
HAN AND SONG ET AL: ELSA 1

Elsa: Energy-based Learning for
Semi-supervised Anomaly Detection

Sungwon Han*1,2

lion4152@gmail.com

Hyeonho Song*1,2

hyun78.song@gmail.com

Seungeon Lee1,2

marinearchon159@gmail.com

Sungwon Park1,2

deu30303@gmail.com

Meeyoung Cha2,1

meeyoungcha@ibs.re.kr

1 School of Computing
Korean Advanced Institute of Science
and Technology
Daejeon, South Korea

2 Data Science Group
Institute of Basic Science
Daejeon, South Korea

Abstract

Contrastive learning has brought important advances in improving anomaly detection.
Yet these techniques rely on clean training data, which cannot be guaranteed in real-
world scenarios. This paper presents a theoretical interpretation of when and how con-
trastive learning alone fails to detect anomalies under data contamination. To address the
shortcomings, we propose Elsa, a novel semi-supervised anomaly detection approach,
that unifies the concept of energy-based models with unsupervised contrastive learning.
Elsa instills robustness against various practical scenarios by a carefully designed fine-
tuning step that uses the energy function to divide the normal data into prototype classes
or subclasses that reflect heterogeneity of the data distribution. By using a small set of
anomaly labels, Elsa improves anomaly detection performance in both clean and con-
taminated data scenarios by 0.9 and 6.6 AUROC, respectively.

1 Introduction
Anomaly detection [4], also known as novelty detection [31], identifies out-of-distribution
(OOD) instances from the predominant normal data. Conventional detection approaches
model the probability distribution p(x) of the normal data as normality score implicitly or
explicitly and identify deviant input with a small normality score. Various models are used
for estimating p(x), including generative adversarial networks [35, 43], autoencoders [1, 7],
one-class classifiers [33, 34], and discriminative models with surrogate tasks [41].

Among them is CSI [40], the latest novelty detection method based on contrastive learn-
ing. CSI treats augmented input as positive samples and the distributionally-shifted input as
negative samples, which leads to a substantial performance gain. Yet, it shares a common
limitation with extant methods in that the model assumes clean training data and fails to
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Figure 1: Embedding of CSI is a uniformly distributed hypersphere where anomalies
(marked red) are hard to detect (left). Energy-based fine-tuning of Elsa embeds similar
images nearby, leaving room for anomalies to be separated (right).

learn p(x) when the data contains unknown anomalies as in various real-world scenarios.
This limitation occurs because CSI uses a hypersphere embedding space that is uniformly
distributed [5, 42]. The uniformity makes it challenging to distinguish OOD samples. Fig. 1
demonstrates this limitation.

We present Elsa (Energy based learning for semi-supervised anomaly detection), an
anomaly detection method that unifies contrastive learning and energy-based functions. Elsa
benefits from the high representation power of unsupervised contrastive learning via its pre-
training step, which can accommodate existing algorithms [6, 13, 15, 29]. It applies a care-
fully designed energy function over the pre-trained embedding to learn the probability dis-
tribution p(x) of normal data, with the help of a small set of labels that indicate whether
given samples are normal or OOD. The energy-based fine-tuning step embeds similar sam-
ples nearby and can distinguish OOD samples from the mostly normal data via the energy
score: low-energy corresponds to compatible data distribution (e.g., dog images in Fig. 1),
and high-energy represents incompatibility (e.g., a cat image in Fig. 1).

Elsa’s energy function does not require any explicit density estimator. Instead, it trans-
forms an unsupervised contrastive problem into a non-parametric classification task by in-
troducing the concept of prototypes, where a prototype vector functions as a subclass that
reflects the heterogeneity of the normal data distribution. The energy score is computed as
logits from the discriminative classifier, which denote the cosine similarity between a data
instance and prototypes. Elsa is structurally different from other energy-based models that
require knowledge of the ground-truth class information [24]. Furthermore, Elsa’s training is
stable compared to other works that utilized energy functions as generative models [10, 12].

Our results show nontrivial improvement over the best-performing models tested on
CIFAR-10 and other benchmark datasets. Experiments confirm this gain is attributed to
directly learning p(x) via the energy function applied on unsupervised embedding learning.
We empirically demonstrate the model’s robustness by considering three practical scenarios.
Codes for Elsa are released via a GitHub repository.*

2 Related Works
Reconstruction-based learning This approach assumes that generative model cannot flu-
ently recover OOD samples, using the reconstruction error as anomaly score. Recent studies

*https://github.com/archon159/elsa
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proposed methods to utilize such reconstruction errors. For example, multiple autoencoders
can define reconstruction error with a synthetically generated blurred image [7]. Another
study utilized gradients from back-propagation [20]. However, studies have also found that
anomalies do not always yield a high reconstruction error when classes are similar [44].

Some studies employed GAN (generative adversarial network) to complement the re-
construction loss, for instance, via utilizing a generator and a discriminator [44] or using
the reconstruction and discrimination loss [30, 35]. A series of studies proposed exploiting
the generator’s capability; for example, [43] suggested training a network by distinguishing
synthetic anomalies generated by an ensemble of the generator’s old state with the current
states of generator and discriminator. Some studies have regularized the latent feature space
in GAN-based models [30, 39]. However, GAN-based models are known to produce a sub-
optimal solution and hence are inapplicable for complex datasets [24, 28].

Self-supervised learning Self-supervised learning approaches are known to produce a ro-
bust representation of normal data, which leads to low confidence in classification probabil-
ity for anomaly detection. Transformations like rotation, shift, and patch re-arranging can be
used to augment pseudo-labels [16, 40, 41]. As discussed earlier, the state-of-the-art method
in this domain, CSI [40], utilizes augmented pseudo-labels.

One-class classifiers This approach tries to learn the decision boundary between the distri-
bution of training data and OOD samples. [33] suggested a loss function that forces training
data samples to reside in a prefixed clustering centroid. [34] extended the problem into a
semi-supervised learning objective and set the loss function to pull all unlabeled or positive
samples closer to the centroid while pushing negative samples away from the centroid. [3]
improved the detection performance by separately assigning a centroid to each augmentation.
However, these methods are limited in their representation ability if the data distribution is
complex and heterogeneous.

Energy-based learning Recently, OOD detection models using energy function have been
proposed [12, 14, 24, 27]. The energy function measures the compatibility between a given
input and a label [21]. One line of works exploited an energy-based model on top of a
standard discriminative classifier. [12] demonstrated that energy-based training of the joint
distribution improves OOD detection. [24] proposed energy scores to distinguish in- and
OOD samples, showing that this score outperforms the softmax confidence score. Another
line of works built their energy-based model on top of deep generative framework. [27]
trains energy based model in the latent space to serve as a prior, while [14] jointly trains
variational autoencoder and energy based model.

3 Background
We formally define the problem and offer a theoretical interpretation on why contrastive
learning’s objective does not match with anomaly detection under data contamination.

3.1 Contrastive learning (CL)
The core concept of CL is to train an encoder f by maximizing agreement among similar
images (i.e., positive samples) while minimizing agreement among dissimilar images (i.e.,
negative samples). Let x be an input query, and a set of positive and negative samples of x
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be denoted X+ and X−. The contrastive loss is defined as:

Lc(x) =−
1
|X+|

log
∑x′∈X+

exp(sim( f (x), f (x′))/τ)

∑x′∈(X+∪X−) exp(sim( f (x), f (x′))/τ)
, (1)

=− 1
|X+|

(log ∑
x′∈X+

exp(sim( f (x), f (x′))/τ)︸ ︷︷ ︸
Lalign(x)

− log ∑
x′∈(X+∪X−)

exp(sim( f (x), f (x′))/τ)︸ ︷︷ ︸
Luniform(x)

)

(2)

where τ is the temperature value that controls entropy [17] and sim(·) is the function that
computes the similarity between two instances over the latent space.

We decompose the contrastive loss into two terms in Eq. 2 as in [42]. First is the align-
ment loss (Lalign), which encourages embeddings of positive samples to be closely posi-
tioned. Next is the uniformity loss (Luniform), which matches all samples into the pre-defined
prior distribution with high entropy by pushing one another far away.

3.2 Energy-based model
Energy-based models [21] assume that any probability density pθ can be expressed as Eθ (·):

pθ (x) =
exp(−Eθ (x))∫
x exp(−Eθ (x))

. (3)

The energy function Eθ (·) maps each data point x to a scalar value that represents its fit to
given data distribution. For the energy function choice, one can also consider a decision-
making model with two variables X and Y . In this scenario, the energy-based model defines
the energy function Eθ (X ,Y ), and the energy function can be transformed in the form of a
conditional probability with temperature τ as in Eq. 4 [24]. Then, Eθ (x) can be defined by
marginalizing the energy function Eθ (x,y′) over y′, as in Eq. 5.

pθ (y|x) =
exp(−Eθ (x,y)/τ)∫

y′ exp(−Eθ (x,y′)/τ)
=

exp(−Eθ (x,y)/τ)

exp(−Eθ (x)/τ)
(4)

Eθ (x) =−τ · log
∫

y′
exp(−Eθ (x,y′)/τ) (5)

3.3 Rethinking the use of CL for anomaly detection
The objective of CL can be theoretically interpreted from the perspective of the energy func-
tion. For this, a discriminative classifier hψ can be considered, which maps each data input to
a logit vector and estimates the categorical distribution with the following softmax function:

pψ(y|x) =
exp(hψ(x)[y])

∑y′ exp(hψ(x)[y′])
, (6)

where hψ(x)[y] indicates the yth index of hψ(x), i.e. the logit corresponding to the yth class
label. Combining Eq. 4 and Eq. 6 leads a model to optimize with the following energy
function Eψ(x). This marginalizes the Eψ(x,y) over y [12].

Eψ(x) =−LogSumExpy(hψ(x)[y]) =−log∑
y

exp(hψ(x)[y]) (7)
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Similarly, we translate CL’s objective as a classification task via considering each image
instance to become a class of its own. Training a classifier by assigning the same pseudo-
label to positive samples and a different label to negative samples will solve the objective of
CL. If we denote ŷ as a class label, the contrastive loss in Eq. 1 can be re-defined in the form
of the cross-entropy loss:

Lc(x) =−
1
|X+|

log p(ŷ ∈ Y+|x)

p(ŷ ∈ Y+|x) =
∑x′∈X+

exp(sim( f (x), f (x′))/τ)

∑x′∈(X+∪X−) exp(sim( f (x), f (x′))/τ)
, (8)

where Y+ is the set of pseudo-labels corresponding to X+ (i.e., positive samples of x). Since
the re-defined contrastive loss has the same form as in Eq. 6, we obtain the energy function
by marginalizing E(x, ŷ) over ŷ in Eq. 9. Intuitively, this energy function represents how far
an instance is placed from every training sample.

E(x) =−log ∑
x′∈(X+∪X−)

exp(sim( f (x), f (x′))/τ) ∝−Luniform(x) (9)

The energy function from the contrastive objective need to be negatively proportional
to the uniformity loss (Luniform), based on Eq. 2 and Eq. 9. This means minimizing the
contrastive loss leads to smaller uniformity loss as well as smaller energy scores — an ob-
servation that contradicts the original definition of the energy function, where a high energy
value should correspond to the incompatible data configurations or anomalies.

4 Energy-based Learning for Semi-supervised Anomaly
Detection (Elsa)

We tackle the energy maximization problem via a fine-tuning step that combines an energy
function with unsupervised contrastive pre-training. Figure 2 illustrates these steps.

Problem statement: Let D = {xi}N
i=1 denotes a set of training images xi. In a semi-

supervised problem setting,D can be divided into three disjoint setsD=Xu∪Xn∪Xa, where
each stands for a set of unlabeled samples, labeled normal samples, and labeled anomaly
samples. The main objective of anomaly detection is to train a normality score function S(x)
that represents the likelihood of a given instance x sampled from the normal data distribution.
We assume that the majority of unlabeled samplesXu are normal, and thus let the model learn
the normal data distribution from Xu∪Xn, while distinguishing the labeled anomaly set Xa.
Elsa involves the following three steps:

(Step-1) Unsupervised contrastive pre-training
This step initializes the encoder f to learn general features from the normal data distribution.
It only uses the unlabeled set Xu and the labeled normal set Xn, and pre-trains the encoder
f with an unsupervised CL approach, such as SimCLR [6]. Let x̂(1) and x̂(2) be two inde-
pendent views of x from a pre-defined augmentation family Ta (i.e., x̂(1) = t1(x), x̂(2) = t2(x)
where t1, t2 ∼ Ta). The unsupervised CL loss on the given pair of images is defined as:

LCL(x̂(1), x̂(2)) =− log
exp(sim( f (x̂(1)), f (x̂(2)))/τ)

∑
x′∈B̂(−)

exp(sim( f (x̂(1)), f (x′))/τ)
, (10)
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(a) Unsupervised pre-training (b) Choosing prototypes (c) Semi-supervised fine-tuning

Figure 2: Illustration of Elsa. The model is pre-trained via unsupervised contrastive learn-
ing. The model next chooses prototype vectors representing each subclass. The model is
then fine-tuned with the energy function derived from the prototype vectors.

where B̂(1) = {x̂(1)i }m
i=1, B̂(2) = {x̂(2)i }m

i=1 denotes the batches with batch size m, and B̂(−) =
B̂(1)∪B̂(2) \ x̂(1). τ and sim(·) are defined as before.

By assigning the augmented variations of each training data instance in Xu∪Xn as posi-
tive samples, the model can maximize agreement among those samples (i.e., the numerator in
Eq. 10). Simultaneously, all other instances in the same batch are treated as negative samples
and pushed far away from one another in the latent space (i.e., the denominator in Eq. 10).

(Step-2) Prototypes selection
Conventional unsupervised CL maximizes the energy scores of all training samples and dis-
tinguishes every instance in the latent space. Toward this, one may try to minimize the energy
score of normal samples, which is identical to maximizing the uniformity loss (Eq. 9). This
approach, however, will pull every embedded point into a single position. Instead, we pro-
pose a new energy function by assigning a pseudo-label yp to every training instance on the
pre-trained embedding.

We define a set of prototypes P representing their subclasses in the normalized latent
space. These prototypes can conceptually indicate heterogeneity of the training dataset.
Then, every training sample should be mapped to the single nearest prototype p ∈ P based
on the cosine similarity. Following the form of the discriminative model, we may regard
the encoder f as a classifier that maps each data point to a prototype, where the categorical
distribution of each pseudo-label is computed via the following softmax function:

p(yp|x) =
exp(sim( f (x),p))

∑p′∈P exp(sim( f (x),p′))
. (11)

This problem transformation lets us compute the energy function by marginalizing E(x,yp)
over yp, similar to Eq. 9. The normality score function is then defined as a negation of the
computed energy function (Eq. 12) with the temperature value τ .

S(x) =−E(x) = log ∑
p∈P

exp(sim( f (x),p)/τ) (12)

To ensure prototypes are well dispersed, we choose centroids of each cluster to be pro-
totypes. Spherical k-means clustering algorithm over the embeddings of training samples is
considered in this work, with the cosine similarity as a distance metric.
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(Step-3) Fine-tuning with prototypes
Finally, the model is fine-tuned via the following loss (Le):

Le = ∑
x∈Xa

1
C−S(x)

+ ∑
x∈Xu∪Xn

1
S(x)

, (13)

where C is a constant. This loss minimizes the normality scores of abnormal samples Xa
and maximizes the scores of the mostly normal samples Xu ∪Xn. To stabilize this training
process, we use an inverse form as the learning objective. According to the gradient of Le
with respect to x (Eq. 14), the inverse of the quadratic term is multiplied on the gradient of
the score function, ∇xS(x). This multiplier helps reduce the gradient signal when the score
becomes sufficiently small for Xa or large for Xu∪Xn. To ensure denominators remain pos-
itive, we set the constant C as the largest possible value; given the input instance has the
maximum similarity with all prototypes (i.e., sim( f (x),p) = 1 for all prototypes).

∇xLe = ∑
x∈Xa

∇xS(x)
( 1

C−S(x)

)2
− ∑

x∈Xu∪Xn

∇xS(x)
( 1

S(x)

)2
(14)

Since we embed the data instances in Xu∪Xn nearby the chosen prototypes in the latent
space, this process can be interpreted as the minimum volume estimation [37] over the nor-
malized latent space. It is connected to two works, Deep-SVDD [33] and Deep-SAD [34],
where the training instances are collapsed into a single centroid in the latent space. However,
we utilize multiple centroids (called ‘prototypes’ in this research) to account for heterogene-
ity in data. Multiple centroids are better suited to learning distinct features from heteroge-
neous data; the same learning capability is hard for a single centroid. For example, Bulldogs
and Siberian Huskies have distinctive visual features, yet they belong to the same class of
dogs. Our model will assign these two dog types to different prototypes as in Fig. 2b.

As fine-tuning continuously changes the distribution of data instances in the latent space,
one can no longer ensure the previous step’s prototypes to be valid. Thus, we update the
prototypes to fit the fine-tuned distribution periodically. This is done by repeating step-2
every few epochs in step-3.

Next, we introduce a novel strategy on early stopping to avoid overfitting and guide
the model to determine when to stop. The strategy is based on the observation on strongly
augmented images and their potential use as a validation indicator. Strong augmentations
such as AutoContrast, Shear, and Cutout [9] can be regarded as tentative anomalies due to
massive content-wise distortions [8, 38]. RandAugment algorithm [8] is used as the strong
augmentation and separated the validation set from the unlabeled training set with a ratio of
5-to-95. The AUROC scores between the original and augmented images determine the final
model, denoted as the earlystop score.

Extension with contrasting shifted instances
Elsa is next optimized in two ways. First, the training instances can be augmented via rota-
tions. Enlarging the data size helps learn features more effectively, and enables to increase
the number of prototypes (i.e., allowing data heterogeneity). Second, ensemble technique
can be adopted during the inference. We iteratively calculated the normality scores from
multiple views of the same image via random weak augmentation. Then, the ensembled
score was computed by averaging the normality scores. Implementing the above techniques
on Elsa, we propose an extended model Elsa+. Algorithm details are described in the sup-
plementary material.
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5 Experiments
5.1 OOD detection result
We consider three representative scenarios proposed from existing works on three datasets:
CIFAR-10, ImageNet-10, and Places-5. The latter two are random 10 and 5 class subsets of
ImageNet and Places-365 datasets. Details of each scenario are described below.

(Scenario-1) Semi-supervised classification [2, 34]. Here we assume having access to a
small subset of labeled normal Xn and anomalies Xa during training. One of the data classes
in CIFAR-10 is set as in-distribution and let the remaining nine classes represent an anomaly.
This means to sample Xa from the nine anomaly classes. Let the ratio of Xn and Xa both
be denoted as γl . We then report the averaged AUROC scores, following the standards of
previous literature [33, 34, 40], on the test set over 90 experiments (10 normal× 9 anomaly)
for a given γl .

(Scenario-2) Contaminated one-class classification [34]. The next scenario tests the model
robustness under contamination in the training set, which is our utmost interest. This data
contamination scenario is widely applicable to any scenarios that involve datasets obtained
from crawling or crowdsourcing [32]. It starts with the same setting as in Scenario-1. We
assume the training data is polluted with a fixed ratio γp. This is done by sampling images
from every anomaly class and adding them into the unlabeled set Xu. We report the averaged
AUROC scores over 90 experiments for each pollution ratio γp. The labeling ratio γl is fixed
to 0.05 for all experiments.

(Scenario-3) Auxiliary anomaly set [24]. In real-world settings, anomaly samples may be
hard to obtain, as discussed in the task of identifying malicious users, credit card frauds, and
crowd surveillance [26, 45]. This scenario tests whether the proposed model can leverage
a large-scaled external dataset as an auxiliary anomaly set, which is an easy alternative for
anomalies. We set all images in CIFAR-10 as in-distribution and let images from other
datasets as anomalies. Then, we train the model with an auxiliary dataset (i.e., down-sampled
ImageNet) as labeled anomalies and evaluate the detection performance on five other datasets
with AUROC metrics.

Results. We discuss the results of each experiment. First, in the semi-supervised one-class
classification in Scenario-1, Elsa+ achieves the state-of-the-art performance against all base-
lines (Table 1). The model works well even with a small set of labeled samples (γl = 0.01).
The next experiment for Scenario-2 tests the model’s performance against data contamina-
tion (Table 2), which shows both Elsa and Elsa+ to be stable against contamination in the
training data. Table 3 reports the anomaly detection results for both scenario-1 and 2 over
ImageNet-10 and Places-5, which demonstrates the proposed model’s applicability to large-
scale dataset. A significant performance drop seen for CSI supports our claim that the CL
objective alone fails to handle data contamination. In contrast, the energy-based fine-tuning
step can alleviate this problem and achieve outstanding performance.

Lastly, Table 4 shows the result for Scenario-3 on the model’s ability to leverage the ex-
ternal dataset as an auxiliary outlier. Compared to other strong baselines, Elsa+ shows the
highest or comparable detection performance for all datasets.

5.2 Component analyses
We also test the contribution of each component in Elsa+ in four critical analyses. We regard
the plane class in CIFAR-10 as the normal data and fix the labeling ratio γl and pollution ratio
γp to 0.05 (Scenario-2) for the remainder of this section.
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Latent-EBM VAE-EBM OC-SVM IF KDE DeepSVDD GOAD CSI SS-DGM SSAD DeepSAD Elsa Elsa+
γl [27] [14] [36] [23] [33] [33] [3] [40] [18] [11] [34]

.00 56.6 65.3 62.0 60.0 59.9 60.9 88.2 94.3 - 62.0 60.9 - -

.01 49.7 73.0 72.6 80.0 94.3

.05 50.8 71.5 77.9 85.7 95.2

.10 52.0 70.1 79.8 87.1 95.5

Table 1: Experiment results on anomaly detection Scenario-1 over CIFAR-10.

Latent-EBM VAE-EBM OC-SVM IF KDE DeepSVDD GOAD CSI SS-DGM SSAD DeepSAD Elsa Elsa+
γp [27] [14] [36] [23] [33] [33] [3] [40] [18] [11] [34]
.00 56.6 65.3 62.0 60.0 59.9 60.9 88.2 94.3 50.8 73.8 77.9 85.7 95.2
.05 61.2 63.5 61.4 59.6 58.1 59.6 85.2 88.2 50.1 71.5 74.0 83.5 93.0
.10 60.3 64.8 60.8 58.8 57.3 58.6 83.0 84.5 50.5 69.8 71.8 81.6 91.1

Table 2: Experiment results on anomaly detection Scenario-2 over CIFAR-10.

ImageNet-10 CSI Elsa+ Places-5 CSI Elsa+
γp = 0.0 0.95 0.93 γp = 0.0 0.81 0.88
γp = 0.1 0.86 0.90 γp = 0.1 0.69 0.86

Table 3: Experiment results on anomaly
detection Scenario-1 and 2 over
ImageNet-10 and Places-5. (γl = 0.1)

Datasets GOAD CSI Elsa+

SVHN [25] 96.3 99.8 99.4
LSUN [22] 89.3 97.5 99.9

CIFAR-10 [19]→ LSUN (FIX) [40] 78.8 90.3 95.0
ImageNet (FIX) [40] 83.3 93.3 96.4
CIFAR-100 [19] 77.2 89.2 86.3

Table 4: Experiment results on anomaly
detection in Scenario-3.

Ablations AUROC (%)

Score function Cosine similarity: Scos(x) 89.1
Energy from CL objective: Scont(x) 81.6

Loss objective Naive loss: Lnaive 82.6
DeepSAD loss: Lsad 90.3

Elsa+ (Ours) 91.4

Table 5: Ablation study results on the score function
and loss objective over CIFAR-10.

Ablation study on the score and loss function. We explore several possible score func-
tions and objectives as alternatives, thereby measuring each component’s contribution. The
description of each ablation is described below. The first two are ablations on alternative
score functions. The next two are ablations on alternative loss objectives.

• Cosine similarity. A normality score can be obtained by measuring the cosine similar-
ity of the given sample and the nearest prototype vector: Scos(x) = maxp∈P( f (x),p).

• Energy from CL objective. The uniformity loss in CL objective (Eq. 9) can be adopted
for score function. With the given augmented batch B from the training set (i.e., Xn∪
Xu), the normality score is defined as: Scont(x) = log ∑

x′∈B\{x}
exp(sim( f (x), f (x′))).

• Naive loss. The naive loss is the simplest form that maximizes the score for normal
samples as a negative form of score function (−S(x)) while minimizing for anomalies
as a positive form of score function (S(x)): Lnaive = ∑x∈Xa S(x)+∑x∈Xn∪Xu−S(x)

• DeepSAD loss. This form of loss is introduced in DeepSAD [34]. The score for
anomalous samples are maximized as the inverse form of the score function:
Lsad = ∑x∈Xa 1/(C−S(x))+∑x∈Xn∪Xu−S(x)
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Table 5 shows the results, where all ablations lead to a substantial performance drop.
Specifically, changing the CL objective’s energy function led to the most extensive degrada-
tion, reinforcing our theoretical interpretation presented in §3.3. Our loss objective design,
which exploits the inverse form of the energy function for both anomaly and normal samples,
achieves the best performance compared to all ablations.
Analyses on prototype count. We investigate the dependency between the prototype count
and Elsa+ performance. The prototype count decides the model’s capacity for handling het-
erogeneous data types within the normal distribution. It also directly impacts the overall
performance, as too small or too large count leads to underfitting or overfitting. We analyze
the prototype count’s effect by varying it to 1, 50, 100, 200, and 500. Figure 3a shows the
mean AUROC score with the standard error over three different contamination ratios (γp =
0.00, 0.05, 0.10). The model fails to converge for the count of 1, and the early stop strategy
does not work in order. In contrast, the model converges with a successful result for the
larger counts, e.g., 100. Given the prototype count is set to a reasonably large value, Elsa+
consistently produces high-performance results.
Analysis on the early stopping strategy. The early stopping strategy is another important
factor to be examined. The earlystop score is computed by the AUROC score of the task
that distinguishes between the input image and its strongly augmented versions. This anal-
ysis reveals a highly positive correlation between the earlystop score and the actual model
performance (Pearson correlation 0.912±0.038), implying that the proposed score can guide
the actual performance on the test set. Furthermore, Figure 3b shows that the earlystop score
eventually converges, and it gives an appropriate timing for earlystop with high detection
performance on the test-set.

(a) Performance by the number of prototypes (b) Test-set and early-stop score across epochs
Figure 3: Analyses on the number of prototypes and early stopping.

6 Conclusion
We presented a unified energy-based approach for semi-supervised anomaly detection. We
demonstrated that the contrastive learning objective is potentially fragile in the contamination
scenarios interpreted from the energy-based perspective. We suggested a new energy func-
tion concerning prototypes and introduced the fine-tuning process in this light. With these
components, the proposed model Elsa and Elsa+ could successfully distinguish anoma-
lies from normal samples while leveraging the high representation power of unsupervised
contrastive learning. Elsa+ achieves SOTA performance among other baselines and shows
strong robustness against the contamination of unknown anomalies. We believe our effort
will renew the interest in energy-based learning of OOD detection.
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