Douze, and Schmid} 2008

Citation
Citation
{Radenovi¢, Iscen, Tolias, Avrithis, and Chum} 2018

Citation
Citation
{Radenovi¢, Iscen, Tolias, Avrithis, and Chum} 2018

Citation
Citation
{Noh, Araujo, Sim, Weyand, and Han} 2017

Citation
Citation
{Weyand, Araujo, Cao, and Sim} 2020

Citation
Citation
{Arandjelovi¢, Gronat, Torii, Pajdla, and Sivic} 2016

Citation
Citation
{Warburg, Hauberg, Lopez-Antequera, Gargallo, Kuang, and Civera} 2020

Citation
Citation
{Cai, Guo, Khan, Hu, and Wen} 2019

Citation
Citation
{Hu, Feng, Nguyen, and Lee} 2018

Citation
Citation
{Lin, Cui, Belongie, and Hays} 2015

Citation
Citation
{Workman, Souvenir, and Jacobs} 2015

Citation
Citation
{Vo and Hays} 2016

Citation
Citation
{J{é}gou, Douze, Schmid, and P{é}rez} 2010

Citation
Citation
{Tolias and J{é}gou} 2014

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Cao, Araujo, and Sim} 2020

Citation
Citation
{Noh, Araujo, Sim, Weyand, and Han} 2017

Citation
Citation
{Radenovi¢, Iscen, Tolias, Avrithis, and Chum} 2018

Citation
Citation
{Arandjelovi¢, Gronat, Torii, Pajdla, and Sivic} 2016

Citation
Citation
{J{é}gou, Douze, Schmid, and P{é}rez} 2010

Citation
Citation
{Liu, Li, and Dai} 2019

Citation
Citation
{Kim, Dunn, and Frahm} 2017

Citation
Citation
{Ge, Wang, Zhu, Zhao, and Li} 2020

Citation
Citation
{Hausler, Garg, Xu, Milford, and Fischer} 2021

Citation
Citation
{Liu, Li, and Dai} 2019

Citation
Citation
{Kim, Dunn, and Frahm} 2017

Citation
Citation
{Ge, Wang, Zhu, Zhao, and Li} 2020

Citation
Citation
{Hausler, Garg, Xu, Milford, and Fischer} 2021



4 IBRAHIMI ET AL.: INSIDE OUT VISUAL PLACE RECOGNITION

3 Inside Out Visual Place Recognition
While Visual Place Recognition aims to recognize the location of a given outdoor query
image by finding the same location in a large gallery of outdoor images, we propose to
modify this task to enable the localization of indoor images. Specifically, for Inside Out
Visual Place Recognition the query set consists of indoor images and the gallery of outdoor
images. The challenge thus becomes to identify the portions of the indoor image that contain
information that can be used to match it to an outdoor image, and to perform matching based
on partial and occluded visual information.

3.1 Problem Formulation

To enable image matching, Visual Place Recognition models are trained by feeding triplets
consisting of a query image q, the easiest positive gallery image p∗ and a set of the most
difficult negative gallery images {n j| j ∈ {1, ...,N}} [1, 5, 17]. The easiest positive image
p∗ is obtained by ranking all gallery images within a distance of 10 meters from query q
and taking the one with the highest visual similarity. The set of negatives is constructed by
selecting the N hardest negatives from a pool of 1000 randomly sampled negatives, where N
is usually set to 10. While all negative images are at least 25 meters away from the query,
the hardest negatives are selected based on their visual similarity to the query.

For each training triplet {q, p∗,{n j}}, the goal is to learn a mapping function dθ , such
that the distance dθ (q, p∗) between the training query q and the easiest positive p∗ will be
smaller than the distance dθ (q,n j) between the query q and all negative images n j:

dθ (q, p∗)< dθ (q,n j),∀ j. (1)

Subsequently, the triplets of queries, positives, and negatives are used in a weakly-supervised
ranking loss Lθ :

Lθ = ∑
j

l
(

d2
θ (q, p∗)+m−d2

θ (q,n j)
)

(2)

where l is the hinge loss l(x) = max(x,0) and m is the margin.
Considering the Inside Out Visual Place Recognition task, most query images are indoor

images where the window only covers a small part of the image. This means that the majority
of the visual content of an indoor image cannot be used to identify its location, as it does not
match any of the outdoor gallery images. Because of this, the largest part of the image can
be considered noise, especially for a model that has never learned to distinguish information
about the indoor scene from the outdoor scene this can lead to a deterioration in performance.
To measure the potential of existing models for Inside Out Visual Place Recognition, we
introduce Inside Out Data Augmentation M as a training protocol to enforce that models
learn to differentiate between indoor and outdoor environments. M will be used to augment
the query only, with the help of a layout of an indoor space c and a binary mask b. A detailed
explanation of M, b, and c will be given in Section 3.2.

The goal for Inside Out Visual Place Recognition is to learn a representation in which
the augmented query is closer to the easiest positive than it is to all negative images:

dθ (M(q,b,c), p∗)< dθ (M(q,b,c),n j),∀ j. (3)
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Figure 2: Our approach has three phases: training, offline feature extraction, and infer-
ence. For training, we use Inside Out Data Augmentation to create synthetic training data
by overlaying queries with gray and real layouts with window proportions of >10%, >20%,
and >30%. For each combination of layout type and proportion, we train three backbone
models: NetVLAD, SARE, and SFRS. The training phase is followed by an offline feature
extraction phase where the embeddings for the gallery images are calculated. At inference
time, we distinguish between two scenarios: 1) the query is sent directly to the trained back-
bone for real layouts or 2) the query is first processed by a window segmentation network to
predict its gray layout after which it is sent to the trained backbone for gray layout. In both
scenarios, we obtain the top n results of most similar gallery images to the queries.

To optimize for this new goal we modify the loss function in equation 2 and we formulate
our new loss function as follows:

Lθ = ∑
j

l
(

d2
θ (M(q,b,c), p∗)+m−d2

θ (M(q,b,c),n j)
)
. (4)

Ideally we would have a large set of annotated indoor images to measure the potential of
existing models for Inside Out Visual Place Recognition. However, such a dataset is cur-
rently not available and collecting it would be a costly process, since it should have a large
variety of outdoor scenes that are visible through the window and this can only be manually
determined. Our training protocol is introduced to overcome this barrier.

3.2 Inside Out Data Augmentation

The training protocol we propose, Inside Out Data Augmentation, consists of applying an
augmentation function M to each query image q to create a synthetic indoor environment
with an outdoor view. As input the augmentation function takes a query street-view image
q, a layout c of an indoor space with a window, and a binary mask b. The layout and
binary mask are obtained from a reference dataset for semantic segmentation with pixel
level annotations for windows. The layout represents the indoor scene itself and the binary
mask is retrieved from applying a binary encoder on the layout that segments the layout
into window and non-window categories. To perform the augmentation, we do a pixelwise
multiplication between the street-view query image and the binary mask and a pixelwise
multiplication between the layout and the inverse mapping of the binary mask. By adding
these two components, we obtain a new query image with an indoor layout on top of it. The
augmentation function is formalized as:

M(q,b,c) = q�b+ c�b−1. (5)
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For the layout, we consider two options: a real layout and a gray layout. The real layout
refers to the original indoor scene of the reference image. The gray layout uses the same
reference image, but every non-window pixel is matched to the mean color of the ImageNet
training set to fully discard any irrelevant visual content. Examples of both layout types
can be found in the Supplementary Material A2. During inference the masks to perform
gray layout data augmentation are not available, so instead we use a segmentation network
to detect the window portions of the query image. An overview of our proposed method is
given in Figure 2, highlighting three stages: training, offline feature extraction and inference.

4 The Amsterdam-XXXL Dataset
To evaluate the performance of models on IOVPR we present the Amsterdam-XXXL dataset.
This dataset consists of three partitions: 1) Outdoor-Ams, 2) Indoor-Ams, and 3) Ams30k.
The datapoints are presented in Figure 1(b).1 Outdoor-Ams and Ams30k consist of panoramic
street-view images that are selected from a set that has been made publicly available by the
Municipality of Amsterdam.2 Indoor-Ams consists of two sets of 500 user-generated photos,
one consisting of images with creative commons licenses and the other provided by TripAd-
visor.3 Examples of these images for each data source are presented in the Supplementary
Material A1. All partitions will be published and made available for research purposes.

Outdoor-Ams. This partition consists of 6,467,112 GPS-annotated street-view images taken
at 269,463 locations in Amsterdam, where each panoramic image is cut into 24 partially
overlapping images of 480×640. With 6.4M images, this is much larger on city-level than
widely used VPR datasets and results in a more challenging dataset. Details regarding the
coverage of the area and the cutting process are described in the Supplementary Material A3.

Indoor-Ams. This partition consists of two query sets for evaluation. To test the perfor-
mance of our approach properly, at least a few hundred images which show an outdoor scene
through a window, but which are taken indoors, are needed. We construct the Indoor-Ams set
for this purpose, which consists of a validation and test set of 500 indoor images each with
a view of an outdoor scene. These splits are created based on the image license, ensuring
consistent licensing within each split. The validation set consists of 500 images in total from
platforms with images with Creative Commons licenses (335), namely Flickr, Unsplash, and
Traffickcam and self-made pictures taken from public and university buildings(165). The test
set consists of 500 images that are selected from an image collection of user images provided
by TripAdvisor, consisting of hotels, restaurants, and other visiting areas in Amsterdam.

Indoor-Ams consists of images taken in the time period from 2004 until 2021. We man-
ually verified that all query images (even ones from before the panorama images were taken)
can be visually matched to the appearance of the location in the panoramic images. About
5% of these images are night images, where we made sure that the outdoor area is still visi-
ble. The window proportions vary from 10-80%. Due to most neighborhoods being mainly
residential, we decided not to take pictures there to respect the resident’s privacy. Therefore
our dataset only contains public images from residential places with a Creative Commons
license. As a consequence, the majority of the images are collected from and taken at public,
commercial, and university spaces and released with a license that can be used for research

1Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap.
2https://api.data.amsterdam.nl/
3A dataset provided by © 2020 TripAdvisor LLC was used for analysis and visualisation.
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purposes. Therefore Indoor-Ams has a spatial bias to the center of Amsterdam. However,
this spatial bias should not affect the methods that are trained on Amsterdam-XXXL, since
the query sets only serve as a validation and test set.

The annotation process has been done by three annotators who live in Amsterdam. They
manually inspected each image and its tag. Details about the selection and annotation process
are described in the Supplementary Material A4.

Ams30k. This is created for training purposes and is for this reason modelled after Pitts30k
[1], where 30k represents the number of gallery images. The total number of panoramas in
Ams30k is 2443 which results in almost 59k street-view images. Details about its splits
can be found in the Table 1 in the Supplementary Material A5. To guarantee variation in
viewpoint, light, and occlusion, the gallery images are from 2018 and the query images from
2019. We select the geographical region ’the Pijp’ in Amsterdam as a region for this dataset
with good coverage, since it has a large variety in architectural styles, a good balance of
houses, restaurants and stores, and green areas (i.e. parks). We define the train, validation,
and test set through geographical boundaries, enforcing that the three sets have a similar
surface area.

5 Experimental Setup
Inside Out Data Augmentation. To perform Inside Out Data Augmentation as explained
in Section 3.2, we take a subset of ADE20K. This dataset has images that cover a range of
scenes and objects and are pixel annotated with 150 different classes. Our subset consists of
indoor images with a window, more specifically 4687 images in the train set and 461 images
in its validation set. After reshaping these images to 480×640, we apply our layout function
from Equation 5 and create two sets by using two layouts, the original layout and a gray
layout. Examples of the output are shown in Supplementary Material A2. To measure the
effect of the percentage of available window pixels for training and inference, we create three
different sets of images per data augmentation type depending on the window proportion of
the layouts, namely >10%, >20%, and >30%. In this setup, > k% stands for k%-100%.

Backbones. We evaluate four model architectures as possible backbones: NetVLAD[1],
SARE [17], SFRS [5], and Patch-NetVLAD which were briefly discussed in Section 2.
NetVLAD is a trainable VLAD layer, inspired by the Vector of Locally Aggregated De-
scriptors [12], a popular descriptor pooling method for instance retrieval before the Deep
Learning era. It generates global features of images by aggregating feature maps by sum-
ming residuals between features and cluster centers. SARE [17] which stands for Stochastic
Attraction-Repulsion Embedding aims to capture the intra-place attraction and inter-place
repulsion in the embedding space. This is achieved by minimizing the KL divergence be-
tween the learned and the actual probability distributions. SFRS [5] refers to Self-supervising
Fine-grained Region Similarities. It splits image feature maps in 4 half and 4 quarter regions
and computes similarity scores between these regions and the query during training. These
similarities are used to supervise the network through a soft cross-entropy loss on top of the
triplet loss, to enhance the learning of local features. Patch-NetVLAD [7] combines global
with local descriptor methods. It uses NetVLAD descriptors to retrieve the top-k, with de-
fault k = 100, most likely matches and performs local matching of patch-level descriptors
at multiple scales to reorder this top-k. Then a RANSAC-based scoring method is used for
higher retrieval performance. We test a new model architecture by combining the patch-
based local feature method of Patch-NetVLAD with the SFRS backbone and show initial
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Figure 3: Results of Inside Out Visual Place Recognition on the Amsterdam-XXXL dataset.
Figure (a) and (b) present the results for gray and real layouts on Ams30k, where the dotted
pink line indicates the results of not using Inside Out Data Augmentation (i.e., no layouts).
(c) and (d) show the results on Indoor-Ams for the val and test set respectively, evaluated on
subsets of Outdoor-Ams. This is best viewed in color.

results on Outdoor-Ams. We name this method Patch-SFRS.

Window Segmentation Network. To obtain a gray layout at inference time for the gray
layout model, we finetune the network UPerNet50 [33] for window segmentation. For fine-
tuning we use the same subset of the ADE20K dataset as for Inside Out Data Augmentation
[34]. After finetuning UPerNet50 on two classes (i.e., window and non-window) for three
epochs we obtain an accuracy score of 95% on the validation set of ADE20K.

Evaluation Criteria. As is typical for VPR we report our results using the Recall@K
metric [13]. More specifically, the query image is seen as correctly localized if at least one
of the top K retrieved gallery images is within a radius of n meters from the ground truth
position of the query. The radius for VPR is usually set to 25 meters. Since the street-view
images can be taken further away from the building, we increase the distance to 50 meters
for our experiments on Indoor-Ams. Regarding the recall, we set our K values for our small
sets to 1, 5, 10, 15, 20, and 25. For our large set of 6.4M images, we add 50, 75, and 100.

6 Results
Inside Out Data Augmentation. In our experiments, we analyze the effect of Inside Out
Data Augmentation on our queries during training. In particular we study the difference
between using gray and real layouts. In addition, we take models trained on Ams30k without
layouts, to measure the contribution of Inside Out Data Augmentation. In Figure 3, the
results are presented on Ams30k for gray (a) and real layouts (b) with a window proportion
of >20%. The results for >10% and >30% and the corresponding tables can be found in
Supplementary Material B Tables 2-3. The best performing model in both setups is SFRS
with a window proportion of >20%, where the model for gray layouts (66% Recall@5)
performs slightly better than for real layouts (61% Recall@5). Comparing this to SFRS that
has not been trained with Inside Out Data Augmentation, we notice a difference of 25%
with the best model for gray layouts and 31% with real layouts. We conclude that the use of
Inside Out Data Augmentation significantly helps in localizing indoor images from Ams30k
and that the benefits of the gray and real layouts are similar.
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Window Proportion. We study the effect of the proportion of available window pixels in
images by setting a lower bound on the amount of visible window pixels. For both the gray
and the real layouts of Ams30k we compare three lower bounds, namely >10%, >20%,
and >30% of the full image. We study how well these different training setups generalize
by training on these three different sets and testing on a test set with a window proportion
of at least > 10% of the full image. Considering the different window proportions, Figure
B.1 in the Supplementary Material indicates that the >10% proportion performs worst out
of the three proportions. We expect that for this proportion there is insufficient information
for models to learn about outdoor environments. We also see that for gray and real layouts,
the models trained on a window proportion of >20% and >30% perform well on the test
set, despite the test set containing images with a window proportion of >10%. Overall the
highest performance is obtained by models trained on images with a >20% proportion. For
this reason we recommend training on images with at least a decent window proportion of
20% to make sure that the network has enough opportunities to optimize for this task.

Backbone Comparison. For each of the chosen backbones NetVLAD, SARE, and SFRS
we measure the performance on different layouts and window proportions by employing
three different backbones, two types of layouts, and three window proportions. Additionally,
we evaluate Patch-NetVLAD and Patch-SFRS on Ams30k queries with gray layouts and
real layouts. With respect to the choice of backbone, we see that a strong model backbone
contributes more to the performance than the window proportion that is used during training,
except for when the model has not seen any layouts during training. In general we see that the
SFRS model outperforms the other backbones in every setup. An unexpected result is that
Patch-SFRS performs worse than SFRS on Ams30k for both real and gray layouts. When
not using any layouts during training, Patch-SFRS does also not improve the performance.
From Figure 3(d) we see that Patch-SFRS performs worse than SFRS on a small scale subset.
We expect that the higher overall performance of SFRS might be due to its fine-grained
approach, which utilizes region-similarities, allowing SFRS to focus on the information rich
window parts of the images. Hence we recommend future approaches to focus on fine-
grained techniques.

Large Scale Visual Place Recognition. To get an understanding of how well our proposed
approach scales to a large gallery, we evaluate the performance of using indoor images cap-
tured by users. Some success and failure cases from our best performing model on the test
set of Indoor-Ams are presented in Figure 4. The difficulty of VPR is directly related to
the number of gallery images, due to the potential for false positives (i.e. distractor images
being ranked high) increasing with gallery size. With 6.4M images Amsterdam-XXXL is
80 times larger than widely used VPR datasets on city-level (e.g., Tokyo 24/7, Pitts250k,
and city-splits of Mapillary Street-level Sequences Dataset) and thus includes many more
distractors. To show the effect of distractors we zoom in on the reported results by creating
three subsets of Outdoor-Ams of 12k, 100k, and 1M images. In Figure 3(c) we present the
Recall@15 results of SFRS, Patch-NetVLAD, and Patch-SFRS trained with and without our
data augmentation methods of 20% for the validation set of Indoor-Ams, Figure 3(d) shows
the same results for the test-set. As demonstrated in this figure, when evaluated with fewer
distractors (as is typical for VPR) SFRS with real layouts shows a large improvement over
the SOTA of up to 50% and 30% for the 12k and 100k subsets. However, if the number
of distractors is increased to well beyond what is common for standard VPR, the perfor-
mance for both methods collapses. For a high number of distractors we see that reranking
the top-100 results improves the performance and therefore Patch-SFRS performs best.
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Figure 4: Qualitative results of Inside Out Visual Place Recognition success and failure
cases. These results demonstrate the potential of our approach in returning the correct loca-
tion (sometimes even multiple times), but also how challenging it is to find the correct match
when very little is visible of the outdoor scene.

To highlight the differences between IOVPR and VPR, we add a black and gray box, for
vanilla SFRS models trained on Tokyo 24/7 and Pitts250k respectively as reported in [5],
to Figure 3. On VPR this model almost achieves 100% correctness. The same model has
a score of nearly 8% on a similarly sized subset of Outdoor-Ams. Although our proposed
modifications boost this to almost 30%, existing VPR methods are clearly not suited for
IOVPR. Given these results we conclude that the scale of Outdoor-Ams remains an interest-
ing challenge for Visual Place Recognition.

7 Conclusion

In this work, we have introduced the novel task Inside Out Visual Place Recognition and a
large-scale dataset Amsterdam-XXXL to train and evaluate this task on. Additionally, we
proposed Inside Out Data Augmentation as a new training protocol to extend Visual Place
Recognition for localizing indoor images. The results on Ams30k and subsets of Outdoor-
Ams show the potential of Inside Out Data Augmentation, on both synthetic and real indoor
images. However, this task remains a challenge for existing Visual-only Place Recognition
methods on a large-scale dataset with millions of images. This opens up a range of possible
future directions, including multimodal approaches.

We are aware of the fact that techniques for Inside Out Visual Place Recognition have the
potential to cause harm related to the privacy of individuals when misused. While we con-
demn any non-ethical applications, we hope to inspire the research community to work on
this task for good purposes and to help advance the state-of-the-art for Visual Place Recog-
nition on indoor environments.
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