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Abstract

Contrastive learning applied to self-supervised representation learning has seen a
resurgence in deep models. In this paper, we find that existing contrastive learning
based solutions for self-supervised video recognition focus on inter-variance encoding
but ignore the intra-variance existing in clips within the same video. We thus propose to
learn dual representations for each clip which (i) encode intra-variance through a shuffle-
rank pretext task; (ii) encode inter-variance through a temporal coherent contrastive loss.
Experiment results show that our method plays an essential role in balancing inter and
intra variances and brings consistent performance gains on multiple backbones and con-
trastive learning frameworks. Integrated with SimCLR and pretrained on Kinetics-400,
our method achieves 82.0% and 51.2% downstream classification accuracy on UCF101
and HMDB51 test sets respectively and 46.1% video retrieval accuracy on UCF101,
outperforming both pretext-task based and contrastive learning based counterparts. Our
code is available at https://github.com/lzhangbj/DualVar.

1 Introduction
Labeled data is the fundamental resource in deep learning era however is laborious to ac-
quire. As a result, researchers resort to self-supervised learning to utilize unlabeled data.
Recent rapid development of self-supervised learning [5, 6, 10, 12] has been largely ben-
efited from contrastive learning [41]. With InfoNCE loss [33], contrastive learning tries to
pull examples from the same instance (positive pairs) close while repelling those from differ-
ent instances (negative pairs). This has been largely used in image tasks for its effectiveness.
Meanwhile, as the most important information source in daily life, video has been actively
studied towards various research directions, such as architecture design [38], class incremen-
tal learning [37] and multi-model learning [39]. As a result, recent works tried to transplant
it into video level [8, 24, 30], i.e. instance discrimination in the video level. Though having
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achieved remarkable performances, we challenge that such learning goal does not conform to
the innate inter-intra variance of videos, thus is incomplete for video representation learning.
Specifically, different clips sampled from different time spans of a video can exhibit different
semantics. For instance, running and jumping are two different mini-actions though they are
both sampled from a video classified as HighJump. As contrastive learning enforces features
of clips sampled from a video to always be the same, the pretrained encoder is easily overfit
to the pretrained dataset. As a result, feature distributions of videos are sparse (supplemen-
tary Figure 2) and instance discrimination ability is over strong (Table 2). By considering
such intra-variance, pretrained encoder can be more generalizable to downstream tasks thus
wins a better transferring ability. Previous works [9, 18, 22, 40, 43] have proposed to learn
such temporal differences using frame/clip order verification tasks. However, the order of
sub-clips is largely determined by continuity instead of semantic difference between sub-
clips and is ambiguous in some repetitive actions.

In this work, we delve into self-supervised video representation learning from the per-
spective of inter-intra variance encoding. We theoretically and experimentally find out that
contrastive learning [33] overemphasizes the learning of inter-variance but ignores intra-
variance. Previous works [23, 35] tried to separately encode inter and intra variances by
appending an extra projection head to solely solve a pretext task. In contrast, we learn
dual representations for each clip, which joinly encodes intra-variance between sub-clips by
a shuffle-rank pretext task and inter-variance between videos by a temporal coherent con-
trastive loss. Besides, we adopt a ranking loss to induce a small margin between sub-clip
features to reduce interference between inter and intra variance encoding. We verify its ef-
fectiveness by a series of experiments on UCF101 [27] and HMDB51 [17] datasets and show
that our method can balance inter-intra feature variances (Table 2) and achieve superior per-
formances on both finetuning and video retrieval task to state-of-the-arts.

In a nutshell, our contributions are 4-fold (i) We propose a shuffle-rank pretext task,
which induces a small margin between intra-variant features, alleviating contradiction be-
tween inter-video and intra-video discrimination. (ii) We propose temporal coherent contrast
on the dual representations to model inter variance learning. (iii) We learn joint inter-intra
variant dual representations as opposed to solely inter-variant representation in contrastive
learning. We also conduct a series of experiments to validate the effectiveness of our method
on inter-intra variance encoding. (iv) The proposed method can be flexibly applied to con-
trastive learning frameworks, e.g. MoCo and SimCLR, with multiple spatial-temporal back-
bones and achieves superior performances to state-of-the-art methods.

2 Related work

2.1 Self-supervised video recognition
We classify existing self-supervised video recognition methods into two categories based on
type of the supervision signal enforced: pretext task based and contrastive learning based.

Pretext tasks Pretext task based solutions design handcrafted tasks to solve. Verifying
frame and clip order [9, 18, 22, 40, 43] can provide useful order information for down-
stream transferring and is proved to be effective. Utilizing spatial and temporal information
[14, 21, 34] has also achieved remarkable performances. For example, Wang et al. [34]
proposed to learn spatial-temporal features by designing multiple spatial-temporal statistics
prediction tasks which however introduces more complexity. Recently, exploring speedness
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in videos have become very popular [23, 25, 26, 35, 44] and also achieved state-of-the-art
performance [23]. In this paper, we also propose a shuffle-rank pretext task to encode tempo-
ral intra-variance between sub-clips. It is essentially different from order verification in that
(i) We aim to learn a variety of intra-variance between clips by comparing sub-clip feature
similarities instead of simply predicting clip order, which is ambiguous when clip changes
are small; (ii) Unlike order classification, our ranking loss induces a small margin between
sub-clip features, alleviating contradiction between inter and intra variance encoding.

Contrastive learning Contrastive learning tries to distinguish same instances from differ-
ent ones. MoCo [12] designed a negative queue to store more negatives. SimCLR [6] proved
that large batchsize is crucial to achieve superior performance. On the video level, based
on MoCo, Tian et al. [30] built a temporarily decayed negative queue to model temporal
variance. Rui et al. [24] conducted sufficient experiments to study video-level SimCLR’s
performance. Kong et al. [16] learned feature proximity between video and frame features.
Feichtenhofer et al. [8] systematically analyzed four self-supervised learning frameworks on
videos. However, all these contrastive learning methods aim to learn inter-video variance and
intra-video invariance. Differently, Tao et al. [28] proposed an inter-intra contrastive learning
framework by creating different positive and negative pairs but achieved little performance
gains. In contrast, our work makes use of dual features to encode temporal differences be-
tween sub-clips and jointly utilized pretext tasks to achieve much better performance.

2.2 Intra-class and inter-class variance

Balancing inter and intra class variance has been a critical research field in various areas.
Bai et al. [3] leveraged intra-class variance in metric learning to improve the performance of
fine-grained image recognition. Liu et al. [19] found out that negative margins in softmax
loss results in lower intra-class variance and higher inter-class variance for novel classes in
few shot image classification. To alleviate long-tailed distribution, Liu et al. [20] proposed
to increase intra-variance of tail classes by augmenting it with feature distributions of head
classes. In this paper, we instead treat each video as an individual class and jointly encode
instance-wise intra and inter variances in unlabeled videos. We experimentally study the
effect of our model on inter-intra variance learning in section 5.3.

2.3 Ranking measure

Approximating ranking measures using functions has been studied by multiple previous
works. Burges et al. [4] investigated using gradient descent methods to approximate rank-
ing functions and proposed RankNet for pairwise ranking. Chen et al. [7] concluded that
an essential loss is both an upper bound of the measure-based ranking errors and a lower
bound of the loss functions. Recently, Andrew et al. [2] approximated ranking-based metric
(Average Precision) using logistic functions and proposed Smooth-AP. Ali et al. [1] further
applied such idea into self-supervised learning, formulating it as a ranking problem. In this
work, we also use logistic function for ranking approximation. Differently, we propose to
rank sub-clip features for sub-clip discrimination thus learn the intra clip variances.

Citation
Citation
{Peihao, Deng, Dongliang, Xiang, Runhao, Shilei, Mingkui, and Chuang} 2021

Citation
Citation
{Sagie, Ariel, Oran, Inbar, Freeman, Michael, Michal, and Tali} 2020

Citation
Citation
{Simon, Givi, and Paolo} 2020

Citation
Citation
{Wang, Jiao, and Liu} 2020{}

Citation
Citation
{Yao, Liu, Luo, Zhou, and Ye} 2020

Citation
Citation
{Peihao, Deng, Dongliang, Xiang, Runhao, Shilei, Mingkui, and Chuang} 2021

Citation
Citation
{He, Fan, Wu, Xie, and Girshick} 2020

Citation
Citation
{Chen, Kornblith, Norouzi, and Hinton} 2020

Citation
Citation
{Tian, Yibing, Tianyu, Wenhao, and Wei} 2021

Citation
Citation
{Rui, Tianjian, Boqing, Ming-Hsuan, Huisheng, Serge, and Yin} 2021

Citation
Citation
{Kong, Wei, Deng, Yoshinaga, and Murakami} 2020

Citation
Citation
{Feichtenhofer, Fan, Xiong, Girshick, and He} 2021

Citation
Citation
{Tao, Wang, and Yamasaki} 2020

Citation
Citation
{Bai, Gao, Lou, Wang, Huang, and Duan} 2018

Citation
Citation
{Liu, Cao, Lin, Li, Zhang, Long, and Hu} 2020{}

Citation
Citation
{Liu, Sun, Han, Dou, and Li} 2020{}

Citation
Citation
{Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, and Hullender} 2005

Citation
Citation
{Chen, Liu, Lan, Ma, and Li} 2009

Citation
Citation
{Andrew, Weidi, Vicky, and Andrew} 2020

Citation
Citation
{Ali, Ali, Tinne, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2020



4 ZHANG ET AL.: INTER-INTRA DUAL VIDEO REPRESENTATION

3 Preliminary
In this section, we first introduce inter-intra variances in video data, and then explain the
disadvantage of video contrastive learning which only encodes inter-variance. This leads to
our motivation of learning inter-intra variant dual representations in section 4.

3.1 Video data distribution with inter-intra variances
Suppose we have a collection of N unlabeled videos {Vi}N

i=1. Limited by memory, we sam-
ple a total of M clips {ci}M

i=1 from videos, with M
N clips per video. During self-supervised

pretraining, a clip ci is sampled and encoded by our model f into a normalized feature vec-
tor zi, i.e. zi = f (ci). The goal of self-supervised pretraining is to learn a good encoder f
that can be well transferred to downstream video action recognition. Therefore, firstly, we
should distinguish different videos based on their very different contents, which is character-
ized as inter-variance (σinter). Secondly, semantics of clips from the same video vary a lot,
e.g. running and jumping are two different mini-actions at different time spans of a video
classified as HighJump. Our motivation is that an encoder learning on both clip-level and
sub-clip-level has a more generalized transfer ability in downstream tasks. We thus aim to
produce inter and intra variant embedded features {z}.

3.2 Self-supervised contrastive representation learning
Contrastive learning expects clips from the same video to attract each other and repel those
from different videos. Formally, the clip-feature based contrastive loss is denoted as :

Lc =−
1
M

M

∑
i=1

log
exp(zi · zi+/τ)

∑
M
k=1 1[k 6=i]exp(zi · zk/τ)

(1)

where zi+ is a positive (+) clip feature sampled from the same video of zi and τ is a tempera-
ture parameter. We can easily extend the analysis in [31] to find that such contrastive learning
has an objective of persistently increasing σinter and decreasing σintra, leading to insignifi-
cant intra-variance (see supplementary section 6). In this work, we propose a shuffle-rank
pretext task to compensate for lack of intra-variance and a temporal coherent contrast loss
between sub-clip representations to encode σinter.

4 Methodology

4.1 Dual representations
In contrastive learning, an n-frame clip is typically encoded into a single feature for rep-
resentation without considering contrast between the inner sub-clips. We instead use dual
feature vectors for representing two halves of the input clip (Figure 1).

Formally, in addition to the original clip projector, we add another projection head, de-
noted as dual projection head. A sampled clip c is projected by the dual projection head into
dual features r = (q1,q2). Our goal is then to jointly encode the inter and intra variances into
r, i.e. differences between two sub-clips of c and between c and other videos.

4.2 Shuffle-rank
To encode differences between two sub-clips into dual representations, we propose a shuffle-
rank pretext task to align raw sub-clips and learned dual features. In this section, we first
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Figure 1: Method Overview. During the intra-variance learning stage, we shuffle and aug-
ment clip c into ŝ and encode it into dual representations p1 and p2, which correspond to the
unshuffled dual representations q1 and q2 respectively. If we treat q1 as anchor, then repre-
sentation of the same sub-clip (Red) should be ranked higher than that of different sub-clips
(Green). During the inter-variance learning stage (left-hand side), the temporarily variant
dual representations should however keep coherence in that all dual representations of clips
sampled from the same video (c, c+) should be regarded as positive pairs (+) in contrastive
learning. Encoder g is momentum updated by f in MoCo but equals to f in SimCLR.

describe our method, then explain the differences between our method and order prediction,
which refers to simply predicting sequential order of clips and has been extensively studied
before [14, 22, 43].

Overall, shuffle-rank consists of two stages, sub-clip shuffling and representation rank-
ing. In the sub-clip shuffling stage, the sub-clips of an input clip c is shuffled and augmented
into ŝ. Both clips will then be projected into dual representations for sub-clips. In the rep-
resentation ranking stage, dual features of c and ŝ will be pairwisely ranked to achieve cor-
respondence between sub-clips and dual features through a ranking loss. As a result, the
predicted dual features can genuinely reflect the intra-variance between sub-clips.
Sub-clip shuffling We first uniformly divide clip c into two sub-clips c1 and c2. By apply-
ing data augmentation on c, we get a new augmented clip ĉ = (ĉ1, ĉ2), where hat refers to
augmentation. We further shuffle ĉ to get its shuffled version ŝ = (ĉ2, ĉ1). Both c and ŝ are
then projected into dual representations r and r̂s through the dual projection head.

c =(c1,c2) (2)

ĉ = (ĉ1, ĉ2) = augment(c1,c2), ŝ = (ĉ2, ĉ1) = shu f f le(ĉ) (3)

r = (q1,q2) = f (c), r̂s = (p2, p1) = f (ŝ) (4)
where f is the encoding function containing a backbone and a projection layer.
Representation ranking Shuffle-rank alone can not guarantee the correspondence be-
tween sub-clip and dual features. Therefore, we apply a ranking measure [4, 7] to learn
the subtle temporal intra-variances between sub-clips by enforcing the sub-clip feature cor-
respondence, i.e. {c1, ĉ1} ⇒ {q1, p1} and {c2, ĉ2} ⇒ {q2, p2}. Formally, if we regard q1 as
anchor, then p1 should be ranked before both q2 and p2 while the ranking between q2 and p2

is unknown, as shown in Figure 1. Penalties should be heavily imposed when such ranking
is wrong and stay zero when the ranking is correct. However, directly applying such discrete
loss would harm the stability of training. In order to have a smoother gradient backpropaga-
tion, we adopt the logistic loss function [4]. For a sub feature x ∈ {q1, p1,q2, p2}, we denote

Citation
Citation
{Kim, Cho, and Kweon} 2018

Citation
Citation
{Misra, Zitnick, and Hebert} 2016

Citation
Citation
{Xu, Xiao, Zhao, Shao, Xie, and Zhuang} 2019

Citation
Citation
{Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, and Hullender} 2005

Citation
Citation
{Chen, Liu, Lan, Ma, and Li} 2009

Citation
Citation
{Burges, Shaked, Renshaw, Lazier, Deeds, Hamilton, and Hullender} 2005



6 ZHANG ET AL.: INTER-INTRA DUAL VIDEO REPRESENTATION

its leave-self-out set of dual representations as x+ and its unpaired representation set as x−:
q1+ = {q1, p1}\{q1}= {p1}, q1− = {q2, p2} (5)

q2+ = {q2, p2}\{q2}= {p2}, q2− = {q1, p1} (6)

p1+ = {q1, p1}\{p1}= {q1}, p1− = {p2,q2} (7)

p2+ = {q2, p2}\{p2}= {q2}, p2− = {p1,q1} (8)
Let S be a function mapping two clips to their dual features set, i.e. S(ci, ŝi)= {q1

i ,q
2
i , p1

i , p2
i },

then the ranking loss between unaugmented original clips {ci} and their shuffled and aug-
mented clips {ŝi} is:

Lunaug
rank =

M

∑
i=1

∑
x∈S(ci,ŝi)

∑
y∈x+,z∈x−

log(1+ exp(
sim(x,z)− sim(x,y)

θ
)) (9)

where θ is a temperature parameter. In practice, for augmentation, we also compute ranking
loss between augmented clips {ĉi} and {ŝi}, denoted as Laug

rank:

Laug
rank =

M

∑
i=1

∑
x∈S(ĉi,ŝi)

∑
y∈x+,z∈x−

log(1+ exp(
sim(x,z)− sim(x,y)

θ
)) (10)

Final ranking loss Lrank = 0.5 ∗Lunaug
rank + 0.5 ∗Laug

rank. In Figure 1, we only demonstrate the
computing of Lunaug

rank for simplicity.
The adopted ranking loss is advantageous over order prediction in two aspects: (i) Order

only reflects very little information of intra-video variance, whereas in our case, by com-
paring the pairwise similarities between sub-clip representations, a larger variety of intra-
variance can be encoded. (ii) Softmax cross entropy loss based order prediction induces
large margin between intra-video features [15], thus decreases the margin between inter-
video features and disturbs inter-variance encoding. Instead, ranking loss only requires a
small margin between similarity of positive intra pairs (x and y∈ x+) and negative intra pairs
(x and z ∈ x−). Such a loss is also safer since sub-clip differences vary a lot from video
to video, e.g. frames in a Typing video seldom changes, exhibiting smaller intra-variance,
while frames in a ClipDiving change very fast, resulting in large intra-variance.

In section 5.3, we compare our shuffle-rank task with a common order prediction task.
We also show that the temperature θ plays an important role in modeling such ranking effect
and brings obvious improvement when θ is small enough.

4.3 Temporal coherent contrastive learning

We want to further encode the inter-variance into the dual features. To do so, coherence
between dual features should be maintained in that dual features from clips in the same
video should be closer to each other in feature space than those from different videos, since
inter-variance is much larger than intra-variance. We thus extend clip contrast to temporal
coherent contrast by using sub-clip similarity instead of clip similarity. In particular, we
denote similarity between two dual representations ri and r j as tc-sim(ri,r j) =

1
4 ∑x∈ri,y∈r j x ·

y where ri and r j correspond to clips ci and c j respectively. Then the temporal coherent
contrastive loss is written as:

Ltc =−
1
M

M

∑
i=1

log
exp(tc-sim(ri,ri+)/τtc)

∑
M
k=1 1[k 6=i]exp(tc-sim(ri,rk)/τtc)

(11)

where τtc is a temperature parameter and i+ indexes the i-th clip’s positive pair. Though
simple, the temporal coherent contrastive learning further increases the inter-instance vari-
ances and instance discrimination ability of self-supervised learned models, and consistently
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improves the performance upon intra-variance encoded representations, as Table 1 shows.
Our final loss is the sum of clip contrastive loss, ranking loss and temporal coherent

contrastive loss L= Lc +λ1 ∗Lrank +λ2 ∗Ltc, where λ1 and λ2 are hyperparameters.

5 Experiments
We conduct experiments on two contrastive learning frameworks (MoCo [12], SimCLR [6])
and three backbones (R3D [32], R(2+1)D [32], S3D-G [42]). We apply our method in pre-
training stage and evaluate performance on two tasks: finetuning and video retrieval.

5.1 Datasets

Kinetics400 Kinetics400 [13] is a large-scale video action dataset with 400 classes and
more than 400 videos for each class. All the videos are clips from Youtube and persist
around 10 seconds. We are only able to obtain 218,846 videos due to invalid links.

UCF101 UCF101 [27] is a medium-scale human action video dataset with 13,320 videos
classified into 101 classes. All the videos have a fixed frame rate of 25 FPS and a resolution
of 320× 240. It provides 3 train-test splits. We use split 1 in all our experiments.

HMDB51 HMDB51 [17] is a human action video dataset with 6849 videos in 51 classes.
The videos are scaled to a height of 240 pixels and 30 FPS. We use its split 1 in experiments.

5.2 Implementations

We briefly introduce implementations and provide more details in supplementary section 1.

Self-supervised pretrain In self-supervised pretraining stage, we randomly resize and
crop clips to size of 16× 112× 112 in a temporal consistent way with temporal stride of
4. Color jittering, horizontal flipping and gaussian blurring are applied. We pretrain the
model for 200 epochs with an SGD optimizer with an initial learning rate of 0.003 and batch
size of 64 on 8 Tesla V100 GPUs. We pretrain on UCF101 training split in ablation study
and on large-scale Kinetics400 for performance comparison with counterparts. We set τ , τtc,
θ , λ1, λ2 to 0.07, 0.5, 0.05, 1.0 and 1.0, respectively.

Supervised finetuning We replace the nonlinear projection head during pretraining with
a classification linear layer and initialize the backbone with the pretrained weights. We
finetune all layers for 150 epochs on UCF101 and HMDB51 training splits with a batchsize
of 64 and learning rate of 0.05. We then test classification accuracy on test splits.

Video retrieval To evaluate the representation ability of pretrained model, we use videos
in test set to retrieve videos in training set. Specifically, we average features of 10 clips uni-
formly sampled from each video using the pretrained backbone. We conduct video retrieval
on UCF101 and calculate the top-k accuracy (k = 1,5,10,20,50).

5.3 Ablation study

Effectiveness of proposed method We first show the effectiveness of our method by con-
ducting experiments on both MoCo and SimCLR frameworks and three spatio-temporal
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R3D R(2+1)D S3D-G
UCF101 HMDB51 UCF101 HMDB51 UCF101 HMDB51

MoCo 71.72 41.04 77.64 45.70 68.41 38.08
MoCo+SR 74.28+2.56 44.06+3.02 78.67+1.03 46.09+0.39 70.79+2.38 40.12+2.04

MoCo+SR+TC 74.65+2.93 44.45+3.41 78.46+0.82 47.47+1.77 72.19+3.78 41.56+3.48

SimCLR 71.90 39.79 71.61 31.78 66.27 20.16
SimCLR+SR 72.24+0.34 40.38+0.59 76.82+5.21 40.05+8.27 70.82+4.55 34.73+14.57

SimCLR+SR+TC 72.69+0.79 43.01+3.32 79.01+7.40 45.37+13.59 71.32+5.05 35.33+15.17

Table 1: Experiments on MoCo and SimCLR with R3D, R(2+1)D and S3D-G backbones.
Models are pretrained on UCF101 train split 1. SR refers to shuffle-rank. TC refers to
temporal coherent contrast. Improvement upon baseline is marked as Red superscripts.

backbones R3D, R(2+1)D and S3D-G. In Table 1, consistent performance gains on mul-
tiple backbones can be observed. On SimCLR with R(2+1)D, shuffle-rank increases base-
line accuracy on UCF101 and HMDB51 by 5.21% and 8.27% while the integrated method
increases it by 7.40% and 13.59% respectively. It can be observed that performance improve-
ments differ on different backbones, which might be due to both the internal structure of ar-
chitecture and baseline performance, e.g. a strong baseline performance means smaller space
for improvement. However, even on a pretty strong baseline such as MoCo with R(2+1)D
backbone, our integrated method can still improve accuracy on UCF101 and HMDB51 by
0.82% and 1.77% respectively. Moreover, as the model is pretrained on UCF101, improve-
ment is generally larger on HMDB51, e.g. 15.17% versus 5.05% with S3D-G and 13.59%
versus 7.40% with R(2+1)D on SimCLR, verifying our model is more generalizable.

Effect on inter and intra variance encoding To analyze the effect of our method on
variance encoding, we explicitly calculate inter-intra variance of video features produced by
pretrained backbone on UCF101 test set. Specifically, we uniformly sample 10 clips for each
video temporarily, then calculate σinter, σintra and instance discrimination factor σinter/σintra
according to the formulas defined in supplementary section 5. As shown in Table 2, shuffle-
rank can always increase σintra by a large margin, e.g. 14 times on R(2+1)D from 0.0084
to 0.1123. After further adding temporal coherent contrast, σinter is increased to 0.0797
and σintra is decreased to 0.3798. Our method balances the instance discrimination ability
from a super high level 33.60 to a medium value 4.77. This general phenomenon on all
three backbones (R3D, R(2+1)D, S3D-G) verifies our motivation, i.e. using shuffle-rank to
encode intra-variance and temporal coherent contrast to strengthen inter-variance encoding.
It also supports our statement in section 3 that encoding intra-variance can be beneficial.
More experiment results on HMDB51 dataset can be see in supplementary section 3.

Comparison to shuffling order prediction Following our discussion in Section 4.2, we
compare shuffle-rank to a non-trivial shuffling order prediction baseline. Our method is more
friendly in encoding inter-intra variances by using ranking loss. Our finetuning accuracy
improves upon order prediction baseline from 75.39% and 32.38% to 76.82% and 40.05%
on UCF101 and HMDB51 respectively. We report details in the supplementary section 2.

Effect of ranking loss parameter θ Following our discussion in Section 4.2, in Figure
2, we validate our statement that inducing a smaller margin between intra positive and neg-
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R3D R(2+1)D S3D-G
inter-v. intra-v. discrim. inter-v. intra-v. discrim. inter-v. intra-v. discrim.

SimCLR 28.8 0.8 34.3 28.2 0.8 33.6 73.1 3.0 24.7
+SR 22.6 11.3↑13.6×2.0↓17.2× 23.0 11.2↑13.4×2.0↓16.8× 51.7 11.7↑4.0× 4.4↓5.6×

+SR+TC 42.3 5.8↓1.9× 7.3↑3.7× 38.0 8.0↓1.4× 4.8↑2.4× 78.7 4.9↓2.4× 16.2↑3.7×

Table 2: Comparison of inter-instance variance, intra-instance variance and instance discrim-
ination factor on UCF101 test set. Results are multiplied by 100 for demonstration. Each
cell’s increasing (Red) and decreasing (Green) times are compared to the cell above it.

(a) Graph of ranking loss. t is the difference be-
tween negative and positive sub-clip pairs, i.e. t =
sim(x,z)− sim(x,y), where z ∈ x− and y ∈ x+.

(b) Finetuning accuracies on UCF101 and HMDB51 test
set.

Figure 2: Under different θ values, we (a) plot ranking loss graph (b) investigate effect of
θ on downstream classification accuracy. Decreasing θ induces a smaller margin (|t|) under
the same lrank and improves finetuning performance.

ative pairs brings larger benefits. In Figure 2 (a), we plot ranking loss (lrank) graph under
different θ . When the difference between similarities of intra negative and positive pairs
(t = sim(x,z)− sim(x,y), where z ∈ x− and y ∈ x+) is zero, a fixed penalty of log2 is en-
forced as the representation is not discriminative on intra-variance. Definition of x+ and x−

is in section 4.2. As θ becomes larger, derivative at t = 0 keeps increasing and the penalty
quickly increases when the ranking measure is wrong (t > 0) and decreases when it is cor-
rect. Besides, when the ranking is correct, penalties enforced are close to zero as long as t
is smaller than a margin value that is monotonically increasing with θ . As shown in Figure
2 (b), as θ decreases from 1.0 to 0.01, model performance keeps increasing, validating our
hypothesis that a small enough margin is more beneficial. However, when θ is too small as
0.001, lrank is too sensitive at t = 0, leading to unstable training. One thing need to mention
here is that a smaller θ (0.01) can further increase our reported performances under θ = 0.05.

Performance comparison We compare our method with previous works on both super-
vised finetuning and video retrieval tasks. In Table 3, we classify previous methods into 3
categories. Hybrid means combination of pretext tasks and contrastive learning. We do not
compare to recent methods [8, 24, 29] as they use either much larger backbones and input
sizes or optical flow. We outperform methods based on two mainstream pretext tasks: tem-
poral order [18, 22, 43] and pace [25, 26, 35]. SpeedNet [25] and TempTrans [26] achieved
superior performance due to large input size or backbones. MemDPC [11] predicted future
states and applies spatial-temporal contrastive loss on features however relies on huge input
size. Our model achieves higher performance than MoCo based method BE [36] and Video-
MoCo [30]. Our model surpasses RSPNet [23], which is the state-of-the-art improving upon
Pace [35] by predicting relative speedness, by 0.9% and 6.6% on UCF101 and HMDB51
test set, respectively. Even pretrained on much smaller UCF101 training data, our model
still exhibits excellent performance with 0.8% higher HMDB51 accuracy upon Kinetics400
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Method Input Size Arch #param. pretrain UCF101 HMDB51

Pretext Task
Shuffle&Learn[22] 3×256×256 AlexNet 58.3M UCF101 50.2 18.1
OPN[18] 4×80×80 VGG 8.6M UCF101 59.8 23.8
VCP[21] 16×112×112 R(2+1)D 14.4M UCF101 66.3 32.2
VCOP[43] 16×112×112 R(2+1)D 14.4M UCF101 72.4 30.9
PRP[44] 16×112×112 R(2+1)D 14.4M UCF101 72.1 35.0
SpeedNet[25] 64×224×224 S3D-G 9.6M K400 81.1 48.8
TempTrans[26] 16×112×112 R(2+1)D-18 33.2M UCF101 81.6 46.4

Contrastive
MemDPC[11] 40×224×224 3D-ResNet34 32.4M K400 78.1 41.2
VideoMoCo[30] 32×112×112 R(2+1)D 14.4M K400 78.7 49.2
BE(MoCo)[36] 16×112×112 C3D 27.7M UCF101 72.4 42.3
IIC[28] 16×112×112 R3D 14.4M UCF101 74.4 38.3

Hybrid
Pace[35] 16×112×112 R(2+1)D 14.4M K400 77.1 36.6
RSPNet[23] 16×112×112 R(2+1)D 14.4M K400 81.1 44.6

Ours(MoCo) 16×112×112 R(2+1)D 14.4M UCF101 78.5 47.5
Ours(SimCLR) 16×112×112 R(2+1)D 14.4M UCF101 79.0 45.4
Ours(SimCLR) 16×112×112 R(2+1)D 14.4M K400 82.0 51.2

Table 3: Finetuning performance comparison.

Arch Top-k
k=1 k=5 k=10 k=20 k=50

PRP[44] C3D 23.2 38.1 46.0 55.7 68.4
Pace[35] R(2+1)D 25.6 42.7 51.3 61.3 74.0
TempTrans[26] 3D-ResNet18 26.1 48.5 59.1 69.6 82.8
RSPNet[23] 3D-ResNet18 41.1 59.4 68.4 77.8 88.7
Ours R(2+1)D 46.7 63.1 69.7 78.0 87.8

Table 4: Video retrieval performance comparison.

pretrained RSPNet. On video retrieval task in Table 4, our method also exhibit robust perfor-
mance. Our top-1 retrieval accuracy reaches 46.7%, improving upon RSPNet by 5.6%. This
shows our model has a well learned discrimination ability.

6 Conclusion

In this paper, we approach self-supervised video representation learning from the perspec-
tive of inter-intra variance. We find that existing contrastive learning solution over-learns
instance discrimination ability on pretrained dataset, thus has difficulty in generalization.
Therefore, we propose to learn dual representations which encodes inter-intra variancesby
a shuffle-rank pretext task and a temporal coherent contrast that wins a higher transferring
power. It surpasses both pretext-task based and contrastive learning based counterparts on
classification and video retrieval tasks on UCF101 and HMDB51 dataset.
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