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Abstract

Real-time point cloud processing is fundamental for lots of computer vision tasks,
while still challenged by the computational problem on resource-limited edge devices.
To address this issue, we implement XNOR-Net-based binary neural networks (BNNs)
for an efficient point cloud processing, but its performance is severely suffered due to two
main drawbacks, Gaussian-distributed weights and non-learnable scale factor. In this pa-
per, we introduce point-wise operations based on Expectation-Maximization (POEM)
into BNNs for efficient point cloud processing. The EM algorithm can efficiently con-
strain weights for a robust bi-modal distribution. We lead a well-designed reconstruction
loss to calculate learnable scale factors to enhance the representation capacity of 1-bit
fully-connected (Bi-FC) layers. Extensive experiments demonstrate that our POEM sur-
passes existing the state-of-the-art binary point cloud networks by a significant margin,
up to 6.7%.

1 Introduction
Compared with traditional 2D images, 3D data provides an opportunity to understand the
surrounding environment for machines better. With the advancement of deep neural net-
works (DNNs) directly processing raw point clouds, great success has been achieved in
PointNet [14], PointNet++ [15] and DGCNN [18]. However, existing methods are inef-
ficient for real applications that require real-time inference and fast response, such as au-
tonomous driving and augmented reality. Their deployed environments are often resource-
constrained edge devices. To address the challenge, Grid-GCN [21], RandLA-Net [8], and
PointVoxel [11], have been introduced for efficient point cloud processing using DNNs.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017{}

Citation
Citation
{Wang, Sun, Liu, Sarma, Bronstein, and Solomon} 2019

Citation
Citation
{Xu, Sun, Wu, Wang, and Neumann} 2020{}

Citation
Citation
{Hu, Yang, Xie, Rosa, Guo, Wang, Trigoni, and Markham} 2020

Citation
Citation
{Liu, Tang, Lin, and Han} 2019



2 XU and LI et al.: POEM: 1-BIT POINT-WISE OPERATIONS BASED ON E-M

𝑠𝑖𝑔𝑛(⋅)

Sensitive

𝑠𝑖𝑔𝑛(⋅) 𝑠𝑖𝑔𝑛(⋅)

Robust

(a). Sensitivity of Gaussian distribution (b). Robustness of bi-modal distribution

𝑠𝑖𝑔𝑛(⋅)

𝐛𝐰!"#𝐰$ + 𝛾 𝐛𝐰!"#𝐰$ + 𝛾

Disturbatance

𝛾

𝐰$ 𝐰$ 𝐛𝐰!𝐛𝐰!

Figure 1: Subfigure (a) and (b) illustrates the robustness of Gaussian distribution and bi-
modal distribution. From left to right in each subfigure, we plot the distribution of the unbi-
narized weights wi and the binarized weights bwi .

While significant speedup and memory footprint reduction have been achieved, these works
still rely on expensive floating-point operations, leaving room for further optimization of the
performance from the model quantization perspective. Binarized neural network (BNNs)
[3, 4, 5, 9, 10, 17, 19, 22, 23] compress weights and activations of DNNs into a single bit,
which can decrease the storage requirements by 32× and computation cost by up to 58×
[17]. However, using network binarization for point cloud processing tasks remains largely
unexplored.

In this paper, we first implement a baseline, XNOR-Net-based [17] 1-bit point cloud net-
work, which shows that the performance drop is mainly caused by two drawbacks. First,
layer-wise weights of XNOR-Net roughly follow a Gaussian distribution with a mean value
around 0. However, such a distribution is subjected to the disturbance aroused by the noise
containing in the raw point cloud data [7]. As a result, the Gaussian-distributed weight
(around 0) will accordingly change its sign, i.e., the binarization result will be changed dra-
matically. This explains why the baseline network is ineffective to process the point cloud
data and achieves a worse convergence, as shown in Figure 1 (a). In contrast, bi-modal distri-
bution will gain more robustness against the noise. Second, XNOR-Net fails to adapt itself
to the characteristics of cloud data, when computing the scale factor using a non-learning
method.

To address these issues, we introduce 1-bit point-wise operations based on Expectation-
Maximization (POEM) to efficiently process the point cloud data. First, we exploit Expectati-
on-Maximization (EM) [12] to constrain the weights into a bi-modal distribution, which can
be more robust to disturbances caused by the noise containing in the raw point cloud data [7],
as shown in Figure 1 (b). We also introduce a learnable and adaptive scale factor for every
1-bit layer to enhance the feature representation capacity of our binarized networks. Finally,
we lead a powerful 1-bit network for point cloud processing, which can well reconstruct
real-valued counterparts’ amplitude via a new learning-based method. Our contributions are
summarized as follows:

• We introduce a new binarization approach of point-wise operations based on Expectati-
on-Maximization (POEM), which can efficiently binarize network weights and activa-
tions for point cloud processing.
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Figure 2: Outline of the 1-bit PointNet obtained by our POEM on the classification task. EM
denotes Expectation-Maximization algorithm, and STE denotes Straight-Through-Estimator.

• We achieve a learnable scale factor to modulate the amplitude of real-valued weights
in an end-to-end manner, which can significantly improve the representation ability of
binarized networks.

• Our methods are generic and can be readily extendable to mainstream point cloud
feature extractors. Extensive experiments on multiple fundamental point cloud tasks
demonstrate the superiority of our POEM. For example, the 1-bit PointNet mounted
by our POEM achieves 90.2% overall accuracy on the ModelNet40 dataset, which is
even 0.9% higher than real-valued counterparts and promotes the state-of-the-arts.

2 Learning networks via POEM
This section elaborates our proposed POEM method, including the binarization framework,
the supervision for learning a scale factor, and the optimization towards robust weights dis-
tribution through the EM method.

2.1 Binarization Framework of POEM
Our POEM framework is shown in Figure 2. We extend the binarization process from 2D
convolution (XNOR-Net) to fully-connected layers (FCs) for feature extraction, termed 1-bit
fully-connected (Bi-FC) layers, based on extremely efficient bit-wise operations (XNOR and
Bit-count) via the lightweight binary weight and activation.

Given a conventional FC layer, we denote wi ∈ RCi×Ci−1 and ai ∈ RCi as its weights and
features in the i-th layer. Ci represents the number of output channels of i-th layer. We then
have ai = ai−1⊗wi, where⊗ denotes full-precision multiplication. As mentioned above, the
BNN model aims to binarize wi and ai into bwi ∈Bmi and bai ∈BCi in this paper respectively,
where B denotes discrete set {−1,+1} for simplicity. Then, we apply XNOR and Bit-count
operations to replace full-precision operations. Following [17], the forward process of the
BNN is defined as

ai = bai−1 �bwi , (1)

where � represents efficient XNOR and Bit-count operations. Based on XNOR-Net [17],
we introduce a learnable channel-wise scale factor to modulate the amplitude of real-valued
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Figure 3: Illustration of training w j
i via Expectation-Maximization. For the ones in the grey

area (distribution not transparent), we apply EM(·) to constrain it to converge to a specific
distribution.

convolution. Considering the Batch Normalization (BN) and activation layers, the forward
process is formulated as

bai = sign(Φ(αi ◦bai−1 �bwi)), (2)

where we divide the data flow in POEM into units for detailed discussions. In POEM,
the original output feature ai is first scaled by a channel-wise scale factor (vector) αi ∈
RCi to modulate the amplitude of full-precision counterparts. It then enters Φ(·), which
represents a composite function built by stacking several layers, e.g., BN layer, non-linear
activation layer, and max-pooling layer. And then, the output is binarized to obtain the binary
activations bai ∈BCi , via sign function. sign(·) denotes the sign function which returns +1 if
the input is greater than zeros, and −1 otherwise. Then, the 1-bit activation bai can be used
for the efficient XNOR and Bit-count of (i+1)-th layer.

2.2 Supervision for POEM
To constrain the Bi-FC to have binarized weights with similar amplitudes as the real-valued
counterparts, we introduce a new loss function in our supervision for POEM. We consider
that unbinarized weights should be reconstructed based on binarized weights, and define the
reconstruction loss as

LR =
1
2
‖wi−αi ◦bwi‖2

2, (3)

where LR is the reconstruction loss. Considering the impact of αi on the output of the layer,
we define the learning objective of our POEM as

argmin
{wi,αi},∀i∈N

LS(wi,αi)+λLR(wi,αi), (4)

where N denotes the number of layers in the network. LS is the cross entropy, denoting
learning from the ground truth. And λ is a hyper-parameter. Different from binarization
methods (such as XNOR-Net [17] and Bi-Real Net [9]) where only the reconstruction loss
is considered in the weight calculation. By fine-tuning the value of λ , our proposed POEM
can achieve much better performance than XNOR-Net, which shows the effectiveness of
combined loss against only softmax loss.
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2.3 Optimization for POEM
In each Bi-FC layer, POEM sequentially update unbinarized weights wi and scale factor αi.
Updating wi via Expectation-Maximization: Under a binarization framework, the con-
ventional back propagation process without necessary constraint will result in a Gaussian
distribution of wi, which degrades the robustness of Bi-FCs. Our POEM takes another learn-
ing objective as

argmin
wi, j

bwi, j −bwi, j+γ , (5)

where γ denotes any disturbance caused by the noise containing in the raw point cloud data
and j = 1, · · · ,Ci is the channel index. To learn Bi-FCs capable of overcoming this obstacle,
we introduce EM algorithm into the updating of wi, j. First, we assume the ideal distribution
of wi, j should be a bi-modal one.

Assumption 2.1 For every channel of the i-th 1-bit layer, i.e., ∀wi, j ∈ wi, it can be con-
strained to follow a Gaussian Mixture Model (GMM).

Based on our assumption, for the j-th channel wi, j we formulate the ideal bi-modal
distribution as

P(wi, j|ΘΘΘi, j) = β
k
i, j

2

∑
k=1

p(wi, j|Θk
i, j), (6)

where the number of distributions is set as 2 in this paper. Θk
i, j = {µk

i, j,σ
k
i, j} denotes the

parameters of the k-th distribution, i.e., µk
i, j denotes the mean value and σ k

i, j denotes the
variance respectively. To solve GMM with the observed data wi, i.e., the ensemble of weights
at the i-th layer.

We introduce the hidden variable ξ nk
i, j to formulate the maximum likelihood estimation

(MLE) of GMM as

ξ
jk

i, j =

{
1, wn

i, j ∈ pk
i, j

0, else
, (7)

where n = 1, ,Ci−1 is the input channel index of the i-th layer. ξ
jk

i, j is the hidden variable
describing the affiliation of wn

i, j and pk
i, j (simplified denotation of p(wi, j|Θk

i, j)). We then
define the likelihood function P(wn

i, j,ξ
nk
i, j |Θk

i, j) as

P(wn
i, j,ξ

nk
i, j |Θk

i, j) =
2

∏
k=1

(β k
i, j)
|pk

i, j |
Ci−1

∏
n=1

{
1
Ω

f (wn
i, j,µ

k
i, j,σ

k
i, j)

}ξ nk
i, j

, (8)

where Ω=
√

2π|σ k
i, j|, |pk

i, j|=∑
Ci−1
n=1 ξ nk

i, j , and Ci−1 =∑
2
k=1 |pk

i, j|. And f (wn
i, j,µ

k
i, j,σ

k
i, j) is de-

fined as

f (wn
i, j,µ

k
i, j,σ

k
i, j) = exp(− 1

2σ k
i, j
(wn

i, j−µ
k
i, j)

2). (9)

Hence, for every single weight wn
i, j, ξ nk

i, j can be computed by maximizing the likelihood as

max
ξ nk

i, j ,∀n,k
E
[
log P(wn

i, j,ξ
nk
i, j |Θk

i, j)|wn
i, j,Θ

k
i, j

]
, (10)
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where E[·] represents the estimation. Hence, the maximum likelihood estimation ξ̂ nk
i, j is

calculated as

ξ̂
nk
i, j =

β k
i, j p(w

n
i, j|Θk

i, j)

∑
2
k=1 β k

i, j p(w
n
i, j|Θk

i, j)
. (11)

After the expectation step, we conduct the maximization step to compute Θk
i, j as

(µ̂k
i, j, σ̂

k
i, j, β̂

k
i, j) = (

∑
Ci−1
n=1 ξ̂ nk

i, j wn
i, j

∑
Ci−1
n=1 ξ̂ nk

i, j

,
∑

Ci−1
n=1 ξ̂ nk

i, j (w
n
i, j− µ̂k

i, j)
2

∑
Ci−1
n=1 ξ̂ nk

i, j

,
∑

Ci−1
n=1 ξ̂ nk

i, j

Ci−1
). (12)

Then, we optimize wn
i, j as

δwn
i, j
=

∂LS

∂wn
i, j

+λ
∂LR

∂wn
i, j

+ τEM(wn
i, j), (13)

where τ is hyper-parameter to control the proportion of Expectation-Maximization operator
EM(wn

i, j). EM(wn
i, j) is defined as

EM(wn
i, j) =

{
∑

2
k=1 ξ̂

jk
i (µ̂k

i, j−wn
i, j), µ̂1

i, j < wn
i, j < µ̂2

i, j
0, else

. (14)

And further we have
∂LR

∂wi
= (wi−αi ◦bwi)◦αi. (15)

Updating αi: We further update the scale factor αi with wi fixed. δαi is defined as the
gradient of αi, and we have

δαi =
∂LS

∂αi
+λ

∂LR

∂αi
. (16)

The gradient derived from softmax loss can be easily calculated according to back propaga-
tion. Base on Eq. 3, we have

∂LR

∂αi
= (wi−αi ◦bwi) ·bwi . (17)

The above derivations show that POEM is learnable with the BP algorithm based on a
simple and effective reconstruction loss function. Moreover, we introduce EM to optimize
unbinarized weights, which further constrain them to formulate a bi-modal distribution. We
describe our algorithm in supplementary materials.

3 Implementation and Experiments
In this section, we conduct extensive experiments to validate the effectiveness of our pro-
posed POEM for efficient learning on point clouds. We first ablate our method and demon-
strate the contributions of our work on the most fundamental tasks: classification on Model-
Net40 [20]. Moreover, we implement our POEM on mainstream models on three tasks, i.e.,
classification on ModelNet40 [20], part segmentation on ShapeNet Parts [2], and semantic
segmentation on S3DIS [1]. We compare POEM with existing binarization methods where
our designs stand out.
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1-bit
PointNet λ

1×10−3 1×10−4 1×10−5 0

τ

1×10−2 89.3 89.0 86.3 81.9
1×10−3 88.3 90.2 87.9 82.5
1×10−4 86.5 87.1 85.5 81.4

0 82.7 85.3 83.7 80.1

Table 1: Ablation study on hyper-parameter λ and
τ . We vary λ from 1×10−3 to 0 and τ from 1×
10−2 to 0, respectively.
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Figure 4: Training accuracies of
POEM (τ = 1×10−3) with different
λ and XNOR-Net.

3.1 Datasets and Implementation Details
Datasets: ModelNet40 [20] is used for classification. The ModelNet40 dataset is the most
frequently used datasets for shape classification. ModelNet is a popular benchmark for point
cloud classification. It contains 12,311 CAD models from 40 representative classes of ob-
jects.

We employ ShapeNet Parts [2] for part segmentation. ShapeNet contains 16,881 shapes
from 16 categories, 2,048 points are sampled from each training shape. Each shape is split
into two to five parts depending on the category, making up to 50 parts in total.

For the semantic segmentation, S3DIS [1] is employed. S3DIS includes 3D scan point
clouds for 6 indoor areas, including 272 rooms in total, and each point belongs to one of 13
semantic categories.
Implementation Details: We evaluate POEM on three mainstream models, including Point-
Net [14], PointNet++ [15] and DGCNN [18], on three main point cloud tasks, i.e., classifica-
tion, part segmentation and semantice segmentation. In our experiments, 4 NVIDIA GeForce
TITAN V GPUs are used.

On the classification task, 1-bit PointNet is built by binarizing the full-precision PointNet
via POEM. All fully-connected layers in PointNet except the first and last one are binarized
to the Bi-FC layer, and we select PReLU [6] instead of ReLU as the activation function
when binarizing the activation before the next Bi-FC layer. We also extend this binarization
setting to other tasks. We also provide our PointNet baseline under this setting. For other
1-bit networks, we also follow this implementation. In all tables, we use the bold typeface
to denote the best result.

For the part segmentation task, we follow the convention [14] to train a model for each
of the 16 classes of ShapeNet Parts [2]. For semantic segmentation task on S3DIS [1], we
also follow the same setups an [14].

Following PointNet [14], we train 200 epochs, 250 epochs, 128 epochs on point cloud
classification, part segmentation, semantic segmentation respectively. To stably train the
1-bit networks, we use learning rate 0.001 with Adam and Cosine Annealing learning rate
decay for all 1-bit models on all tasks.

3.2 Ablation Study
Hyper-parameter selection: Hyper-parameters λ and τ in Eq. 4 and 13 are related to the
reconstruction loss and EM algorithm. The effect of parameters λ and τ are evaluated on
ModelNet40 for 1-bit PointNet. The Adam optimization algorithm is used during the training
process, with per batch sized as 592. Using different values of λ and τ , the performance of
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(a). Detailed architecture of 1-bit PointNet

MM MM

~

~

(d). Detailed architecture of FC and Bi-FC

Figure 5: Detailed architecture of 1-bit PointNet implemented by us. MM denotes matrix
multiplication in short.

(a). Wight distribution of XNorNet

(b). Wight distribution of POEM

Figure 6: (a) and (b) illustrate the distribution of the unbinarized weights wi of the 6-th 1-
bit layer in 1-bit PointNet backbone when being trained under XNOR-Net and our POEM,
respectively. From left to right, we report the weight distribution of initialization, 40-th, 80-
th, 120-th, 160-th, and 200-th epoch. Our POEM obtains an apparent bi-modal distribution,
which is much more robust.

POEM is shown in Table 1. In Table 1, from left to right lie the overall accuracies (OAs)
with different λ from 1×10−3 to 0.

And the OAs with different τ from 1×10−2 to 0 lie from top to bottom. With the decrease
of λ , the OA increases first and then drops dramatically. The same trend is shown when we
decrease τ . We get the optimal 1-bit PointNet with POEM with {λ ,τ} set as {1×10−4,1×
10−3}. Hence, we extend this hyper-parameter set to the other experiments involved in this
paper.

We also set τ as 1×10−3 and plot the growth curve of training accuracies of POEM
with different λ and XNOR-Net. As shown in Figure 4, 1-bit PointNet obtained by POEM
achieves the optimal training accuracy when λ is set as 1×10−4. Also, with the EM op-
timized back propagation, the convergence of weights becomes better than XNOR-Net (in
purple), as shown in Figure 4.
Evaluating the components of POEM: In this part, we evaluate every critical part of POEM
to show how we compose the novel and effective POEM.

We first introduce our baseline network by adding a single BN layer ahead of the 1-bit
convolutions of XNOR-Net, which brings 1.2% improvement on OA. As shown in Table 2,
the introduction of PReLU, EM, and learnable scale factor improves the accuracy by 1.9%,
3.1% and 3.4% respectively over the baseline network, as shown in the second section of
Table 2. By adding all the PReLU, EM, and the learnable scale factor, our POEM achieves
7.1% higher accuracy than the baseline, even surpassing the corresponding real-valued net-
work’s accuracy.

Compared to merely using the PReLU, our main contributions, EM and learnable scale
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1-bit PointNet OA (%)
XNOR-Net 81.9

Proposed baseline network 83.1
Proposed baseline network + PReLU 85.0

Proposed baseline network + EM 86.2
Proposed baseline network + LSF 86.5

Proposed baseline network + PReLU
+ EM + LSF (POEM)

90.2

Real-valued Counterpart 89.2

Table 2: The effects of different components in
POEM on the OA. PReLU, EM and LSF denote
components of proposed baseline network.

Model Method W/A (bit) OA (%)

PointNet

Real-valued 32/32 89.2
XNOR-Net

1/1

81.9
Bi-Real Net 77.5
BiPointNet 86.4

POEM 90.2

PointNet++

Real-valued 32/32 91.9
XNOR-Net

1/1
83.8

BiPointNet 87.8
POEM 91.2

DGCNN

Real-valued 32/32 89.2
XNOR-Net

1/1
81.5

BiPointNet 83.4
POEM 91.1

Table 3: Our methods on mainstream net-
works on classification task with Model-
Net40 dataset.

factor, boost the accuracy by 5.2%, which is very significant on point cloud task. The 1-bit
PointNet achieves the performance, which even surpasses the real-valued PointNet baseline
with 1.0% (90.2% vs. 89.2%).
Weight distribution: The POEM-based model is based on an Expectation-Maximization
process implemented on PyTorch [13] platform. We analyze the weight distribution of train-
ing XNOR-Net and POEM for comparison to confirm our motivation. For a 1-bit PointNet
model, we analyze the 6-th 1-bit layer sized (64,64) and having 4096 elements. We plot
its weight distribution at the {0,40,60,120,160,200}-th epochs. As seen in Figure 6, the
initialization (0-th epoch) is the same for XNOR-Net and POEM. However, our POEM effi-
ciently employs the Expectation-Maximization algorithm to supervise the back propagation
process, leading to an effective and robust bi-modal distribution. This analysis also compiles
with the performance comparison in Table 2.

3.3 Comparison with State-of-the-arts

Classification on ModelNet40: Table 3 shows that our POEM outperforms other binariza-
tion methods such as XNOR-Net [17], Bi-Real Net [9] and BiPointNet [16] on classification
task with ModelNet40 dataset. We implement comparative experiments on three mainstream
backbones: PointNet [14], PointNet++ [15] and DGCNN [18]. XNOR-Net and Bi-Real Net
have been proven effective in 2D vision, and we successfully transfer them to point clouds.

Specifically, on PointNet, our POEM outperforms XNOR-Net, Bi-Real Net, and BiPoint-
Net by 9.3%, 12.7%, and 3.8% respectively. Moreover, 1-bit PointNet obtained by POEM
even surpasses the real-valued PointNet by 1.0% OA. On PointNet++, POEM stands out
from all other 1-bit methods by a sizable performance advance. For example, POEM outper-
forms BiPointNet by 3.4% OA improvement. Similar circumstances arise on the DGCNN
backbone, and our POEM surpasses BiPointNet by 7.7%. All the results demonstrate that
our POEM promotes the state-of-the-art in 1-bit point cloud classification.
Part Segmentation on ShapeNet Parts: We demonstrate the superiority of our POEM on
part segmentation task in Table 4. We have two observations from the impressive results: 1).
POEM can achieve the best performance (mIOU) compared with other 1-bit methods on all
three backbones; 2). Compared with real-valued counterparts, acceptable performance drops
are achieved (2.6%, 2.2% and 2.1%) with significant compression rates.
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Model Method W/A (bit) mIOU

PointNet

Real-valued 32/32 83.7
XNOR-Net

1/1

75.3
Bi-Real Net 70.0
BiPointNet 80.6

POEM 81.1

PointNet++
Real-valued 32/32 85.1
XNOR-Net 1/1 77.7

POEM 82.9

DGCNN
Real-valued 32/32 85.2
XNOR-Net 1/1 77.4

POEM 83.1

Table 4: Our methods on mainstream
networks on part segmentation task with
ShapeNet Part dataset.

Model Method W/A (bit)mIOUOA (%)

PointNet

Real-valued 32/32 47.7 78.6
XNOR-Net

1/1

39.1 70.4
Bi-Real Net 35.5 65.0
BiPointNet 44.3 76.7

POEM 45.8 77.9

PointNet++
Real-valued 32/32 53.2 82.7
XNOR-Net 1/1 43.1 75.9

POEM 49.8 80.4

DGCNN
Real-valued 32/32 56.1 84.2
XNOR-Net 1/1 45.6 78.0

POEM 50.1 81.3

Table 5: Our methods on mainstream net-
works on semantic segmentation task with
S3DIS dataset.

Semantic Segmentation on S3DIS: As listed Table 5, our POEM outperforms all other
1-bit methods on part segmentation tasks. First, POEM can achieve the best mIOU and
OA compared with other 1-bit methods on all employed backbones. Second, POEM can
inference the implemented backbones with efficient XNOR and Bit-count operations with
acceptable mIOU drops (1.9%, 3.4% and 2.9%) achieved. Moreover, our POEM can achieve
OA over 80% with 1-bit weights and activations, which promotes the state-of-the-art.

Except for these performance comparison, we also provide efficiency analysis and results
visualization in the supplementary material to sufficiently evaluate our POEM.

4 Conclusion

We have developed a new deep learning model for point cloud processing, 1-bit point-wise
operations based on Expectation-Maximization (POEM), which can significantly reduce the
storage requirement for computationally limited devices. POEM is employed in point cloud
networks to formulate 1-bit fully-connected layer (Bi-FC), which mainly works with binary
weights, proposed scale factor, and Expectation-Maximization (EM) algorithm. In POEMs,
we use the learnable scale factor to build an end-to-end framework and a new architecture to
calculate the network model. To further enhance the robustness of unbinarized weights, we
employ the EM algorithm to learning a bi-modal distribution of unbinarized weights. All the
parameters of our POEM can be obtained in the same pipeline as in the back propagation al-
gorithm. Extensive experiments demonstrate that our POEM surpasses existing binarization
methods by significant margins. For more real-world applications, we will implement our
POEM on ARM CPUs for future work.
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