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Abstract

Existing domain adaptation (DA) methods try to handle various DA scenarios sub-
ject to imbalanced label sets or multiple source/target domains, e.g., Closed set, Open
set, Multi-Source, Partial and Multi-Target DA. Though Universal Domain Adaptation
(UniDA) and Versatile Domain Adaptation (VDA) have been proposed to address these
scenarios simultaneously, the related proposed methods still suffer from two issues: i)
UniDA and VDA can hardly cover all of existing DA scenarios, e.g., UniDA cannot han-
dle Multi-Source and Multi-Target DA scenarios, and VDA does not include Open set
DA. ii) The proposed UniDA and VDA methods mainly focus on the versatility, and they
ignore the essential DA problem, i.e., domain mismatch. This paper introduces Grand
Unified Domain Adaptation (GUDA) scenario, which needs no prior knowledge about
the number of source/target domains or the overlap. GUDA can cover more existing DA
scenarios. Towards tackling GUDA, we formulate a grand unified adaptation network
called Graph Contrastive Adaptation Network (GCAN), which can handle above men-
tioned DA scenarios and further reduces the domain mismatch without any modification.
GCAN includes a graph contrastive adaptation objective at the node level, and a trans-
ferability rule to gain the common category identification loss. The results illustrate that
GCAN works stably on different GUDA settings and shows comparable performance
against recent DA methods on five benchmarks.

1 Introduction

Deep learning methods could improve the recognition performance when a large number of
labelled data are used for training, but always drops significantly on another new domain,
which can be called domain mismatch problem [3, 4, 31]. In practice, domain mismatch
often exists in the real-world scenario, where the training and test data are typically acquired
from different sensors or deployed from different environments. A short distance between
the networkafrs training target domains will lead to wrong predictions and affect the perfor-
mance significantly. Moreover, abundant training data for a new target domain require large
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labor work on gaining labeled data, which limits the applications of deep learning methods.
Thus, domain adaptation (DA) task is proposed to circumvent this issue, which can trans-
fer the knowledge trained from the source domain to the target domain, while removing the
domain shift.

Most of the existing methods [2, 9, 27] assume that the label sets across source and
target domains are identical, which is termed as Closed Set Domain Adaptation (CSDA).
Though this impractical assumption helps gain many insights for DA methods, it is not true
in the real-world scenario, where the category number in the target domain is often different
from that in source domain. In addition, in many practical settings, source and target do-
mains may contain many different domains, e.g., in multi-camera applications. Aiming to
handle these, some broad adaptation settings: Partial Domain Adaptation (PDA) [5, 6, 33],
Open Set Domain Adaptation (OSDA) [14] [25] and Multi-Source/Target Domain Adapta-
tion (MSDA/MTDA) [19, 21, 24, 30] are proposed. However, these settings must acquire
the prior knowledge about label sets and domain configurations before training, which limits
the applications for the practical scenarios. Therefore, researchers may struggle to choose a
proper method when encountering a new unknown DA scenario.

For this purpose, two generalized DA
scenarios Universal Domain Adaptation Closed Set DA
(UniDA) [8, 26, 32] and Versatile Do- /"A—_l_\o‘\
main Adaptation (VDA) [12] are proposed, Opensetoh s -7 paniioa
which try to handle several different DA s-
cenarios, simultaneously. However, these
two scenarios still suffer from two issues:
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1) UniDA and VDA cannot cover all of ex- ,A/A' ‘A‘x\
isting DA scenarios. In UniDA scenario, Open-partial DA '\\__.__,/'
it can only address CSDA, PDA and OS- ,/".";\’ .

DA issues, where MSDA and MTDA s- Y

cenarios cannot be handled. On the other

side, VDA can hardly handle OSDA sce- Figure 1: Grand Unified Domain Adaptation
nario. ii) Proposed UniDA and VDA meth- (GUDA) and existing domain adaptation set-
ods mainly focus on the versatility, and they ~ tings with respect to label sets of source and
ignore the essential DA problem, i.e., do- target domains, and multi-target/source do-
main mismatch. From [12], we can observe mains, where different shapes mean different
that when encountering traditional Unsu- classes, and same shape with different colors
pervised Domain Adaptation (UDA) issue, mean different domains.

where the source and target domains have

identical label set, [12] performs worse than the state-of-the-art UDA approaches, by a large
margin (5%). Therefore, the motivation of this work aims to propose a model, which work-
s well on all existing DA scenarios including OSDA, MSDA and MTDA, simultaneously,
while still removing domain mismatch effectively.

In this paper, we propose a generalized scenario, termed as Grand Unified Domain Adap-
tation (GUDA) (Fig. 1). In GUDA, the label set constraints are removed. GUDA needs no
prior knowledge about the number of the source/target domains and the label set. When a
source domain is obtained, for a new target, we need to find the outlier categories and mark
these outliers as “unknown”. Then we try to classify the samples correctly. GUDA should
tackle most of the existing scenarios without any modification.

To this end, we formulate a grand unified adaptation network called Graph Contrastive
Adaptation Network (GCAN), which can be considered as a pilot tool when researchers en-
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counter a new unknown DA task. GCAN includes a graph contrastive adaptation objective
at the node level, and a transferability rule to calculate the common category identifica-
tion loss. In addition, aiming to address Multi-Source/Target domain adaptation scenarios,
Multi-Source/Target Alignment (MSTA) network is introduced to predict the weights for
source and target samples at each iteration, which can align the target and source distribu-
tions. Through GCAN, the examples which are from the common label set or multi-domains
are successfully recognized and matched, and the outlier target examples are marked as “un-
known” class. To summarize, major contributions are as follows:

1. We propose a more practical setting, Grand Unified Domain Adaptation (GUDA),
which needs no prior knowledge about the label set and the source/target domains number.
Different from previous UniDA and VDA, GUDA can simultaneously tackle more existing
DA scenarios including OSDA, MSDA and MTDA without modification.

2. A GUDA method is proposed, Graph Contrastive Adaptation Network (GCAN),
which can tackle GUDA problem in an end-to-end fashion.

3. Aiming to handle the unsatisfactory performance of UniDA and VDA methods on
UDA problem, we introduce a graph contrastive adaptation objective at the node level to
further reduce the mismatch between source and target domains.

4. Experimental results on five benchmarks show that GCAN works stably across differ-
ent GUDA settings and performs favorably against recent DA methods, including label set
imbalanced tasks and multi-domain tasks. Deeper analyses illustrate that when the tasks are
changed to special cases of GUDA, i.e., OSDA, CSDA or PDA , the results of GCAN is still
comparable.

2 Related Work

Partial Domain Adaptation. PDA aims to handle the domain mismatch issue when the
source domain categories are larger than target domain categories. In PDA scenario, target
samples may wrongly be recognized to the outlier source classes, resulting negative transfer
issue [17]. To solve PDA issue, some approaches perform importance-weighting on source
data to find the similar data in the target [5, 6, 33].

Open Set Domain Adaptation. OSDA assumes that there are some samples in the target,
which do not belong to the source classes. The classes private to source and target domains
are “unknown” categories [14] [25]. Existing OSDA methods assume that the target domain
must contain unknown categories, which leads to the limitations of the applications for PDA
and CSDA scenarios.

Multi-Source/Target Domain Adaptation. Compared to above single-domain DA, MSDA
and MTDA assume realistic scenarios that source domain or target domain can be collect-
ed from multiple domains. Aiming to handle this, some representative deep models based
domain adaptation methods are proposed [19, 21, 24, 30].

Universal/Versatile Domain Adaptation. Traditional domain adaptations are limited by
the label set constraints. UniDA is a general setting of domain adaptation, which requires no
prior knowledge of label set relationship, and includes some of the previous adaptation set-
tings [8, 26, 32]. However, UniDA cannot handle MSDA and MTDA scenarios. VDA is first
proposed in [12], which aims to handle several different DA scenarios by one method with-
out any modification. Aiming to handle VDA scenario, [12] proposes a loss function called
Minimum Class Confusion (MCC). Though extensive results show that MCC can outperfor-
m state of the art scenario-specific DA methods, it can hardly handle OSDA scenario.
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3 Proposed Method

Problem Setup. Our task is Grand Unified Domain Adaptation (GUDA), which can tackle
almost all domain adaptation scenarios without any modification. Given a labeled source
domain D, with the corresponding label set Y, = [y, ,--- ,ySNS], and an unlabeled target
domain D, with the corresponding label set Y; = [y;,, - »er,]~ N; and Ny are the number
of samples in the target and source domains, respectively. Note that Y, cannot be accessed
when training, and it is only applied to define the domain adaptation task. The marginal and
conditional distributions between domains are considered as Pp #Pp, and Py p, =+ Py, p,,
respectively. GUDA aims to predict Y;, while eliminating the domain mismatch problem
between Dy and D;. C; is the number of source classes, and C; is the number of target
classes.

In GUDA scenario, the target domain
may contain part of the source classes and
some unknown classes. In addition, no pri-
or knowledge about the overlap or the num-
ber of the source or target domains can be
acquired. GUDA removes all restriction-
s and handles all the mentioned adaptation
scenarios. The shared classes are denoted
as C = CyNC;. The merged source and tar-
get domains are also denoted as Dy and D;.
The category sets private to the source and
target domains are denoted as C; = C;\C Figure 2: Architecture of Graph Contrastive
and C; = C;\C , respectively. Adaptation Network (GCAN). £ is the the fi-

nal objective. See text for detail.

— Forward
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3.1 The model

As shown in Fig. 2, our model includes fea-

ture extractor F, label classifier fc, domain classifier fp, Graph Neural Networks (GNN) en-
coder f(+), a Contrastive Domain Discrepancy (CDD) component and an alignment network
®(-). Data point x from D; or D is put into the feature extractor F, denoting as F(x). fc
outputs the label prediction of categories from source domain fc(F (x)). fp outputs the prob-
ability of the sample being from source domain fp(F(x)). fp(F(x)) can be considered as
a domain factor, which can estimate the probability of samples being in the source domain,
€10,1].

Graph Contrastive Domain Mismatch. We minimize the domain mismatch of the last
fully connected (FC) layers and fine-tune the layers by back-propagation. The proposed
graph contrastive domain mismatch can be incorporated into the objective as an adaptation
module over the activations of FC layers. Motivated by recent contrastive learning models,
we can maximize the agreement between two modalities of the same graph via a contrastive
loss to perform the pre-training. Graph representation learning through GNN has become a
useful tool to explore graph structured data. Some methods have combined the contrastive
strategy [34], which can learn discriminative representations through contrasting positive
and negative examples. Following the trend, we introduce graph contrastive concept into
domain adaptation to eliminate the mismatch between the source and target domains for a
better performance. Let G = (V; ) denotes a undirected graph, where V represents the node
set and & is the edge set. Let X denotes the set of all possible data points. The feature matrix
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is denoted as X € RV*N_ where x; € R" is the N-dimensional attribute vector of the node
v; € V. The aim is to obtain a M-layer GNN encoder f(-) € RYV*V ", which can receive graph
features as input, and output node embeddings, i.e., N* < N. f(-) can transform nodes to
low-dimensional embeddings for preservation of the graph structural features. In GCAN, we
develop contrastive learning for GNN pre-training. Multi-layer perceptron (MLP) is used for
extracting graph-level representation vectors:

MLP(f(G)) = MLP(R : {h" : v; € V}), (1

where m is m-th layer and h; is the embedding of node v;. R is the Readout function, which
can summarize the obtained patch representations into graph-level representations [34] [28].

During the pre-training, graphs are randomly processed and sampled by contrastive
learning. At each iteration, two correlated graph views are generated as positive (similar)
pair of examples, denoted as f(G;) and f(G;). We optimize the corresponding contrastive
loss:

N N L L . .
£ (5 o Fexp UGS G ) S (G- SGn))y

\4 \4

(@)
n=1 n*=1
where n* #n, v is the temperature parameter and S(-) denotes the cosine similarity function.
The contrastive loss is the mutual information maximization between two correlated graph
views. Thus Eq. (2) is rewritten as the expectation form, while removing the subscript n/n*:

£9=Ep, (log(Ep,, )eP(G0-1(G)) _ Epg 16, P(f(Gi):f(G)))) —logN, 3)

where Fg\g: and Pg, are the conditional and marginal distribution of the graph views, respec-
tively. P(-) parametrizes the cosine similarity function S(-) and v. Through minimizing Eq.
(3), the lower bound of mutual information between f(G;) and f(G;) is maximized.

We introduce Contrastive Domain Discrepancy (CDD) [13] to further eliminate the do-
main difference across the two domains. CDD maximizes the inter-class margin and mini-
mizes the intra-class difference, simultaneously:

n

£t = Z( Zc (¥ry:ay, +0) —

=1

c C
Z Z < Yty - 9) ) “)

where £ and £ are the kernel mean embedding estimation for the two classes ¢ and ¢’.
¢ is a mapping from the input to a specific layer, which can be defined through the deep
learning model. [ is the number of the layers. Eq. (4) optimizes a new metric which can
model the inter-class and intra-class domain discrepancies jointly to improve the adapta-
tion performance by end-to-end mini-batch training. The inter-class margin is maximized
across domains to push the representations of each other further away. Therefore, the graph
contrastive domain objective can be expressed as: £L9%C = £+ £C.

Grand Unified Approach to Domain Adaptation. The main motivation of this paper is
to design a grand unified method for almost all existing domain adaptation scenarios. To
estimate the confidence whether data point x is from C, and select the samples to align the
source and target feature distributions, we introduce w(x). At the beginning, grand unified
approach provides the high transferability samples to align target and source. When the
alignment has been completed, approach will deal with the next set of samples with priority.
When w(x) is low, x is less likely from C. w(x) is considered as a threshold to decide whether
we can label the test data as C;. Normally, when the source data are similar with the target
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data, the samples have high probability to be in C. Thus, the transferability rule is:

w(x) = fo(F() + maxfe(F(x)) + % )

where fp(F(x)) € [0,1], which illustrates that higher values can be associated with the source
samples. max fc(F(x)) and log|C;| € [0,1], which obtains w(x) € [0,2.5]. The transferabil-
ity rule holds the assumption that if points in the source domain seem to be similar to the
target samples, they have a higher possibility to in the shared categories. The maximum of
Je(F(x)) is a measure to classify target samples which can be recognized as the shared class-
es C. Moreover, in GUDA setting, since recognize every sample in the target usually results
in adverse results, only the data which are more likely to be from the shared categories are
classified. In general, when source samples are more similar to target samples, they are more
likely to be in C. Therefore,
E  maxfe(F(x))
(x,Y)ePp, Py, |Y eC
A B maxfe(F(). ©

(x,Y)ePp, Py, |Y,€C,
where Y denotes the corresponding label of x.

In addition, we introduce Multi-Source/Target Alignment (MSTA) network ®(-) with
parameters ¢. MSTA predicts the weights for source and target samples at each iteration,
which aligns the target and source distributions. MSTA estimates the preference of source
and target samples to keep up with the improving domain classifier. Common category
identification part is obtained from the transferability rule. The source and target alignment
part automatically learns which samples are best suited to align to the target. The intuition is
that the network ®(-) constantly re-measures the transferability of latent domains over time
to reduce the distance between source and target domains. At the beginning, the network
prefers examples which have higher transferability to align with the target. When these
examples are aligned, the network prioritizes the next set of source examples for alignment.

Given some samples, [x!,--- x¥s] € Dy, we put the samples into ®(-) for the scores to
obtain the weight vectors. With the source sample weights, the loss for the identification
of the common categories across source and target domains, and align the source and target
feature distributions can be written as:

Common Category Identification

LYY= E  [Lee(Y, feF@N+ E [Lygse - Lee((argmaxfo(F(x)), fo(F(x)))]
(xY)ePp Py (Y)ePp Py
Source and Target Alignment @)

1N 1 M

+ 3 L (@ ogo(F () +1og(1 = fo(P())) + - 3 (@ os(o(F () +log(1 — S (FIX)))).

s i=1

where [xt1 e ,xﬁV’] € D,. Lck is the standard cross-entropy loss. € is the validated threshold,

which is used to avoid negative transfer. Initially, the threshold is high. When the network is
trained till it can better classify samples, the threshold is lower further.

Thus, the final objective can be expressed as: £ = LO&C L ) £V and A is trade-off
hyper-parameter.

4 Experiments

The experiments are run on a 20-GPU cluster and implemented in PyTorch platform.
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Table 1: Accuracies (%) based on ResNet-50 with distance: = 0.32, 0.15, 0.50, 0.07 and
0.43 (best performance is highlighted in bold, and second performance is underlined).

Model Office-31 Office-Home VisDA  Im-Ca DomainNet
AW DWW AD  Avg  AC AP AR CA  CGP CR Avg Acc EC PR PS RS Avg
ResNet[11] 7594 89.60 8045 8200 5937 7658 8748 6986 71.11 8166 7434 5280 7028 5823 49.65 5268 53.52
i) DAN[15] 7628 8314 8235 8059 5327 7735 7428 6543 7094 7826  69.92 50.21 70.21 5445 4781 5316 5181

CSDA DANN [9] 80.65 8094 88.07 8322 5617 8172 8687 6867 7338 8376 7510 5294 7137 5531 49.19 5438  52.96
ADDA [27] 7524 7381 7858 7588 5263 7832 7787 7023 7245 8421 7262 5328 72.81 5321 4227 4967 4838

ii) STA [14] 7713 8076 7554 7781 6724  63.62 77.86 66.80 6326 7583  69.10  37.69 6582 5412 4763 5079  50.85
OSDA OSBP [25] 66.13 7357 7292 7087 4775 6090 7678 5923 6158 7433 6343 3026 6208 5315 4582  47.64 4887
i) SAN [5] 8264 8482 8158 8301 5223 7544 7173 6621 6783 8263 7035 5624 7004 5937 5185 5264 54.62
PDA IWAN [33] 8525 90.09 8427 8654 5255 8140 8651 7058 7099 8529 7455 5872 7219 5826 5297 5647 5590
ETN [6] 8794 9762 8847 9134 5429 7882 7993 7307 7254 8545 7402  59.08 7324 5997 5364 5728  56.96

) DANCE [26] 8865 0753 8946 OL8S 6675 8416 8720 7526 7494 8119 7935 6231 7692 6256 3.9 5986 6007
UniDA/  UAN[32] 8562 9477 8650 8896 6300 8283 8785 7688 7870 8536 79.10 6083 7528 6028 5614 5864 5835
VDA CMU[8] 8686 9572 8911 90.56 6352 8381 8894 7772 7937 8685 8004 6142 7645 6576 60.35 6245 6285
MCC[12] 8137 9629 8782 8849 6174 8197 8482 7484 7729 8568 7772 6576 7921 6021 5448 5930 5800

Ours GCAN 9124 9773 9316 9404 69.98 8527 88.69 8324 8159 8973 83.08  64.97 79.13 6684 61.64 6488 64.45

4.1 Experimental Setup

Datasets. We use five datasets, which are widely benchmarked in recent DA models: 1)
Office-31 [23], which has 3 domains, e.g., Amazon (A), DSLR (D), Webcam (W)) including
31 classes. ii) Office-Home [29], which has 4 domains, e.g., Art (A), Clip Art (C), Product
(P) and Real World (R) containing 65 classes. iii) VisDA [18], contains 2 domains with 12
classes, focusing on a special DA setting (synthetic to real). iv) ImageNet-Caltech [22] [10],
which includes a large number of classes with 1000 and 256, respectively. v) DomainNet
dataset [20] is the largest DA dataset up to now, which has 6 domains, e.g., Quickdraw (Q),
Real (R), Painting (P), Infograph (I), Sketch (S) and Clipart (C) with 345 classes.

For the scenarios on CSDA, OSDA and PDA, we follow the same experimental settings
as [32] [8]. In order to show the distance between the label sets, we introduce commonness
value between source and target domains: f§ = |C;NC,|/|Cs UC,|. CSDA is the special case
when 8 = 1. For the scenarios on other DA scenarios, we follow the same setup as [12].
Compared Methods. GCAN is compared with seven kinds of DA methods: i) CSDA:
Deep Adaptation Network (DAN) [15], Domain-Adversarial Neural Networks (DANN) [9],
Adversarial Discriminative Domain Adaptation (ADDA) [27], ii)) OSDA: Open Set Back-
Propagation (OSBP) [25], Separate to Adapt (STA) [14], iii) PDA: Selective Adversarial
Network (SAN) [5], Importance Weighted Adversarial Network (IWAN) [33], Example
Transfer Network (ETN) [6]. iv) UniDA/VDA: Domain Adaptative Neighborhood Clus-
tering via Entropy optimization (DANCE) [26], Universal Adaptation Network (UAN) [32],
Calibrated Multiple Uncertainties (CMU) [8] and Minimum Class Confusion (MCC) [12]. v)
MTDA: Maximum Classifier Discrepancy (MCD) [24] and Deep Adversarial Disentangled
Autoencoder (DADA) [21]. vi) MSDA: Deep Cocktail Network (DCTN) [30] and Moment
Matching for Multi-Source Domain Adaptation (M 3SDA) [19]. vii) MSPDA/MTPDA: Par-
tial Adversarial Domain Adaptation (PADA) [5] and Adaptive Feature Norm (AFN) [31].

Moreover, ResNet [11] results are provided, which shows the lower bound without label
domain adaptation and disalignment. ResNet is used as the network backbone.
Implementation Details. We employ ResNet pre-trained on ImageNet as the feature extrac-
tor. We utilize Adam optimizer with a fixed learning rate of 1076 for the pre-trained and
107 for the final two randomly initialized layers. We set A as 10~! for our method, and
provide parameter sensitivity analysis. The networks are trained for 20000 iterations. The
training uses mini-batches composed of 256 samples. To enable more diverse classifiers in
deep ensemble, we use affine scheme for data augmentation. The validated threshold € has
the following form: € = 1 — p/(2P), where p is the current iteration and P is the number of
total iterations. We run the model for 10 runs and report the averaged performances.
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Table 2: Accuracy (%) on DomainNet for MTDA and MSDA, and accuracy (%) on Office-
Home for MSPDA and MTPDA. “m:” means that m domain is considered as the source
domain, and other domains are merged into the target domain and vice versa.

MTDA MSDA MSPDA MTPDA
Model
c: it p: q: r: st e s :p iq ir B A :C P :R Az C: P: R:
ResNet [11] 256 168 258 9.2 206 223 476 130 381 133 519 337 - -
MCD [24] 25.1 19.1 270 104 202 225 543 221 457 76 584 435 - N N -
DADA [21] 261 200 265 129 207 228 - - - - - - 651 630 604 630
DCTN [30] - - - - - - 486 235 488 72 535 473 - - - - - - - -
M3SDA [19] - - - - - - 586 260 523 6.3 627 495 674 553 722 804 - - - -
PADA [5] - - - - - - - - - - - - 628 518 717 792 599 537 511 614
AFN [31] - - - - - - - - - - - - 771 612 793 825 687 656 634 675
DANCE [26] 272 231 264 118 243 242 618 257 541 113 635 519 772 603 785 832 654 706 657 668
CMU [8] 264 223 277 124 219 275 623 247 524 135 612 487 764 627 779 828 666 713 641 659
MCC [12] 33.6 300 324 135 280 353 655 260 56.6 165 680 527 796 675 806 85.1 73.1 72.1 69.4 683

GCAN 342 325 351 174 308 382 707 294 604 208 713 556 812 718 823 878 757 742 710 759

4.2 Results & Analysis

Compared to CSDA, OSDA, PDA and UniDA/VDA. The classification results based on
ResNet-50 are shown in Table 1. Some results of the baseline methods are from [8]. We can
make following observations: 1) GCAN works stably on different GUDA settings and shows
comparable performance against recent DA methods, which shows that GCAN can perform
well on different kinds of datasets. 2) Since the violation of label set assumption, i.e., OSDA
methods are used to address PDA scenario, some DA methods perform even worse than
ResNet. 3) MCC, which is proposed for VDA scenario, outperforms GCAN on VisDA and
ImageNet-Caltech datasets. It may because that MCC is designed to tackle CSDA and PDA
scenarios, and source domain contains more classes than target domain in the two datasets.
Compared to MTDA, MSDA and MSPDA/MTPDA. We evaluate the MTDA, MSDA,
MSPDA and MTPDA tasks following the protocol of MCC [12]. Some results of the baseline
methods are also from [12]. For MTDA and MSDA scenarios, we validate our method
on DomainNet. For MSPDA and MTPDA scenarios, the performances are evaluated on
Office-Home. The multiple source domains or target domains are merged into one source
domain or one target domain, respectively. Table 2 shows classification accuracy based on
ResNet-101 on these datasets. It illustrates that GCAN can achieve state-of-the-art results
over other methods w.r.¢ performance accuracy generally, which illustrates that GCAN can
address multi-domain issue effectively. The average classification accuracy on each dataset
is improved with a big margin (4.0%).

Compared to UDA. One contribution of

our work is that the proposed GCAN can Table 3: UDA scenario on Office-31 dataset,
better address domain mismatch problem where only 10 common categories are used.

than UniDA (DANCE and CMU) and VDA Model MTDA

AW DWW W=D A=D DA WA Avg

(MCC) methods. We evaluate GCAN for DAN [15] 805 971 996 786 636 628 804

. DANN [9] 82.0 96.9 99.1 79.7 68.2 67.4 82.2

the most common UDA scenario on Ofﬁce— CDAN [16] 94.1 98.6 100.0 929 71.0 69.3 87.7
AFN [31] 88.8 98.4 99.8 87.7 69.8 69.7 85.7

31 dataset, where only the 10 common cat- ~ PANCE[26] 937 981 984 946 723 732 884
CMU [8] 94.5 97.9 99.3 89.8 71.9 75.4 88.1

egories are used for the source and target MCCll2) 955 986 1000 944 729 749 894

GCAN 97.6 99.3 100.0 96.2 78.3 80.2 91.9

domains. As reported in Table 3, GCAN
outperforms other baseline methods.

Hyper-parameter sensitivity. Though we have selected fixed hyper-parameters for learning
rate and mini-batch size, another hyper-parameter A still needs to be decided before training.
We conduct experiments with values of A from {1072,10~!,10°,10',10?} in Fig. 3 (a). It
can be found that GCAN is less sensitive to the variety of A. In addition, GCAN can achieve
the best performances when 2 = 10!, generally. In the range of the selected A, GCAN still
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Hyper-parame ter sensi tivity VisDA - Office-31 A—D . Office-31 A—D Office-31 A=W
5 80r . L ke 15

Accuracy (%)
A-distance

§ W I 00 ) s W0 s % w  Hm__H B 5 o I
A Number of lterations Category sets private to the target Common category set Baseline Methods

(a) Hyper-parameter sensitivity (b) Convergence Speed (c) Target Private Label Set (d) Common Label Set (e) A-distance

Figure 3: (a): Hyper-parameter sensitivity test. (b): Convergence Issue Study. (c): Accuracy
w.r.t C;. (d): Accuracy w.r.t C. (e): A-Distance of the last fc-layer features.

shows comparable performance against other baseline methods.

Convergence Speed. Fig. 3 (b) shows the training curves of GCAN on VisDA dataset. It
shows that the performance of GCAN increases stably with more iterations, and converges
after 2000 iterations. The baselines (DAN, CDAN, CMU, DANCE and MCC) also converge
fast but at this point they show unsatisfactory performance.

Varying C, and C,. Following [32], we vary Cs and C, on Office-31 dataset A—D, while
fixing CsNC; and B. Fig. 3 (c) shows that GCAN performs better than the selected methods
(DANN, OSBP, ETN, CMU, DANCE and MCC), and is robust to the unknown classes in
the source and target domains. In addtion, C, = 21 is a special case of OSDA problem with
Cs € C;. The results of GCAN is comparable to the results of OSBP. C; = 0 is the PDA
problem when C; € C;. GCAN still performs comparable to ETN.

Varying Common Label C. We analyze the behavior under the different number of common
classes on Office-31 dataset A—D. Following [32], we fix C,=Cy+1 and vary C from 0 to
31. As showing in Fig. 3 (d), GCAN outperforms the selected methods on all of C. Note that
when C = 31, it is a CSDA problem. GCAN is still comparable to the results of DANN.
Theoretical Insight. [1] derives the expected error Ep, (k) for a hypothesis 4 on the target
domain Ep, (h) < Ep,(h) + tdwan(Ds,D;) + € by the A-distance dyap (Ds,D;), which is
a measure of domain discrepancy. From Fig. 3 (e), we can observe that MCC has lower
A-distance than other selected DA methods on Office-31 dataset A—W. The oracle one is
the supervised learning on source and target domains.

Feature Visualization. We plot the last-layer learned target features for ResNet, DANN,
MCC and GCAN on Office-31 dataset A—W task with t-Distributed Stochastic Neighbor
Embedding (t-SNE) [7] in Fig. 4. We use ResNet-50 as the pretrained backbone. As we
discussed in the method section, our method aims to minimize domain-divergence, and i-
dentifies the common classes. We can find that common target features (black plots) are
well clustered by GCAN. Moreover, most of the other features (other colors) become far
from common features, which illustrates that the features extracted from GCAN are domain-
invariant. Similar samples about category sets private to the target C; are clustered together.

Ablation Study. Ablation study is shown through decomposing some variants of GCAN.
Note that for the modified models, we directly use the optimal hyper-parameters, i.e., A =
0.1, the fixed learning rates 107% and 107>,

i) GCAN (DA alleviation), which excludes fp(F(x)) in Eq. (5).

ii) GCAN (w/o max fc (F (x))), which excludes the classification component max fc (F(x))
in Eq. (5).

iii) GCAN (w/o Graph Contrastive Domain (GCD) mismatch), which excludes £°,
yielding an incomplete loss function: £ = £&+ ALY
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Figure 4: Feature visualization with t-SNE. Different colors are different classes.

iv) GCAN (w/o Multi-Source/Target Alignment (MSTA) network), where the loss £L6V
in Eq. (7) ignores the source and target alignment part.

Table 4 illustrates the superiority of
GCAN over the variants. When some Table 4: Accuracies (%) by decomposing variants
parts in GCAN are modified or delet- of GCAN.

e.d, the Performance dec.reases, some- Offj;,“ M‘)fﬁ“:{‘m . V;:g“
times with a large margin. Therefore, GCAN (DA alleviation) 8764 6324 - - 5931
all components are necessary to achieve =~ _OCAN (Womasfe(F(x) 8213 6031 - - 8

GCAN (wio GCD) T S N0
the best performance for GUDA sce- GCAN (wlo MSTA) BIT 6582 284 583 6286
nario. GCAN 9124 998 342 707 6497

5 Conclusion

In this paper, we have introduced a novel Grand Unified Domain Adaptation (GUDA) setting,
which needs no prior knowledge about the overlap or the number of source/target domains.
GUDA covers most of existing DA scenarios. We propose Graph Contrastive Adaptation
Network (GCAN), which can handle GUDA scenario and further reduces the domain mis-
match without any modification. Extensive experiments on five datasets illustrate that GCAN
shows comparable performance against recent DA methods. GCAN can be considered as a
pilot tool when researchers encounter an unknown DA task.
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