
C. NIE ET AL.: ADAPTIVE TENSOR NETWORKS DECOMPOSITION 1

Adaptive Tensor Networks Decomposition
Chang Nie
changnie@njust.edu.cn

Huan Wang
wanghuanphd@njust.edu.cn

Le Tian
119106021993@njust.edu.cn

School of Computer Science and Engi-
neering, Nanjing University of Science &
Technology, Nanjing, China

Abstract

Tensor Decomposition (TD) is a powerful technique in solving high-dimensional op-
timization problems and has been widely used in machine learning and data science.
Many TD models aim to establish a trade-off between computational complexity and
representation ability. However, they have the problem of tensor rank selection and la-
tent factor arrangement, and the neglected internal correlation between different modes.
In this paper, we propose a data-adaptive TD model established on a generalized tensor
rank and name it adaptive tensor network (ATN) decomposition, which constructs an op-
timal topological structure for TD according to the intrinsic properties of the data. We
exploit the generalized tensor rank to measure the correlation between two modes of the
data and establish a multilinear connection between the corresponding latent factors with
an adaptive rank. ATN possesses the merits of permutation invariance, strong robustness,
and represents high-order data with fewer parameters. We verified ATN’s effectiveness
and superiority on three typical tasks: tensor completion, image denoising, and neural
network compression. Experimental results on synthetic data and real datasets demon-
strate that the overall performance of ATN surpasses the state-of-the-art TD methods.

1 Introduction
A tensor, also called a multi-dimensional array, is a favorable and powerful data format
to represent high-dimension and multi-modal information. Many intrinsic properties about
tensors have been revealed in recent years [14, 17]. However, there exists the issue of the
curse of dimensionality, i.e. the storage and calculation of a tensor grow exponentially with
the increase of its order. One effective way to deal with this issue is the tensor decomposition
(TD) technique, which characterizes higher-dimension data as a multilinear operation of
some low-order latent factors and has been extensively applied in machine learning [28, 33,
35], signal processing [6, 31], and neural network compression [2, 16, 19, 22].

Many TD models have been proposed in recent years, and the most classical ones are
CANDECOMP/PARAFAC (CP) decomposition [9] and Tucker decomposition [34]. The
main difference between them and other TD methods lies in the structure and connection of
the employed core factors. Tensor network (TN) [4, 30], a new tool for tensor representation,
can intuitively and concisely express the connection of cores factors in a graphical format and
be easily extended for representing more complex topological structures. Of course, it also
benefits for TD. For instance, chain-shaped Tensor Train (TT) [24, 27], ring-shaped Tensor
Ring (TR) [40], and square lattice-shaped Projected Entangled Pair States (PEPS) [23], to
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name a few. TN recovers an original high-order data by contracting the shared index (stan-
dard edge connecting two core factors) between the connected factors. It has been received
widespread attention recently and successfully applied in supervised learning [29, 32] and
probability modeling [7].

Although TN shows its promising characteristics in TD, there still exist three limitations:

1) The tensor network edge rank determination is complicated and cumbersome. Setting
each standard edge rank to be identical (e.g., TR [40]) is inappropriate for data with
large unevenness in modes dimensions.

2) The exponential decay of correlation in TT and TR weakens the natural correlation
between two nonadjacent modes, and determining the arrangement of factors is NP-
hard [13].

3) There is no universal TD model that can be applied to arbitrarily complex data, and
the model selection itself is difficult.

In this paper, we propose an adaptive tensor network (ATN) decomposition to overcome
the limitations mentioned above, which can be regarded as a generalized form of existing TD
models [23, 24, 40]. ATN transforms the global discrete optimization problem of topology
search into a local connection problem of latent factors, measures the internal correlation
between modes based on a generalized tensor rank, and establishes a connection for any
two factors according to the adaptive rank. Moreover, ATN decomposition minimizes the
structural loss function with less number of parameters and is not sensitive to the arrange-
ment of factors. Experiments show that ATN can be used for large-scale tensor optimization
problems and achieve excellent performance. The main contributions of this paper can be
summarized as follows:

• We defined the generalized tensor rank to characterize the correlation between dif-
ferent modes of the target tensor, and theoretically establish its relationship with the
multilinear tensor rank [17].

• We proposed a novel data-adaptive TD model and named it ATN, which characterizes
the correlation between modes via the rank of standard edges connecting latent factors,
and applies the degree of information retention to manipulate the model complexity.

• We apply ATN to several high-dimensional optimization tasks, including tensor com-
pletion [21, 39], image denoising [36], and neural network compression [16, 37]. Ex-
perimental results on synthetic data and real datasets demonstrate its effectiveness and
superiority.

2 Related Work
The TD technology can efficiently express high-dimensional and multimodal data as a mul-
tilinear operation form of a few low-order latent factors, which can be seen as a trade-off
between the data structure completeness and model complexity. Many TD models have been
proposed in recent years by virtue of tensor networks, and we can divide them into two parts
according to the topology, including manual design-based or automatic search-based.

The manual design-based TD models have been extensively studied and provided with
well theoretical basis [8, 9, 24, 34, 40]. CP decomposition [9] represents the tensor as the

Citation
Citation
{{Ran}, {Sun}, {Fei}, {Su}, and {Lewenstein}} 2019

Citation
Citation
{{Sun}, {Peng}, {Liu}, {Ran}, and {Su}} 2020

Citation
Citation
{{Glasser}, {Sweke}, {Pancotti}, {Eisert}, and {Cirac}} 2019

Citation
Citation
{{Zhao}, {Zhou}, {Xie}, {Zhang}, and {Cichocki}} 2016

Citation
Citation
{{Hillar} and {Lim}} 2013

Citation
Citation
{Orús} 2014

Citation
Citation
{Oseledets} 2011

Citation
Citation
{{Zhao}, {Zhou}, {Xie}, {Zhang}, and {Cichocki}} 2016

Citation
Citation
{{Kolda} and {Bader}} 2009

Citation
Citation
{Li, Khan, Sun, Niu, Han, Xie, and Zhao} 2020

Citation
Citation
{{Zhang}, {Song}, {Du}, and {Zhang}} 2021

Citation
Citation
{{Wu}, {Fang}, and {Li}} 2019

Citation
Citation
{{Kim}, {Park}, {Yoo}, {Choi}, {Yang}, and {Shin}} 2016

Citation
Citation
{Yin, Sui, Liao, and Yuan} 2021

Citation
Citation
{Grasedyck} 2010

Citation
Citation
{Harshman} 1970

Citation
Citation
{Oseledets} 2011

Citation
Citation
{Tucker} 1966

Citation
Citation
{{Zhao}, {Zhou}, {Xie}, {Zhang}, and {Cichocki}} 2016

Citation
Citation
{Harshman} 1970



C. NIE ET AL.: ADAPTIVE TENSOR NETWORKS DECOMPOSITION 3

Figure 1: (Left) The graphical representation of scalar, vector, matrix, 3rd-order tensor,
matrix multiplication and tensor inner product. (Right) Tensor network representations of
several TD models, including CP, Tucker, TT, and TR. The black dot in CP model denotes a
hyperedge [10]. I and R represent the tensor index and standard edge rank, respectively.

sum of r rank-one tensors. Here r is called CP rank, which is the minimum value to make the
structure loss vanish. Tucker decomposition [34] expresses the tensor into a core tensor with
multiple factor matrices, and Hierarchical Tucker decomposition [8] decomposes the data in
a hierarchical form similar to a binary tree. Many researchers have introduced TN to ex-
plore more complex TD models. TT [24] decomposes an Nth-order tensor as a chain-shaped
contraction form composed of N-2 3rd-order tensors and two 2nd-order tensors. TR [40]
establishes the connection between the head and tail factors based on TT, and PEPS [23] is
the two-dimensional expansion of TT. The fully-connected tensor network (FCTN) [41] de-
composition establishes a connection between any two factors to characterize the correlation
of two modes. However, the above TD models only study simple topological structures and
have the defects of model selection, limited representation capability and flexibility. Some
methods lack of considering rank determination of each edge and its computational com-
plexity grows exponentially with the order of tenors, say FCTN.

Many works began to explore adaptive TD [3, 10, 11, 20], trying to obtain a more flexible
topology that matches the properties of the data. The adaptive hierarchical tensor decompo-
sition model was proposed in [3] based on agglomeration strategy and rank-adaptive cross
approximation techniques. Li and Sun [20] represented the tensor network as an undirected
graph and exploited the genetic algorithm to search the optimal topology iteratively. Meraj
et al. [10] employed the simple greedy approach to gradually increase the standard edge rank
to improve the model performance. Hayashi et al. [11] applied TD to neural network com-
pression and explored the TN topological space by enumerating all possible decomposition
models. The previous automatic search-based TD models increase the computational com-
plexity significantly and are unsuitable for high-dimension data. In this paper, we proposed
to transform the problem of topology search into that of correlation estimation of data modes
via a generalized tensor rank.

3 Adaptive Tensor Networks Decomposition

3.1 Preliminaries
The order of tensors is the number of dimensions, also called ways or modes, and the op-
erations between tensors are multilinear operations. In this paper, we use boldface calli-
graphic letters to denote tensors, e.g., XXX ; matrices and vectors are denoted in boldface
uppercase and lowercase letters, e.g., XXX and xxx; scalars is denoted by lowercase letters,
e.g., x. We use [k] to represent the set of integers from 1 to k. For the Nth-order tensor
XXX ∈ RI1×···×IN , we denote (i1, i2, . . . , iN)-th entry as XXX (i1, i2, . . . , iN) or XXX i1,i2,...,iN , where
in ∈ [In], n ∈ [N]. For the 3rd-order tensor XXX ∈ RI1×I2×I3 , the horizontal, lateral and frontal
slices can be expressed as XXX (i1, :, :), XXX (:, i2, :), and XXX (:, :, i3). We denoted a mode-k fibers
asXXX (i1, . . . , ik−1, :, ik+1, . . . , iN), where all indexes are fixed except index k. The rank of ma-

Citation
Citation
{{Hashemizadeh}, {Liu}, {Miller}, and {Rabusseau}} 2020

Citation
Citation
{Tucker} 1966

Citation
Citation
{Grasedyck} 2010

Citation
Citation
{Oseledets} 2011

Citation
Citation
{{Zhao}, {Zhou}, {Xie}, {Zhang}, and {Cichocki}} 2016

Citation
Citation
{Orús} 2014

Citation
Citation
{Zheng, Huang, Zhao, Zhao, and Jiang} 2021

Citation
Citation
{{Ballani} and {Grasedyck}} 2014

Citation
Citation
{{Hashemizadeh}, {Liu}, {Miller}, and {Rabusseau}} 2020

Citation
Citation
{{Hayashi}, {Yamaguchi}, {Sugawara}, and ichi {Maeda}} 2019

Citation
Citation
{{Li} and {Sun}} 2020

Citation
Citation
{{Ballani} and {Grasedyck}} 2014

Citation
Citation
{{Li} and {Sun}} 2020

Citation
Citation
{{Hashemizadeh}, {Liu}, {Miller}, and {Rabusseau}} 2020

Citation
Citation
{{Hayashi}, {Yamaguchi}, {Sugawara}, and ichi {Maeda}} 2019



4 C. NIE ET AL.: ADAPTIVE TENSOR NETWORKS DECOMPOSITION

trix XXX is defined as rank(XXX). Spectral norm ||XXX || and nuclear norm ||XXX ||∗ is the largest and
the sum of singular values, respectively. The inner product of two tensorsXXX ,YYY is defined as
〈XXX ,YYY〉=∑i1,...,iNXXX (i1, i2, . . . , iN)YYY(i1, i2, . . . , iN), and the Frobenius norm of the tensor is de-
fined as ||XXX ||F =

√
〈XXX ,XXX〉. For more details of the tensor concept see literature [15, 17, 25].

TN can graphically and visually represent tensors, tensor operations, and TD models, as
shown in Fig. 1. TN utilizes vertices to represent tensors; edges represent different modes;
the number of dangling edges is equivalent to the tensor’s order. The shared index dimension
corresponds to the standard edges of connected vertices called rank, and the summation along
these indexes can complete the tensor contraction.
3.2 ATN decomposition
Supposing XXX ∈ RI1×···×IN is an Nth-order tensor, the ATN decomposes XXX into a multilinear
operation of N factors ZZZ(1),ZZZ(2), . . . ,ZZZ(N), denoted by T N(ZZZ(1),ZZZ(2), . . . ,ZZZ(N)), where the
size of ZZZ(k) is R1,k× ·· ·×Rk−1,k× Ik× ·· ·×RN,k for any k ∈ [N]. Then the (i1, . . . , iN)-th
entry of T N(ZZZ(1),ZZZ(2), . . . ,ZZZ(N)) orXXX can be written as:

XXX (i1,...,iN) =
R1,2

∑
r1,2

· · ·
R1,N

∑
r1,N

R2,3

∑
r2,3

· · ·
R2,N

∑
r2,N

· · ·
RN−1,N

∑
rN−1,N

ZZZ(1)
i1,r1,2,...,r1,N

ZZZ(2)
r2,1,i2,...,r2,N

· · ·ZZZ(N)
rN,1,...,rN,N−1,iN

, (1)

We call the vector [R1,2, · · · ,R1,N ,R2,3, · · · ,R2,N , · · · ,RN−1,N ]
T ∈ N+

N(N−1)
2 as the rank of

ATN. For any two factors ZZZ(i) and ZZZ( j), where 1 ≤ i < j ≤ N, the correspondingly stan-
dard edge rank is defined as Ri, j and satisfy Ri, j = R j,i. One particular case is when the
standard edge rank Ri, j are all equal to 1, and then equation (1) is reduced to:

T N(ZZZ(1),ZZZ(2), . . . ,ZZZ(N)) =ZZZ(1) ◦ZZZ(2) · · · ◦ZZZ(N). (2)

Here the ◦ means outer product. Clearly, ATN is a complete graph composed of N vertices
and N(N−1)

2 standard edges, and the number of parameters are ∑
N
k=1 Ik ∏i6=k Ri,k. Such a

topology structure (Fig. 2) of ATN enjoys favorable geometric properties (e.g., permutation
invariance [41]) and solves the problem of correlation exponential decay [5] that appears in
TT and TR, which severely limits the capability to model complex data.

Definition 1 (Matricization [17]). Given an Nth-order tensor XXX ∈ RI1×···×IN , the mode-
k matricization converts the mode-k fibers of XXX into one column of the resulting matrix
XXX (k) ∈ RIk×∏ j 6=k I j , with entries XXX (k)(ik, i1 · · · ik−1ik+1 · · · iN) = XXX (i1, · · · , iN). Here we pay
little attention to the arrangement order of the matrix columns for keeping the consistency in
relevant calculations.

Definition 2 (Tensorization). Given an Nth-order tensorXXX ∈ RI1×···×IN , if we divide the set
[N] into r non-intersect subsets s1,s2, . . . ,sr, then merging the modes which belong to the
same subset yields an rth-order tensor Ten(XXX ,{si}r

i=1) ∈RP1×···×Pr , where Pi = ∏
N
j=1, j∈si

I j.
Tensorization decreases the modes of data and keeps the values and number of elements
unchanged.

As mentioned earlier, the rank of ATN determines its topology, and is crucial to the model’s
representation ability and computational complexity. However, one problem is the lack of
a unified rank measurement strategy for TN and rank determination via search strategy [20]
is impractical. Since there are various topological structures in different TD models, we
propose a new definition for generalized tensor rank and nuclear norm, which can measure
the intrinsic correlation between any two modes.

Citation
Citation
{{Kilmer} and {Martin}} 2011

Citation
Citation
{{Kolda} and {Bader}} 2009

Citation
Citation
{{Papalexakis}, {Faloutsos}, and {Sidiropoulos}} 2016

Citation
Citation
{Zheng, Huang, Zhao, Zhao, and Jiang} 2021

Citation
Citation
{{Cheng}, {Wang}, {Xiang}, and {Zhang}} 2019

Citation
Citation
{{Kolda} and {Bader}} 2009

Citation
Citation
{{Li} and {Sun}} 2020



C. NIE ET AL.: ADAPTIVE TENSOR NETWORKS DECOMPOSITION 5

Definition 3 (Generalized tensor rank and nuclear norm). Given an Nth-order tensor XXX ∈
RI1×···×IN , if one employs tensorization (Please see definition 2) to XXX to obtain XXX (n,m) =

Ten(XXX ,{{n},{m},{i}N
i=1,i/∈{n,m}}), then the generalized tensor rank and nuclear norm be-

tween the n,m modes are rank(XXX (n,m)) and ||XXX (n,m)||∗, which are written as:

rank(XXX (n,m)) = max{rank(XXX (n,m)(:, :, i))}Ci=1, ||XXX (n,m)||∗ =
1
C

C

∑
i=1
||SSS(n,m)

i ||∗, (3)

where the CCC = ∏
N
i=1,i/∈{n,m} Ii and SSS(n,m)

i is a diagonal matrix obtained by singular value
decomposition [1] of the i-th frontal slice ofXXX (n,m).

Our proposed generalized tensor rank has some connections with the multilinear tensor rank
involved in Tucker decomposition [34] and their relationship is explained in theorem 1.

Theorem 1 Let Nth-order tensor XXX ∈ RI1×···×IN and I1 = · · · = IN = I. The multilinear
tensor rank is denoted by (rank(XXX (1)), · · · ,rank(XXX (N))), where XXX (k) is mode-k matricization
(Please see definition 1) ofXXX , then the following inequalities holds for i = 1, · · · ,N:

min{N−1,rank(XXX (i))} ≤
N

∑
j=1, j 6=i

rank(XXX (i, j))≤ (N−1)rank(XXX (i))

max{rank(XXX (i, j))}N
j=1, j 6=i ≤ rank(XXX (i))≤ I(

∑
N
j=1, j 6=i rank(XXX (i, j))

N−1
)N−2.

(4)

The mode correlation of the reconstructed tensor is established through the connection be-
tween the core factors, which allows us to determine the ATN’s rank naturally by the defini-
tion 3.

Theorem 2 For Nth-order tensor XXX ∈ RI1×···×IN and Mth-order tensor YYY ∈ RIN+1×···×IN+M ,
let ZZZ = XXX ◦YYY , The generalized tensor rank of ZZZ(n,m) is equal to 1 consistently for any
1≤ n≤ N,N +1≤ m≤ N +M.

According to Theorem 2, the generalized tensor rank between two irrelevant modes of XXX
is equal to 1. Assuming a TN can represent XXX with N factors and can be divided into
several sub-networks, then the edge rank between the factors belonging to each sub-network
is equal to 1, and there is no correlation or entanglement between the sub-networks. The
original tensor can be obtained through the outer product of sub-tensors that corresponds
to sub-network contraction results. It shows that the generalized tensor ranks reasonably
correspond to the edge ranks connecting the factors. Therefore, we exploit the generalized
tensor rank and nuclear norm to adaptive decompose XXX . We use a hyperparameter κ to
control the computational complexity of ATN, where 0 < κ ≤ 1. The edge rank between any
two factors,ZZZ(i) andZZZ( j), is defined as

Ri, j
def
= min

x

diag(∑C
k=1 SSS(i, j)k )1:x

||∑C
k=1 SSS(i, j)k ||∗

≥ κ. (5)

Here the diag represents the vectorizing operation of the diagonal elements of the matrix and
SSS(i, j)k defined in (3). We can regard κ as the degree of information retention between modes.
A larger κ is helpful to improve model performance, but increases the number of parameters
and computational complexity exponentially.
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Figure 2: Graphical representation of ATN decomposition to 3rd-order, 4th-order, and 5th-
order tensors. The topology structure of ATN is a complete graph before removing all the
rank-1 edges.

Note that only the hyperparameter κ is applied to determine the ATN’s topology and
rank. We further consider the problem of κ selection. Most TD models aim to establish
a trade-off between constraint conditions and representational ability. For an Nth-order
tensor XXX ∈ RI1×···×IN , supposing the upper limit of the number of parameters or compu-
tational complexity of ATN is given, we first need to calculate vector VVV i, j = diag(∑C

k=1 SSS(i, j)k )
for any 1 ≤ i < j ≤ N and initialize the search interval of κ as [κmin,κmax], where κmin =

min{ Vi, j(1)
sum(Vi, j)

}1≤i< j≤N and κmax = 1. Then we utilize binary search strategy to get the optimal
κ . We select κ as the midpoint of the current interval in each searching process and obtain the
rank of ATN Ri, j by (5). At this time, the number of parameter and computation complexity
required for ATN is ∑

N
i=1 Ii ∏ j 6=i Ri, j and O(∑N

j=2(∏
j
i=1 Ii ∏

N
k= j+1 Ri,k)(∏

j−1
i=1 Ri, j)). We up-

date κmin = κ if constraint conditions is satisfied, else κmax = κ . We accept κ = κmin as the
ultimate result when the rank of ATN is unchangeable after a few consecutive searches. In
short, the computational complexity of setting κ is mainly on the calculation of the singular
value decomposition of all frontal slices ofXXX i, j for any 1≤ i < j≤ N, which can be acceler-
ated extremely by parallel computing. This greatly simplifies ATN’s rank determination and
topology search problems compared with other adaptive TD models [10].

3.3 Complexity Analysis and Properties
We further reveal the number of parameters’ upper bound and computational complexity
required for ATN contraction in Theorem 3.

Theorem 3 Let Nth-order tensor XXX ∈ RI1×···×IN and 1 < I1 ≤ ·· · ≤ IN . Under a certain κ ,
the number of parameter’ upper bound and computational complexity of ATN decomposition
is ∑

N
i=1(∏

i
j=1 I j)IN−i

i κN−1 and O(∑N
j=2(κ

j(N− j)+ j−1
∏

j
i=1 IN− j+1

i )/I j).

In fact, the information between modes is often concentrated on the first a few larger
eigenvalues, which is similar to matrix decomposition. Therefore, the computational com-
plexity of ATN is far less than the theoretical upper bound. Since any finite-dimension ten-
sor can be represented by TN [30] and choosing a sufficiently large edge rank can make the
structural loss of decomposition disappear. Supposing the ATN’s rank Ri, j = min{Ii, I j},
it is provable that existing N factors ZZZ(i) ∈ RR1,i×···×Ri−1,i×Ii×Ri+1,i×···×RN,i , i ∈ [N] satisfy
||XXX −T N(ZZZ(1), . . . ,ZZZ(N))||F ≤ ε , for any given relative error ε > 0. This indicates the upper
bound of the ATN’s rank. In addition, ATN possesses the merit of permutation invariance,
which makes it unnecessary to consider the arrangement of factors.

Lemma 1 (Permutation Invariance). For Nth-order tensor XXX ∈ RI1×···×IN , its ATN decom-
position is denoted as XXX = T N(ZZZ(1), . . . ,ZZZ(N)). We introduce permutation operator P and
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Figure 3: Tensor completion performance of four different TD models on synthetic data and
YaleFace dataset. The missing ratio of the target tensor is 90%.

define:

P(XXX , k) = T N(ZZZ(k),ZZZ(1), . . . ,ZZZ(k−1),ZZZ(k+1), . . . ,ZZZ(N)) ∈ RIk×I1×···×Ik−1×Ik+1···×IN . (6)

Here the k ∈ [N]. The permutation invariance of ATN is established by employing P opera-
tions at most N−1 times.

The permutation invariance of ATN decomposition maintains the original tensor’s inherent
properties, which are not available in TT and TR [24, 40]. It is worth noting that ATN is a
more general TD framework and other models like TT, TR, FCTN, and PEPS can be regarded
as a special form of ATN. For instance, supposing the condition R1,3 = · · ·= R1,N−1 = R2,4 =
· · ·= R2,N = · · ·= RN−2,N = 1 is satisfied, then ATN degenerates to TR.

Edge pruning refers to the process of removing rank-1 edges in ATN since they have no
substantial contribution to the result. For the standard edges connecting the crucial factors,
ATN is prone to select a larger rank to better adapt the data. We can control the behavior
of ATN through the hyperparameter κ , and achieve better results even under the unbalanced
modes dimensions.

Due to space restraints, the detailed implementation of the ATN-based models is avail-
able in the supplementary material.

4 Experiments
4.1 Settings

Environment Settings. We use the automatic differentiation tool PyTorch [26] to minimize
the reconstruction error in tensor completion and image denoising task or cross-entropy clas-
sification loss in neural network compression task. All of our comparative experiments were
conducted under the same configuration (GPU, Nvidia A10) for the sake of fairness.
Parameter Setting. As discussed earlier, the setting of κ is decisive to the topology and rank
of ATN. The κ in all experiments is obtained via binary search under the given restraints
(parameters compression rate r), as referred to Section 3. We analyze the influence of κ on
the complete performance of ATN and compare it with other TD models. We select r as
an independent variable for unity in comparison. As depicted in Fig. 3, ATN owns higher
stability and performance since its corresponding curve fluctuates in lower values under a
wide range of r. It should be remarked that a larger κ corresponds to a smaller r, and the
ATN’s edge rank and structure become large and complicate. In short, the existence of κ

greatly simplifies the difficulty of ATN’s rank determination and can be calculated directly
by r.
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4.2 Comparison results

Following [2, 10, 41], we utilize diverse test data to demonstrate the effectiveness of ATN.
Over the test set, we compare ATN decomposition with other known TD models, including
TT [24], TR [40], and Tucker decomposition [34]. The ranks of other TD models are adjusted
carefully according to experimental results to achieve their best performance. As suggested
in the literature [24, 40], the TT’s rank is a vector where its items increase first and then
decrease, and the rank of TR or Tucker is an integer.

We apply ATN to three typical high-dimensional optimization tasks: tensor completion,
image denoising, and neural network compression. These optimization problems are mainly
based on the low-rank assumption of the data. In other words, they aim to capture the
internal structure of high-dimensional data and to eliminate redundancy through the low-
rank representation.

Tensor Completion. TC aims to capture the global structure through partial observation
entries. For the task of tensor completion, the synthetic data includes two 6th-order tensors
(Syn1 and Syn2) of size 12× 12× 12× 12× 12× 12 and 3× 4× 8× 16× 32× 64, both
obtained by summing 64 rank-one tensors of the same size which are sampled from uniform
distribution. The large unevenness in data mode dimension can verify the robustness of the
TD models. The natural data includes YaleFace Dataset[10] (Contains 38× 64 grayscale
images) of size 48× 42× 64× 38 and 3 RGB images reshaped into 16× 16× 16× 12× 4.
The missing ratio (MR) of data is set to 90%,80% and 50%, respectively. The observed
elements are obtained by random sampling.

The Relative Square Error (RSE) [38] is applied to evaluate model performance in tensor
completion. We report the RSE values (average results of 20 independent experiments) in
Table 1 of various TD models with six tensors. The smaller the RSE value, the better perfor-
mance. We noticed that ATN achieved the best results under different data missing ratios, and
Tucker decomposition was the worst. As the MR is larger, RSE values continue to increase
and lose more details of the recovered image for all methods. For the Syn2 with large mode
discrepancies and the large YaleFace dataset, ATN also achieves better results and shows
its strong robustness. Fig. 4 presents the completed results of 3 real images (Img1∼Img3)
and their TN topological structures obtained by ATN when the data MR reaches 90%. It
can be clearly seen in the second image named "Lena" that ATN decomposition has obvious
advantages in grasping local details and global structure.

Table 1: Comparison of RSE values of six completion results. Here Syn1 and Syn2 are
synthetic data and Img1∼Img3 are real images.

Tucker TT TR ATN Tucker TT TR ATN Tucker TT TR ATN

Dataset MR=50% MR=80% MR=90%

Syn1 0.136 0.087 0.082 0.058 0.140 0.096 0.095 0.064 0.148 0.109 0.098 0.072
Syn2 0.093 0.075 0.042 0.032 0.107 0.088 0.059 0.041 0.112 0.091 0.066 0.058
Img1 0.185 0.134 0.141 0.115 0.203 0.139 0.143 0.120 0.207 0.165 0.159 0.146
Img2 0.174 0.131 0.123 0.076 0.190 0.145 0.134 0.087 0.213 0.150 0.137 0.132
Img3 0.228 0.182 0.175 0.123 0.240 0.187 0.182 0.174 0.251 0.211 0.199 0.192

YaleFace 0.133 0.087 0.043 0.038 0.143 0.131 0.049 0.042 0.170 0.201 0.067 0.054

Image Denoising. For the image denoising task, the test data includes 2 RGB color images
Img4 and Img5 (both reshaped to the size of 8×8×8×8×3 ), 2 videos Vid1 and Vid2, each
composed of 32 frames (reshaped to 8× 4× 8× 8× 8× 8× 3) and YaleFace Dataset. We
add random noise sampled from normal distribution N(0,0.1) to the data. The RSE, Peak

Citation
Citation
{{Aggarwal}, {Wang}, {Eriksson}, {Sun}, and {Wang}} 2018

Citation
Citation
{{Hashemizadeh}, {Liu}, {Miller}, and {Rabusseau}} 2020

Citation
Citation
{Zheng, Huang, Zhao, Zhao, and Jiang} 2021

Citation
Citation
{Oseledets} 2011

Citation
Citation
{{Zhao}, {Zhou}, {Xie}, {Zhang}, and {Cichocki}} 2016

Citation
Citation
{Tucker} 1966

Citation
Citation
{Oseledets} 2011

Citation
Citation
{{Zhao}, {Zhou}, {Xie}, {Zhang}, and {Cichocki}} 2016

Citation
Citation
{{Hashemizadeh}, {Liu}, {Miller}, and {Rabusseau}} 2020

Citation
Citation
{{Yuan}, {Li}, {Mandic}, {Cao}, and {Zhao}} 2019



C. NIE ET AL.: ADAPTIVE TENSOR NETWORKS DECOMPOSITION 9

Figure 4: Completion results of 3 real images with a MR of 90%. The first two columns are
the original and observed images, respectively. The last column illustrates the TN topological
structures of images obtained by ATN.
Table 2: Comparison of RSE and PSNR values of five tensors after denoising, including two
real images, two videos, and YaleFace dataset.

Tucker TT TR ATN

Dataset RSE PSNR Time (s) RSE PSNR Time (s) RSE PSNR Time (s) RSE PSNR Time (s)

Img4 0.2135 21.29 301.1 0.1726 23.14 188.8 0.1547 24.08 172.2 0.1339 25.33 166.5
Img5 0.1559 22.84 315.4 0.1527 23.03 227.6 0.123 24.43 265.8 0.1212 25.03 282.6
Vid1 0.1541 21.56 968.3 0.1287 23.12 554.3 0.1187 23.82 617.7 0.0947 25.78 541.0
Vid2 0.2763 18.68 1023 0.2809 18.54 575.2 0.2762 18.67 611.5 0.2101 21.06 586.9

YaleFace 0.32333 21.84 1112 0.2167 25.32 644.0 0.1839 26.74 619.1 0.0932 32.64 688.4

Signal-to-Noise Ratio (PSNR) [38], and running time are applied to evaluate model perfor-
mance and efficiency. Table 2 presents the average results of 20 independent experiments
of different methods on the test datasets. Compared with other decomposition models, ATN
obtains lower RSE and higher PSNR by a large margin in all cases. Besides, we noticed TR
is better than TT, revealing the importance of factor connection. In terms of computational
efficiency, we observe that the running time of ATN in five datasets has the same order of
magnitude with TT and TR, while Tucker decomposition takes much more time. Although
ATN has a denser connected topology and that theoretically should increase the computa-
tional complexity, our experimental results indicate that ATN has lower ranks and requires
fewer iterations during the optimization phase.

Table 3: Performance comparison for compressing ResNet56 on CIFAR-10.
Model Weights FLOPs Acc (%)

CP-ResNet56[19] 0.14M 23M 89.6
Tucker-ResNet56[16] 0.15M 22M 88.4

Tucker-VBMF-ResNet56[16] 0.16M 32M 88.7
TT-ResNet56[22] 0.16M 24M 87.1
TR-ResNet56[2] 0.21M 27M 89.7
ATN-ResNet56 0.14M 22M 90.3

Neural Network Compression. Neural network compression focuses on using TD to equiv-
alently approximate the low-rank structure of the kernels in convolutional layers to obtain
fewer number of network parameters and FLOPs. The dataset CIFAR10 [18] is used in the
neural network compression task, which contains 50K training images and 10K verification
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Figure 5: Tradeoff curves of accuracy vs. parameters and FLOPs compression ratio with TD-
based ResNet56 models. The ATN-ResNet56 shows higher accuracy with the same space
complexity and computational complexity.

Figure 6: The TN topological structure diagrams of the kernels in (a) 8th, (b) 16th, (c) 24th,
(d) 32th, (e) 40th, and (f) 48th convolutional layers of ResNet56 obtained by ATN under
different κ . The ranks of ATN are marked around the edge. Note that the contraction results
are unaffected to factors arrangement due to the permutation invariance of ATN.

images of the resolution 32× 32. We apply various TD models to compress the convolu-
tional layer with the same kernel size 3×3 in the residual network ResNet56 [12] and adjust
their ranks to control the compression ratio of parametric and FLOPs. The accuracy on the
verification set is used as evaluation criterion. As shown in Fig. 5, ATN-ResNet56 achieves
higher accuracy with fewer parameters and FLOPs compared to the others, which attributes
to its using pre-trained parameters to select an adaptive rank. From the performance com-
parison results in Table 3, we see that the accuracy of ATN-based ResNet56 is higher than
Tucker-based ResNet56 with VBMF [16] rank initialization. That implies the improvement
of model performance benefits from both topological structure and rank determination. In
Fig. 6, we graphically show the topologies and ranks of kernels compressed by ATN. From
this, we can know the correlation degree between different modes of the kernel, e.g., the
correlation within channel modes is stronger than spatial modes.

5 Conclusion
We introduced a novel adaptive tensor network decomposition for high-dimensional opti-
mization problems established on generalized tensor rank. ATN sufficiently utilizes the
intrinsic correlation of data modes to determine the topology instead of time-consuming
automatic search, yielding stronger robustness and representation ability for data with un-
evenness dimensions. ATN has the permutation invariance property and an upper bound of
parameters. Moreover, we employ ATN on three typical learning tasks, and experiment re-
sults on synthetic and natural data show that ATN has significant advantages compared with
other TD models. We will try to resolve the its limitations in the future and explore more
inspiring and effective tensor network topologies.
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