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Abstract

We introduce view birdification, the problem of recovering ground-plane movements
of people in a crowd from an ego-centric video captured from an observer (e.g., a person
or a vehicle) also moving in the crowd. Recovered ground-plane movements would
provide a sound basis for situational understanding and benefit downstream applications
in computer vision and robotics. In this paper, we formulate view birdification as a
geometric trajectory reconstruction problem and derive a cascaded optimization method
from a Bayesian perspective. The method first estimates the observer’s movement and
then localizes surrounding pedestrians for each frame while taking into account the local
interactions between them. We introduce three datasets by leveraging synthetic and real
trajectories of people in crowds and evaluate the effectiveness of our method. The results
demonstrate the accuracy of our method and set the ground for further studies of view
birdification as an important but challenging visual understanding problem.

1 Introduction

We, human beings, are capable of mentally visualizing our surroundings in a third-person
view. Imagine walking down a street alongside other pedestrians. Your mental model of
the movements of surrounding people is not a purely two-dimensional one, but rather in 3D,
albeit imperfect. It lets you guess your present location and how the geometric layout of your
surroundings changes as you navigate even in a dense crowd where everything around you
is dynamic. Endowing such 3D spatial perception with computers remains elusive. Despite
the significant progress in computational 3D and motion perception, structure from motion,
and SLAM, reconstructing the 3D geometry and motion in an “everywhere-dynamic” scene
is still challenging. Past works fundamentally rely on the visibility of textured background
to extract static keypoints at all times, so that the ego-motion can be estimated regardless of
surrounding movements.
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Figure 1: View birdification aims to re-
cover the ground-plane trajectory of peo-
ple in a crowd from an ego-centric video
captured by a dynamic observer without
static references.

In this paper, we ask a fundamental ques-
tion of 3D computational perception. Can we
recover our own and surrounding movements on
the ground plane from their perceived move-
ments in the image plane of our view, when
we can’t easily discern our ego-motion? That
is, given 2D ego-centric views from an agent
moving in a dynamic environment consisting of
other moving agents, can we localize all agents
on the ground plane without requiring that static
background is visible in the images? We refer to
this problem as view birdification in a crowd, the
problem of computing a bird’s-eye view of the
movements of surrounding people from a single
dynamic ego-centric view (see Fig. 1). Note that
our focus is on the movements, not the appear-
ance for which recent work has introduced various approaches. The need for view birdifica-
tion frequently arises in a wide range of vision tasks when, for instance, a person is walking
in a dense dynamic crowd where ego-centric views of the surrounding are limited, making
static reference requirements unrealistic. A robust method to this key question would bring
us a large step forward towards robust robot navigation and situational awareness in the wild,
and also expand the horizon of surveillance.

We introduce a purely geometric approach to view birdification. The method only re-
quires 2D bounding boxes of people in the ego-view and would generalize to different ap-
pearances. Our method is based on two key insights. First, the movement of the pedestrians
are not arbitrary, but exhibit coordinated motion that can be expressed with crowd flow mod-
els [14, 32]. That is, the interaction of pedestrians’ movements in a crowd can be locally
described with analytic or data-driven models. Second, the scale and difference of human
heights are proportional to estimated geometric depth [24]. In other words, the positions of
pedestrians on the ground plane can be constrained along the lines that pass through a center
of projection. These insights lend us a natural formulation of view birdification as a geo-
metric reconstruction problem. We formulate view birdification as a cascaded optimization
problem, consisting of camera ego-motion estimation constrained by predicted pedestrian
motion, and pedestrian localization given the ego-motion estimate. We solve this with a cas-
caded optimization consisting of gradient descent and combinational optimization under the
projection constraints and the assumed interaction model.

We experimentally validate our method on synthetic ego-centric views of people walk-
ing on trajectories extracted from publicly available crowd datasets. Since our method is
appearance agnostic, these datasets exactly correspond to reality except for possible errors
in bounding box extraction (i.e., multi-object tracking). To evaluate the end-to-end accuracy
including tracking errors, we create a photorealistic crowd dataset that simulates real camera
projection with limited field of views and occluded pedestrian observations while moving in
the crowd. These datasets allow us to quantitatively evaluate our method systematically and
set the stage for further studies on view birdification. Experimental results demonstrate the
effectiveness of our approach for view birdification in crowds of various densities.

Our contributions are threefold: (i) the introduction of view birdification, the simulta-
neous recovery of ground-plane trajectories of surrounding pedestrians and that of the ob-
servation camera just from an ego-centric view, as a novel research problem, (ii) the deriva-
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tion of a cascaded optimization framework with a Bayesian formulation to solve the view
birdification problem, and (iii) the construction of view birdification datasets consisting of
paired real human trajectories and synthetic ego-views. We believe view birdification finds
a wide range of applications and these contributions have strong implications in computer
vision and robotics as they establish view birdification as a foundation for downstream vi-
sual understanding applications including crowd behavior analysis [1, 2, 11], self-guidance
[18, 19], and robot navigation [31, 38].

2 Related Work

To our knowledge, our work is the first to formulate and tackle view birdification which finds
relevance to several fundamental computer vision and robotics problems.

Bird’s Eye View Transformation Conceptually, view birdification may appear similar to
bird’s eye view (BEV) synthesis. These two are fundamentally different in three critical
ways. First, view birdification concerns the movements not the appearance, in contrast to
BEV synthesis [33, 40, 41, 50, 51] or cross-view association [3, 4, 37]. Second, unlike
most BEV methods [23, 30, 39], view birdification cannot rely on ground plane keypoints,
multi-view images, or paired images between the views as they are usually not available in
crowded scenes. Also note that, in crowded scenes, the ground plane and footsteps cannot
be clearly extracted, which makes simple homography-based approaches impossible. Third,
view birdification aims to localize all agents in a single coordinate frame across time, unlike
BEV which is relative to the observer’s location at each time instance [6, 27, 49]. As such,
BEV synthesis methods are not directly applicable to view birdification.

Dynamic SLAM. View birdification can be considered as a dynamic SLAM problem in
which all points, not just the observer but also the scene itself, are dynamic. Typical ap-
proaches to dynamic SLAM explicitly track and filter dynamic objects [7, 48] or implicitly
minimize outliers caused by the dynamic objects [12, 13, 25]. In contrast to these approaches
that sift out static keypoints from dynamic ones, methods that leverage both static and dy-
namic keypoints by, for instance, constructing a Bayesian factor graph [15, 16, 22] have also
been introduced. The success of most of these approaches, however, depends on static key-
points which are hard to find and track in cluttered dynamic scenes such as in a dense crowd.
In view birdification, we require no static keypoints and can reconstruct both ego-motion and
surrounding dynamics only from the observed motions in the ego-view.

Crowd Modeling Modeling human behavior in crowds is essential for a wide range of
applications including crowd simulation [20], trajectory forecasting [1, 11, 17], and robotic
navigation [2, 31, 38]. Popular approaches include multi-agent interactions based on social
force models [2, 14, 28], reciprocal force models [42], and imitation learning [38]. Re-
cently, data-driven approaches have achieved significant performance gains on public crowd
datasets [1, 11, 17]. All these approaches, however, are only applicable to near top-down
views. Forecasting future location of people from first-person viewpoints has also been ex-
plored [26, 47], but they are limited to localization in the image plane. View birdification
may provide a useful foundation for these crowd modeling tasks.
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3 Geometric View Birdification

A typical scenario for view birdification is when a person with a body-worn camera is im-
mersed in a crowd consisting of people heading towards their destinations while implicitly
interacting with each other. Our goal is to deduce the global movements of people from the
local observations in the ego-centric video captured by a single person.

3.1 Problem Setting

As a general setup, we assume that K people are walking on a fixed ground plane and an
observation camera is mounted on one of them. We set the z-axis of the world coordi-
nate system to the normal of the ground plane and denote the on-ground location of the kth

pedestrian as xxxk = [xk,yk]
>. Let us denote the location of 0th person in the crowd xxx0 as the

observer capturing the ego-centric video of pedestrians k ∈ {1,2, . . . ,K} who are visible to
the observer. The observation camera is located at [x0,y0,h0]

>, where the mounted height h0
is constant across the frames. We assume that the viewing direction is parallel to the ground
plane, e.g., the person has a camera mounted on the shoulder. The same assumption applies
when the observer is a vehicle or a mobile robot. At each timestep t, the pedestrians are
observed by a camera with pose [R|xxx0]

t , where we assume 2D rotation and translation on the
ground plane i.e.,R ∈ SO(2) and xxx0 ∈ R2, respectively.

We assume that bounding boxes of the people captured in the ego-video are already ex-
tracted. For this, we can use an off-the-shelf multi-object tracker [45, 46] which provides the
state of each pedestrian on the image plane ssst

k =
[
ut

k,v
t
k, l

t
k

]> which consists of the projec-

tions of center location and height, pppt
k =

[
ut

k,v
t
k

]> and lt
k, respectively. Note that our method

is agnostic to the actual tracking algorithm. Pedestrian IDs k ∈ {1,2, . . . ,K} can also be as-
signed by the tracker. Given a sequence of pedestrian states Sk from the first visible frame τ1

to the last visible frame τ2, i.e. , Sτ1:τ2
k = {sssτ1

k ,sssτ1+1
k , . . . ,sssτ2

k }, our goal is to simultaneously
reconstruct the K trajectories of the surrounding pedestrians X τ1:τ2

k = {xxxτ1
k ,xxxτ1+1

k , . . . ,xxxτ2
k }

and that of the observation camera X τ1:τ2
0 = {xxxτ1

0 ,xxxτ1+1
0 , . . . ,xxxτ2

0 } with its viewing direction
Rτ1:τ2 = {Rτ1 ,Rτ1+1, . . . ,Rτ2} on the ground plane.

3.2 Observation Model

In the following, we set the z-axis of the world coordinate system to the normal of the ground
plane (x-y plane). Let us denote rotation angles about the x-, y-, and z-axis with θx,θy,
and θz, respectively. Assuming that the viewing direction of the camera is stabilized and
parallel to the ground plane, we can approximate the rotation angles about the x- and y-axis
to be ∆θx = 0 and ∆θy = 0 across the frames. That is, the camera pose to be estimated is
represented by its rotation Rz(∆θz) ∈ SO(2) and translation ∆xxx0 ∈ R2 on the ground plane.

We assume a regular perspective ego-centric view, but the following derivation also ap-
plies to other projection models including generic quasi-central cameras for fish-eye lens [8].
In the case of perspective projection with focal length f and intrinsic matrix A ∈ R3×3, the
distance of the pedestrian from the observer is proportional to the ratio of the pedestrian
height hk and its projection lk, i.e.,hk/lk. Given the footpoint of the pedestrian in the image
plane sssk = [uk,0, lk], the on-ground location estimate of the pedestrian relative to the camera
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zzzk = [x̃k, ỹk,0]> can be computed by inverse projection of the observed image coordinates,

[
x̃k 0 ỹk

]>
=

f hk

lk
A−1 [uk 0 1

]>
, (1)

where the intrinsics A and focal length f are known since the observation camera can be
calibrated a priori. The relative coordinates zzzk are thus scaled by the unknown pedestrian
height parameter hk. The absolute position of the pedestrian xxxk = [xk,yk]

> can be computed
by the relative coordinates zzzk = [x̃k, ỹk]

>, the camera position xxx0 = [x0,y0]
>, and the viewing

direction θz, [
xk
yk

]
= Rz(θz)

>
[

x̃k
ỹk

]
+

[
x0
y0

]
. (2)

Given a sequence of states Sτ1:τ2
k = {sssτ1

k ,sssτ1+1
k , . . . ,sssτ2

k }, we obtain corresponding on-
ground location estimates relative to the camera Zτ1:τ2

k = {zzzτ1
k ,zzzτ1+1

k , . . . ,zzzτ2
k } by inverse pro-

jection with unknown scale parameters using Eq. (1). The trajectories of pedestrians on
the ground plane X τ1:τ2

k = {xxxτ1
k ,xxxτ1+1

k , . . . ,xxxτ2
k } can be decomposed into the camera motion

X τ1:τ2
0 , Rτ1:τ2 and the relative positions Zτ1:τ2

k of pedestrians centered around the camera
position. Our goal is to recover the camera ego-motion X τ1:τ2

0 , Rτ1:τ2 and the pedestrian
trajectories {X τ1:τ2

1 ,X τ1:τ2
2 , . . . ,X τ1:τ2

K } ∈ R2×K×(τ2−τ1) on the ground plane from the obser-
vations {Sτ1:τ2

1 ,Sτ1:τ2
2 , . . . ,Sτ1:τ2

k } ∈ R3×K×(τ2−τ1) captured by an ego-centric viewer.

4 A Cascaded Optimization for View Birdification
We derive a cascaded optimization approach to the geometric view birdification problem
based on a Bayesian perspective.

4.1 A Bayesian Formulation
When a frame is pre-processed to a set of states St

1:K = {ssst
1,sss

t
2, . . . ,sss

t
K} ∈R2×K at time t, we

obtain a set of on-ground position estimates relative to a camera Zt
1:K = {zzzτ

1,zzz
τ
2, . . . ,zzz

t
K} ∈

R2×K corresponding to the states St
1:K . Assuming that we have sequentially estimated on-

ground positions up to time t−1,X t−τ:t−1
0:K = {X t−τ:t−1

0 ,X t−τ:t−1
1 , . . . ,X t−τ:t−1

K }∈R2×(K+1)×τ

with a temporal time window τ , the posterior probability of the on-ground positions X t
0:K =

{xxxt
0,xxx

t
1, . . . ,xxx

t
K} ∈ R2×(K+1) at time t can be factorized as

p(X t
0:K |Zt

1:K ,X t−τ:t−1
0:K ) ∝ p(X t

0:K |X t−τ:t−1
0:K )p(Zt

1:K |X t
0:K ,X t−τ:t−1

0:K ) . (3)

Let ∆xxxt
0 = [∆xt

0,∆yt
0,∆θ t ]∈R3 be the camera ego-motion from timestep t−1 to t consist-

ing of a 2D translation [∆x0,∆y0] and a change in viewing direction ∆θ on the ground plane.
The optimal motion of the camera ∆x̂xxt

0 and those of the pedestrians X̂ t
1:K = {xxxt

1,xxx
t
2, . . . ,xxx

t
K} ∈

R2×K can be estimated as those that maximize the posterior distribution (Eq. (3)). The mo-
tion of observed pedestrians X t−1:t

1:K are strictly constrained by the observing camera position
xxxt

0 and its viewing direction θ t . With recovered pedestrian parameters X̂ t
1:K , the optimal

estimate of the camera ego-motion ∆x̂xxt
0 becomes

∆x̂xxt
0 = argmax

∆xxxt
0∈R3

p(xxxt
0|X t−τ:t−1

0 )∏
k

p(xxxt
k|X̂ t−τ:t−1

k ,∆xxxt
0)p(zzzt

k|xxxt
k,∆xxxt

0) , (4)
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where p(xxxt
0|X

t−τ:t−1
0 ) and p(xxxt

k|X
t−τ:t−1
k ,∆xxxt

0) are motion priors of the camera and pedes-
trians conditioned on the camera motion, respectively. If the observer camera is mounted
on a pedestrian following the crowd flow, p(xxxt

0|X
t−τ:t−1
0 ) obeys the same motion model as

p(xxxt
k|X

t−τ:t−1
k ).

As in previous work for pedestrian detection [24], we assume that the heights of pedes-
trians hk follow a Gaussian distribution. This lets us define the likelihood of observed pedes-
trian positions zzzt

k relative to the camera xxxt
0 as

‖zzzt
k‖ ∼ p(zzzt

k|xxxt
k;hk) =N (µh,σ

2
h ) , (5)

where N (µh,σ
2
h ) is a Gaussian distribution with mean µh and variance σ2

h . Once the ego-
motion of the observing camera is estimated as ∆x̂xxt

0, the pedestrian positions X̂ t
1:K that max-

imize the posterior p(X t
1:K |Zt

1:K ,∆xxxt
0) can be obtained as

X̂ t
1:K = argmax

xxxt
k∈X

t
1:K

∏
k

p(xxxt
k|X t−τ:t−1

k ,∆x̂xxt
0)p(zzzt

k|xxxt
k,∆x̂xxt

0) . (6)

That is, we can estimate the ego-motion of the observer constrained by the perceived pedes-
trian movements which conform to the crowd motion prior and the observation model.

4.2 Energy Minimization
Once the camera ego-motion is estimated, we can update the individual locations of pedes-
trians given the ego-motion in an iterative refinement process. View birdification can thus be
solved with a cascaded optimization which first estimates the camera ego-motion and then
recovers the relative locations between the camera and the pedestrians given the ego-motion
estimate while taking into account the local interactions between pedestrians. Minimization
of the negative log probabilities, Eqs. (4) and (6), can be expressed as

minimize
∆xxxt

0∈R3
Ec (∆xxxt

0; X̂ t
1:K ,Zt

1:K ,X t−τ:t−1
0:K ) , (7)

subject to X̂ t
1:K = argmin

X t
1:K

Ep(X t
1:K ;∆x̂xxt

0,Zt
1:K ,X t−τ:t−1

0:K ) , (8)

where we define the energy functions for positions of camera Ec and pedestrians Ec as

Ec(∆xxxt
0; X̂ t

1:K ,Zt
1:K ,X t−τ:t−1

1:K ) =−ln p(xxxt
0|X t−τ:t−1

0 )+Ep , (9)

Ep(X t
1:K ;∆x̂xxt

0,Zt
1:K ,X t−τ:t−1

0:K ) =
K

∑
k=1
−ln p(xxxt

k|X t−τ:t−1
k ,∆xxxt

0)+
K

∑
k=1
−ln p(zzzt

k|xxxt
k,∆xxxt

0) . (10)

We minimize the energy in Eq. (7) by first computing an optimal camera position x̂xxt
0

from Eq. (7) with gradient descent and initial state xxxt
0 = xxxt−1

0 . Given the estimate of the
observer location x̂xxt

0, we then estimate the pedestrian locations by solving the combinato-
rial optimization problem in Eq. (8) for X t

k while considering all possible combinations of
{xxxt

1, . . . ,xxx
t
K} that satisfy the projection constraint in Eq. (1) and the assumed pedestrian inter-

action model. This can be interpreted as a fully connected graph consisting of K pedestrian
nodes with unary potential and interaction edges with pairwise potential. Similar to prior
works on low-level vision problems [5, 21], Eq. (10) can be optimized by iterative message
passing [10] on the graph. The possible states xxxi are uniformly sampled on the projection
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line around µh with interval [µh−δS/2,µh +δS/2], where S is the number of samples and
δ = 0.01. Considering only pairwise interactions and Gaussian potential, the complexity of
the optimization is O(KS2T ), where T is the number of iterations required for convergence.
In this paper, we use two types of analytical interaction models, ConstVel [35] and Social

Force [14]. We provide a detailed derivation of energy functions for these in the supplemen-
tary material.

5 Experiments
We validate the effectiveness of the proposed geometric view birdification method through
an extensive set of experiments. Unfortunately, the COVID-19 pandemic has made real data
collection impossible as it would inevitably involve many people. Instead, we fully leverage
existing real pedestrian trajectories combined with synthetic camera views to thoroughly
evaluate the accuracy of our method. Since our method only requires bounding boxes of
people in the ego-centric view, we can fully evaluate the effectiveness of our method in real
scenes by using real trajectories.

5.1 View Birdification Datasets
To the best of our knowledge, no public dataset is available for evaluating view birdification
(i.e., ego-video in crowds). We construct the following three datasets, which we will publicly
disseminate, for evaluating our method and also to serve as a platform for further studies on
view birdification. Please see supplementary material for detailed statistics of them.

Synthetic Pedestrian Trajectories The first dataset consists of synthetic trajectories paired
with their synthetic projections to an observation camera. This data allows us to evaluate the
effectiveness of view birdification when the crowd interaction model is known. The trajec-
tories are generated by the social force model [14] with a varying number of pedestrians
K ∈ {10,20,30,40,50}, and a perspective observation camera mounted on one of them. To
evaluate the validity of our geometric formulation and optimization solution with this dataset,
we assume ideal observation of pedestrians, i.e., pedestrians do not occlude each other and
their projected heights can be accurately deduced from the observed images. We also as-
sume that the pedestrians are extracted from the ego-centric video perfectly but their heights
hk are sampled from a Gaussian distribution hk ∼N (µh,σ

2
h ) with mean µh = 1.70 [m] and

a standard deviation σh ∈ [0.00,0.07] [m] based on the statistics of European adults [43].

Real Pedestrian Trajectories The second dataset consists of real pedestrian trajectories
paired with their synthetic projections to an observation camera. The trajectories are ex-
tracted from publicly available crowd datasets: three sets of sequences from ETH [32] and
UCY [20]. As in the synthetic pedestrian trajectories dataset, we render corresponding ego-
centric videos from a randomly selected pedestrian’s vantage point. With this, we obtain
test sequences which we refer to as Univ, Hotel from ETH, and Students from UCY. Hotel,
Univ, and Students datasets correspond to sparsely, moderately, and densely crowded sce-
narios, respectively. This dataset allows us to evaluate the effectiveness of our method on
real data (movements).

Photorealistic Crowd Simulation The last dataset consists of synthetic trajectories paired
with their photo-realistic projection captured with limited field of views and frequent oc-
clusions between pedestrians. Evaluation on this dataset lets us examine the end-to-end
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Figure 2: Results on synthetic pedestrian trajectories. Circle, star, and squared mark-
ers denote errors of estimated camera rotations ∆r, translations ∆ttt, relative ∆x̃xx and ab-
solute localization errors ∆xxx, respectively, with standard deviations of pedestrian heights,
σ = 0.01,0.05,0.07 [m], respectively.

effectiveness of our method including robustness to tracking errors. Inspired by previous
works on crowd analysis and trajectory prediction [9, 44], we use the video game engine of
Grand Theft Auto V (GTAV) developed by Rockstar North [34] with crowd flows automati-
cally generated from programmed destinations with collision avoidance. We collected pairs
of ego-centric videos with 90◦ field-of-view and corresponding ground truth trajectories on
the ground plane using Script Hook V API [36]. We randomly picked 50 different person
models with different skin colors, body shapes, and clothes. We prepare two versions of this
data, one with manually annotated centerline and heights of the pedestrians in the observed
video frames and the other with those automatically extracted with a pedestrian detector [45]
pretrained on MOT-16 [29] which includes data captured from a moving platform.

5.2 View Birdification Results
Evaluation Metric We quantify the accuracy of our method by measuring the differences
between the estimated positions of the pedestrians xxxt

k and the observer Rt ,xxxt
0 on the ground

plane from their ground truth values ẋxxt
k, Ṙ

t , and ẋxxt
0, respectively. The translation error for

the observer is ∆ttt = 1
T ∑

T ‖xxx0
t − ẋxxt

0‖, where T is a timestep duration of the sequence. The
rotation error of the observer is ∆rrr = 1

T ∑t arccos( 1
2 trace(Rt(Ṙt)>−1). We also evaluate the

absolute and relative reconstruction errors of surrounding pedestrians which are defined by
∆xxx = 1

K
1
T ∑k ∑t ‖xxxt

k− ẋxxt
k‖ and ∆x̃xx = 1

K
1
T ∑k ∑t ‖(xxxt

k− xxxt
0)− (ẋxxt

k− ẋxxt
0)‖ , respectively.

Results on known interaction model Fig. 2 shows the view birdification results on the
synthetic trajectories dataset. Although both rotation and translation errors slightly increase
as the height standard deviation σh becomes larger, the error rate becomes lower as the
number of people K increases. This suggests that the more crowded, the more certain the
camera position and thus the more accurate the birdification of surrounding pedestrians.

Results on unknown real interaction models The real trajectories data allow us to evalu-
ate the accuracy of our method when the interactions between pedestrians are not known. We
employ two pedestrian interaction models, Social Force (SF) [14] and ConstVel (CV) [35].
We first evaluate the accuracy of our view birdification (VB) using these models, referred
to as VB-SF and VB-CV, and compare them with baseline prediction models. In these base-
line models, referred to as ConstVel (CV) and Social Force (SF), we extrapolate a pedestrian
position X t

k from its past locations X t−2:t−1
k based on the corresponding interaction model

without using the observer’s ego-centric view. That is, the baseline model is not view birdi-
fication but extrapolation according to pre-defined motion models on the ground plane.
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Table 1: Birdification results on real trajectories. Relative and absolute localization errors
of pedestrians, ∆x̃xx,∆xxx (top), and camera ego-motion errors, ∆r and ∆ttt (bottom), were com-
puted for each frame for three different video sequences. Baseline methods only extrapolate
movements on the ground plane resulting in missing entries (–). The results demonstrate the
effectiveness of our view birdification.

Dataset Hotel / sparse Univ / mid Students / dense
σh ∆x̃xx [m] ∆xxx [m] ∆x̃xx [m] ∆xxx [m] ∆x̃xx [m] ∆xxx [m]

CV [35] – – 0.294 ± 0.186 – 0.275 ± 0.195 – 0.223 ± 0.169
SF [14] – – 0.289 ± 0.207 – 0.261 ± 0.174 – 0.222 ± 0.163

VB-CV 0.00 0.051 ± 0.029 0.070 ± 0.030 0.089 ± 0.045 0.115 ± 0.049 0.022 ± 0.008 0.023 ± 0.008
0.07 0.051 ± 0.029 0.070 ± 0.030 0.090 ± 0.045 0.116 ± 0.050 0.021 ± 0.007 0.022 ± 0.008

VB-SF 0.00 0.048 ± 0.027 0.052 ± 0.033 0.070 ± 0.040 0.079 ± 0.047 0.009 ± 0.003 0.010 ± 0.006
0.07 0.049 ± 0.027 0.052 ± 0.032 0.071 ± 0.040 0.080 ± 0.047 0.009 ± 0.004 0.010 ± 0.006

σh ∆rrr [rad] ∆ttt [m] ∆rrr [rad] ∆ttt [m] ∆rrr [rad] ∆ttt[m]

VB-CV 0.00 0.015 ± 0.030 0.066 ± 0.089 0.016 ± 0.027 0.095 ± 0.125 0.001 ± 0.001 0.010 ± 0.007
0.07 0.017 ± 0.039 0.069 ± 0.100 0.019 ± 0.034 0.110 ± 0.148 0.001 ± 0.001 0.010 ± 0.007

VB-SF 0.00 0.015 ± 0.036 0.062 ± 0.104 0.015 ± 0.031 0.089 ± 0.135 0.001 ± 0.001 0.009 ± 0.006
0.07 0.016 ± 0.042 0.062 ± 0.103 0.016 ± 0.035 0.091 ± 0.153 0.001 ± 0.001 0.009 ± 0.006

Table 1 shows the errors of our method and baseline models. These results clearly show
that our method, both VB-CV and VB-SF, can estimate the camera ego-motion and local-
ize surrounding people more accurately, which demonstrates the effectiveness of birdify-
ing the view and exploiting the geometric constraints on the pedestrians through it. VB-SF
performs better than VB-CV especially in scenes with rich interactions such as Univ and
Students, while they show similar performance on the Hotel dataset that includes less inter-
actions. Both VB-SF and VB-CV show accurate camera ego-motion results in the Students
dataset, which demonstrates the robustness of ego-centric view localization regardless of
the assumed pedestrian interaction models. Our method achieves high accuracy on all three
datasets across different standard deviations of heights σh ∈ [0.00,0.07]. This also shows
that the method is robust to variation in human heights.

Photorealistic Crowds. Fig. 3 shows qualitative results on the photorealistic crowd dataset.
As shown in the top two rows, our method accurately estimates camera ego-motion and on-
ground positions of automatically detected pedestrians with an off-the-shelf tracker [45].
People tracked in more than three frames are birdified. Even with occlusions in the image
and noisy height estimates computed from detected bounding boxes, our approach robustly
estimates the camera ego-motion and surrounding pedestrian positions. Due to perspective
projection, localization error caused by erroneous detection in the image plane is propor-
tional to the ground-plane distance between the camera and the detected pedestrian. We
further compared these results with manually annotated pedestrian heights as shown in the
bottom two rows Fig. 3 to highlight the effect of automatically detecting the pedestrians for
view birdification (i.e., to see how the results change if the pedestrian heights were accurate).
The resulting accuracies are comparable, which demonstrates the end-to-end effectiveness.
To further ameliorate the errors caused by detection noises, our method can also be extended,
for instance, by replacing the noise model in Eq. (5) with a 2D Gaussian distribution. Please
also see the supplemental material and video.
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Figure 3: Results on photorealistic crowd dataset. The top row shows detected pedestrians
with a multi-object tracker in bounding boxes and the third row shows manually annotated
human heights (center lines). The figures in the second and fourth rows depict view birdifi-
cation results for them. Colors correspond to Pedestrian IDs. Red triangles denote camera
position estimates xxxt

0 and dashed circles denote estimated pedestrian positions xxxt
k at time t.

Grey triangles and circles denote ground-truth camera and pedestrian positions, respectively.
View birdification results for both automatic and manually detected people show consistently
high accuracy. These results demonstrate the end-to-end accuracy of view birdification.

6 Conclusion
In this paper, we introduced view birdification, the problem of recovering the movement
of surrounding people on the ground plane from a single ego-centric video captured in a
dynamic cluttered scene. We formulated view birdification as a geometric reconstruction
problem and derived a cascaded optimization approach that consists of camera ego-motion
estimation and pedestrian localization while fully modeling the local pedestrian interactions.
Our extensive evaluation demonstrates the effectiveness of our proposed view birdification
method for crowds of varying densities. Currently, the occlusion handling is carried out by an
external multi-object tracker. We envision a feedback loop from our birdification framework
that can inform the multi-object tracker to reason better about the occluded targets, which
will likely enhance the accuracy as a whole even in heavily occluded scenes. We believe
our work has implications for both computer vision and robotics, including crowd behavior
analysis, self-localization, and situational awareness, and opens new avenues of applications
including dynamic surveillance.
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