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Abstract

Unsupervised domain adaptation (UDA) aims to learn models for a target domain of
unlabeled data by transferring knowledge from a labeled source domain. In the tradi-
tional UDA setting, labeled source data are assumed to be available for adaptation. Due
to increasing concerns for data privacy, source-free UDA is highly appreciated as a new
UDA setting, where only a trained source model is assumed to be available, while labeled
source data remain private. However, trained source models may also be unavailable in
practice since source models may have commercial values and exposing source models
brings risks to the source domain, e.g., problems of model misuse and white-box attacks.
In this work, we study a subtly different setting, named Black-Box Unsupervised Do-
main Adaptation (B2UDA), where only the application programming interface of source
model is accessible to the target domain; in other words, the source model itself is kept
as a black-box one. To tackle B2UDA, we propose a simple yet effective method, termed
Iterative Learning with Noisy Labels (IterLNL). With black-box models as tools of noisy
labeling, IterLNL conducts noisy labeling and learning with noisy labels (LNL) itera-
tively. To adapt the LNL to B2UDA, we estimate the noise rate from model predictions
of unlabeled target data and propose category-wise sampling to tackle the unbalanced
label noise among categories. Experiments on benchmark datasets show the efficacy of
IterLNL. Given neither source data nor source models, IterLNL performs comparably
with traditional UDA methods that make full use of labeled source data.

1 Introduction
Although deep models have achieved success on various tasks, it is difficult to generalize the
model learned from labeled training data to a target domain of slightly shifted data distribu-
tion. At the same time, it is expensive to collect a new target dataset with a large number of
labeled training data. Therefore, unsupervised domain adaptation (UDA) [4, 24, 30] is intro-
duced to learn the target model by transferring knowledge from the labeled source domain
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Figure 1: An illustration of different UDA settings. Source data and source model are respec-
tively required in the traditional UDA and WBUDA settings. In contrast, B2UDA requires a
black-box access to the source model only, which is the least restrictive condition to apply
domain adaptation to the unsupervised target data.

to the unlabeled target domain. Motivated by seminal theories [2, 49, 50], popular UDA
methods [4, 24, 25, 36, 38, 48] target at learning domain invariant feature representations. In
UDA, labeled source data are assumed to be available for target domain.

Although remarkable success has been achieved in UDA, increasing concerns for data
privacy post new challenges to it. Specifically, data of source and target domains are typ-
ically captured and stored on different devices and contain private information. Thus it is
risky to expose source data to the target domain and vice versa. In other words, labeled
source data may be not available for the target domain, impeding the application of popular
UDA methods [4, 24, 25, 36, 38, 48]. For this reason, a novel task, source-free UDA, is
introduced [12, 23, 45] to facilitate the model adaptation and protect the source data privacy
simultaneously.

Unlike the vanilla UDA, a well-trained white-box source model, instead of labeled source
data, is provided to unlabeled target domain in the source-free UDA [23, 45]; thus, we term
this task as white-box unsupervised domain adaptation (WBUDA) to distinguish it from
our investigated one in later paragraphs. In WBUDA, the adaptation could be achieved by
fine-tuning the source model on unlabeled target data with well-designed objectives [23, 45].

However, the white-box source model is not always given in practice. Most valuable
models on cloud services (e.g., Google Cloud) are sealed as application programming in-
terface (API), where only the input-output interface of a model is available and the model
itself is kept as a black-box one. As stated in [29], releasing an API instead of a white-box
model could commercialize the technology, reduce model misuse and make the model use
conveniently for the public. Due to all reasons mentioned above, white-box source models
are probably unavailable in practice, which hinders the application of WBUDA methods.

In this work, we study a subtly different setting of source-free UDA, where only the API
of the source model is accessible for the target domain. In other words, the source model
itself is kept as a black-box one; thus, we term this task as black-box unsupervised domain
adaptation (B2UDA). A few recent attempts [3, 46] have been made to tackle the B2UDA
problem, but achieving less satisfactory results. In this work, we propose a simple yet effec-
tive algorithmic framework, termed Iterative Learning with Noisy Labels (IterLNL). With
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black-box models as tools of noisy labeling, IterLNL conducts noisy labeling and LNL it-
eratively. Specifically, we first get model predictions of target data based on the black-box
model and obtain their noisy labels as the category with the maximum prediction probability.
We note that the label noise via the black-box model may be highly unbalanced among cate-
gories (cf. Figure 2(c)), which is significantly different from the simulated and balanced ones
in LNL [6, 40]; such unbalanced label noise hinders the application of state-of-the-art LNL
methods [6, 14], inspiring the category-wise sampling strategy. To facilitate the implemen-
tation of LNL in B2UDA, we estimate the noise rate from model predictions of unlabeled
target data. Experiments on benchmark datasets confirm the efficacy of our method.

2 Related Work
Source Free UDA. Traditional UDA [4, 24] assumes that labeled source data are avail-
able for the target domain. Due to increasing concerns for data privacy, source-free UDA
[12, 17, 18, 22, 23, 45] is highly appreciated as a new UDA setting, where only a source
model is available for the target domain while labeled source data remain private. Source
free UDA methods typically fine-tune the source model for the target domain with unlabeled
target data [17, 22, 23, 45]. Specifically, Liang et al. [23] fine-tune the source model with
pseudo-labeling and information maximization between target data and their predictions;
a weight constraint is adopted in [22] to encourage similarity between the source model
and adapted target model. Additionally, source data and source-style target data are respec-
tively generated in [18] and [12] using the statistics information stored in source model. The
white-box source model is required in the methods above, but it may be unavailable due to
the commercial and/or safety consideration [29]. To this end, we study a subtly different
B2UDA setting, where only the API of source model is accessible for the target domain;
in other words, the source model itself is kept as a black-box one. We note that several at-
tempts have been made on the B2UDA problem recently. Based on pre-trained features, a
denoising auto-encoder is used for prediction of target labels in [3] and an encoder-decoder
framework is used in [46] where encoded target features are aligned to reference Gaussian
distributions; however, both of the two methods obtain less satisfactory results on bench-
mark datasets. Morerio et al. [26] first train a conditional Generative Adversarial Network
(cGAN) with unlabeled target data and their source predictions, and then learn the target
model with samples generated by cGAN; its performance is conditioned on the high-quality
samples generated by cGAN, thus limiting its general usage in UDA tasks. In general, the
B2UDA problem is not well addressed yet. In the present work, we propose IterLNL and
conduct thorough experiments on popular UDA benchmarks; results show that our proposed
method works successfully for B2UDA.

Learning with Noisy Labels (LNL). LNL aims to learn models with noisy labeled data
robustly. Seminal LNL methods include estimating noise transition matrix to transfer ob-
served noisy labels to latent clean ones [37, 39], refining the objective function [7, 51], and
avoiding overfitting noisy labels with memorization effects of neuron networks [6, 14], as
summarized in [8]. Although we tackle B2UDA with a LNL-like method, it should be noted
that tasks of B2UDA and LNL are fundamentally different. Specifically, a black-box source
model, rather than noisy labels, is given in B2UDA to help the learning with unlabeled data;
apart from introducing noisy labels as in our IterLNL, the black-box source model could be
used in other ways, e.g., model distillation [11], which are left for further studies.
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3 Problems and the proposed Method
Given unlabeled target data T = {xxxt

i}nt

i=1 sampled from a distributionQ, our problem of inter-
est is to learn a model F :X t→ [0,1]K such that the empirical target risk 1

nt ∑
nt

i=1[L(F(xxxt
i),y

t
i)]

(or ideally, the expected risk E(xxxt ,yt )∈Q[L(F(xxxt),yt)]) could be minimized, where K is the
category number, L is the loss function of the task, and yt

i ∈ {1, . . . ,K}, i = 1, . . . ,nt , is
the target label to be estimated. Depending on how much knowledge one may have from a
source domain, the problem can fall in different established realms of unsupervised learning
[41], unsupervised domain adaptation (UDA) [4, 24], and source-free UDA [23, 45]. While
the first one assumes no the source knowledge and is of machine learning foundations, in
this work, we focus on different problem settings of UDA. We can formulate the UDA pro-
cedure as: F t ⇐ O(T ,S), where F t is the expected target model, O is a certain method,
and S means the available resource of source domain. In UDA, S contains labeled source
data {xxxs

i ,y
s
i}ns

i=1 sampled from a distribution P; in WBUDA, S is a source model Fs with
visible parameters and structures; in B2UDA, S is an API of Fs, which only provides input-
output interface of Fs and is denoted as F̂s; in other words, we could get the output of Fs(xxx)
via F̂s(xxx) while the source model Fs itself is kept as a black-box one. As there are many
model APIs on cloud services, B2UDA is a promising way to improve their adaptabilities,
presenting broad practical values.

Labeled source data S and white-box source model Fs are respectively required in UDA
and WBUDA methods, impeding their applications in the B2UDA task. To this end, we
propose an IterLNL framework by conducting noisy labeling and LNL iteratively, which are
introduced as follows.

3.1 Noisy Labeling
Given a black-box model F̂ (e.g., the black-box source model F̂s) in B2UDA, we could get
label predictions of target data {xxxt

i}nt

i=1 with F̂ as:

Ŷ = {F̂(xxxt
i)}nt

i=1. (1)

The corresponding pseudo label of target sample xxxt
i is defined as ŷt

i = argmaxk F̂k(xxxt
i).

The pseudo labels {ŷt
i}nt

i=1 could be highly noisy due to the divergence across source and
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(c) VisDA-2017

Figure 2: (a)-(c): Transition matrices [31, 34] of different noise types, where the simulated
(a) pair flipping [6] and (b) symmetry flipping [40] are widely adopted in LNL works [6, 44],
and (c) presents the realistic noise matrix in the VisDA-2017 dataset based on the black-box
source model F̂s. The value in row r, column c represents the probability with which samples
of category r are assigned with label c. In all figures, deeper colour indicates a larger value
and all values are rounded to the level of 0.01 (Zoom in to see the exact values).

Citation
Citation
{Weber, Welling, and Perona} 2000

Citation
Citation
{Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, and Lempitsky} 2016

Citation
Citation
{Long, Cao, Wang, and Jordan} 2015

Citation
Citation
{Liang, Hu, and Feng} 2020

Citation
Citation
{Yang, Wang, vanprotect unhbox voidb@x protect penalty @M  {}de Weijer, and Herranz} 2020

Citation
Citation
{Patrini, Rozza, Krishnaprotect unhbox voidb@x protect penalty @M  {}Menon, Nock, and Qu} 2017

Citation
Citation
{Reed, Lee, Anguelov, Szegedy, Erhan, and Rabinovich} 2014

Citation
Citation
{Han, Yao, Yu, Niu, Xu, Hu, Tsang, and Sugiyama} 2018

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}Rooyen, Menon, and Williamson} 2015

Citation
Citation
{Han, Yao, Yu, Niu, Xu, Hu, Tsang, and Sugiyama} 2018

Citation
Citation
{Yang, Yao, Han, and Niu} 2019



ZHANG ET AL.: UNSUPERVISED DA OF BLACK-BOX SOURCE MODELS 5

Source Data

Black Box Model

Source Model

Train

So
ur

ce
 D

om
ai

n

Source Model

Black BoxSeal

Target Model

Ta
rg

et
 D

om
ai

n

Learning with Noisy Labels

Noisy Labeling

Initialize

Target Data
Update

Model Predictions

N
oise rate 

N
oisy labels 

Black Box

Figure 3: Framework of our proposed Iterative Learning with Noisy Labels (IterLNL), where
we conduct noisy labeling and LNL iteratively.

target domains. Furthermore, we emphasize that the label noise in {ŷt
i}nt

i=1 could be signifi-
cantly unbalanced among categories; for example, the noise rate could be extremely high for
some categories and extremely low for the others, as illustrated in Figure 2(c).

Such unbalanced label noise via domain shift is substantially different from the simulated
ones [6, 40] in many LNL works, as compared in Figure 2. In addition, the noise rate, which
is usually required in LNL algorithms, is unknown in B2UDA, while it is usually assumed to
be given in LNL [6, 40]. In the next paragraph, we propose strategies to estimate the noise
rate and tackle unbalanced label noise, which support the successful target model learning in
B2UDA.

3.2 Learning with Noisy Labels

Given noisy target label predictions Ŷ in Section 3.1, we resort to LNL to learn the target
model. State-of-the-art LNL methods [6, 10, 14] usually combat noisy labels by selecting
‘clean’ samples from each mini-batch for training, which is achieved by utilizing the mem-
orization effects of neuron networks [1]. Before going into detail, we denote R(n) as the
percentage of instances selected for training in the mini-batch of n-th iteration. LNL meth-
ods [6, 10, 14] typically keep more instances in the mini-batch (i.e., R(n) is large) at the
beginning, and then gradually drop noisy samples (i.e., R(n) becomes smaller) as training
proceeds; by using more training instances at the beginning, a relatively reliable model could
be achieved since deep models learn clean and easy patterns at the beginning [1]; with the
reliable model, noisy instances could be filtered out by gradually dropping instances with
larger losses.

We also adopt the aforementioned LNL strategy in our method since it presents high
robustness even with extremely noisy labels [6]. In LNL [6, 44], the selecting percentage
R(n) is depending on the noise rate, which is either assumed to be known in advance [6] or
estimated with few labeled clean data [33, 47]. However, realistic noisy labels are introduced
by domain shift in B2UDA, where the unavailable of labeled target data and unknown noise
rate impede the design of R(n).

To this end, we propose a simple yet efficient strategy to estimate noise rate. We first
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follow [6] to define R(n) as:

R(n) = 1−min
( n

0.5N
ε,ε
)
, (2)

where N is the total number of training iterations and ε is the noise rate.
Noise rate Estimation. We first present the empirical noise rate ε as:

ε = 1− 1
nt

nt

∑
i=1
I[xxxt

i, ŷ
t
i], (3)

where I[xxxt
i, ŷ

t
i] ∈ {0,1} is a binary indicator; I[xxxt

i, ŷ
t
i] = 1 if ŷt

i is the correct label of xxxt
i

and 0 otherwise. It is obvious that the empirical noise rate ε (3) is close correlated to the
classification accuracy of the black-box model F̂ . In the meantime, there is a correlation
between the classification accuracy and maximum prediction probability, as observed in [10,
20, 52]. Although the prediction probability may be overconfident and misleading viewed
in isolation, the probability statistics is often sufficient to reflect on the overall classification
accuracy [5, 10], and also the noise rate ε .

To estimate the noise rate ε , we calculate the proportion of target data T with high
prediction probability as:

ρ =
1
nt

nt

∑
i=1

I[max(F̂(xxxt
i))> γ], (4)

where γ ∈ [0,1] is the threshold and I[var] =

{
1, var = True
0, Otherwise

. And then we approximate

noise rate ε as:
ε = 1−ρ. (5)

Although the estimated noise rate ε (5) is not precise, we find that such an estimation of noise
rate works well in different tasks and achieves good results close to that using the grounding
truth noise rate, as presented in Section 4.1.
Category-wise Sampling. Given the estimated noise rate ε (5), we could conduct LNL
by selecting R(n) (2) percent samples with smaller loss for training in the mini-batch of n-th
iteration. However, as we state in Section 3.1, the label noise is unbalanced among categories
in B2UDA (cf. Figure 2(c)); thus samples in categories with higher noise rate are prone to
present larger loss and be rejected for training, leading to worse results for these categories,
as presented in Table 3.

To this end, we propose to sample the R(n) (2) percent samples with smaller loss for each
category individually, where R(n) (2) is shared across categories. Technically, we introduce
a probability queue buffer uuuk ∈ [0,1]h for category k ∈ [1, . . . ,K], where uuuk is initialized as
a vector filled with positive infinity values and h is the buffer length. For any instance xxxt

in the n-th iteration, we obtain its corresponding noisy label ŷt = argmaxk F̂k(xxxt) and loss
L(F(xxxt), ŷt) = − log(Fŷt (xxxt)), where F is the model in learning. We propose the following
indicator III(L(F(xxxt), ŷt),uuuŷt ,n) to decide whether xxxt should be used in training:

III(L(F(xxxt), ŷt),uuuŷt ,n) =

{
1, L(F(xxxt), ŷt)≤ LR(n)(uuuŷt )

0, Otherwise,
(6)

where LR(n)(uuuŷt ) is the bhR(n)c-th largest value in uuuŷt . We utilize the loss L(F(xxxt), ŷt) to
update current model F if III(L(F(xxxt), ŷt),uuuŷt ,n) = 1 and drop it otherwise.
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Settings Methods U→M S→M M→U
B

2 U
DA

Source Model 82.0 69.4 79.4
sMDA [3] 83.4 69.9 81.2
IterLNL 97.6±0.1 97.7±0.1 97.7±0.0

W
BU

DA

SDDA [18] – 75.5 89.9
PLR [26] 91.6±1.9 96.9±0.3 90.3±1.3
3C-GAN [22] 99.3±0.1 99.4±0.1 97.3±0.2
SHOT [23] 98.4±0.6 98.9±0.0 98.0±0.2

U
DA

DANN [4] 86.3±0.3 85.5±0.4 84.9±0.6
MCD [36] – 96.2±0.4 96.5±0.3
CDAN [25] 98.0 89.2 95.6
RWOT [43] 97.5±0.2 98.8±0.1 98.5±0.2

Table 1: Results on Digits dataset.

Tasks Methods Acc.

B
2 UDA

Source Model 51.5
sMDA [3] 53.1
SoFA [46] 60.4
IterLNL 83.1

WBUDA PrDA [16] 76.7
3C-GAN [22] 81.6
SHOT [23] 82.9

UDA
DANN [4] 57.4
MCD [36] 71.9
RWOT [43] 84.0

Table 2: Results on VisDA-2017 (ResNet-101).

Algorithm 1 Iterative Learning with Noisy Labels.

Input: Black-box source model F̂s, target data T
Output: Target model F

1: Initialize F̂ with F̂s

2: for m = 1 to M do . For each iterative step
3: Acquire noisy labels Ŷ with T and F̂ using (1)
4: Estimate noise rate ε with (4) and (5)
5: Initialize target model F and buffers {uuuk}K

k=1
6: for n = 1 to N do . For each iteration
7: Acquire R(n) with (2)
8: Update model F using data selected with (6)
9: Update buffers {uuuk}K

k=1
10: end for
11: Update F̂ as the API (i.e., black-box model) of F
12: end for
We also update the queue buffers {uuuk}K

k=1 with all samples in the n-th iteration. Specifi-
cally, given an instance xxxt and its corresponding noisy label ŷt and loss L(F(xxxt), ŷt) defined
above, we push L(F(xxxt), ŷt) into the queue buffer uuuŷt and pop the oldest value from uuuŷt si-
multaneously. In this way, we adopt samples with the R(n) percent smallest losses in each
category for training in n-th iteration.

3.3 Iterative Learning Strategy
With the noisy labeling in Section 3.1 and LNL in Section 3.2, we could get a more reli-
able target model over the original black-box one (i.e., the one introduces noisy labels), as
illustrated in Figure 4(a). In other words, the achieved target model could produce improved
noisy labels over the original noisy labels. It is a natural idea to conduct noisy labeling
with the achieved target model (or its black-box counterpart), and conduct LNL on the new
noisy labels again. Finally, we define our algorithmic framework by conducting noisy label-
ing and LNL iteratively, leading to the Iterative Learning with Noisy Labels (IterLNL). We
summarize IterLNL in Algorithm 1 and illustrate its framework in Figure 3.
Remarks. Although we tackle B2UDA with a LNL-like method, it should be noted that
tasks of B2UDA and LNL are fundamentally different, since a black-box source model,
rather than noisy labels, is given in B2UDA to help the learning with unlabeled data. Other
ways of source model utilization, e.g., model distillation [11], are left for further studies.
Additionally, we adapt the LNL method for B2UDA by estimating noise rate with unlabeled
target data (cf. Sec. 3.2), tackling category unbalanced label noise via category-wise sam-
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pling (cf. Sec. 3.2), and utilizing improved models via iterative learning (cf. Sec. 3.3),
leading to an algorithmic framework specifically designed for B2UDA and significant per-
formance improvement over vanilla LNL methods (cf. Sec. 4). Note that there are significant
differences between our IterLNL and popular self-training in UDA; firstly, our IterLNL, as
well as all LNL methods, is proposed for tasks with noisy labeled training data while self-
training is applied to tasks with labeled and unlabeled training data, impeding its application
in B2UDA; secondly, samples with high prediction confidence are directly used for model
training in self-training while LNL methods and our IterLNL use samples to learn models
only if their current model predictions are consistent with the given noisy labels. Finally, we
propose a new framework for UDA by modeling influence of domain shift as noisy labels
and tackling UDA with LNL-like methods. It should be noted that the domain shift only
affects the noise rate of initial noisy labels and makes no influence to the following model
learning via LNL-like methods.
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(a) Acc. in iterative process

0.5 0.7 0.8 0.9 0.95 0.99
Values of 

70

75

80

85

90

95

100

Ac
c 

(%
)

(b) Results with various γ

30 50 100 150 200
Values of h

70

75

80

85

90

95

100

Ac
c 

(%
)

(c) Results with various h

Figure 4: (a) Illustration of the accuracy of noisy labels {ŷt
i}nt

i=1 and target model F
via LNL. (b-c) Hyper-parameter ablations with various values of γ (b) and h (c).

4 Experiment
Office-31 [35] is the most popular benchmark dataset for UDA. There are 4,110 samples
shared by three domains: amazon (A), webcam (W), and dslr (D). VisDA-2017 [32] aims
to transfer knowledge from synthetic images to real-world ones, which is a challenging task
with significant domain divergence. There are 152K synthetic images and 55K real-world
images shared by 12 classes. Datasets of MNIST [19], Street View House Numbers (SVHN)
[28], and USPS [13] constitute the Digits task, which includes 10 classes. There are 50K
training samples, 10K validation samples and 10K test samples in the MNIST dataset (M),
where all images are black-and-white handwritten digits; the SVHN dataset (S) contains
73,257 training and 26,032 test images with colored backgrounds; the USPS dataset (U)
contains 7,291 training and 2,007 test images with black backgrounds.
Implementation Details. For experiments on datasets of Office-31 and VisDA-2017, we
employ the pre-trained ResNet model [9] as the backbone and replace the last fully connected
(FC) layer with a task-specific FC classifier following [4, 23, 24]. We introduce the source
model Fs by fine-tuning the constructed model on source data following [15] and then seal Fs

as the black-box F̂s, i.e., only the input-output interface of Fs is available. For experiments
on Digits dataset, we follow [36] to introduce the source model Fs with convolutional layers
and FC layers. Following [4], we utilize the SGD optimizer and adopt the learning rate
strategy as ηn =

η0
(1+10ζ )0.75 , where η0 is initial learning rate and ζ is the process of training

iterations linearly changing from 0 to 1. Hyper-parameters of our method are tuned on
the A→W task of Office31 dataset and apply to other tasks. We set the batch size as 64,
η0 = 0.003, γ = 0.9 in (4), and buffer length h = 100 for all experiments.
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Source Model 73.2 30.7 57.0 79.5 75.4 7.4 88.8 11.4 84.0 29.1 80.0 2.0 51.5 57.7
IterLNL (w/o Iter) 89.8 57.8 77.1 88.0 89.6 21.7 94.2 37.8 91.6 65.4 86.3 11.3 67.6 71.5
IterLNL (w/o CateS) 95.6 87.2 86.0 90.0 96.9 0.0 93.7 51.2 93.3 88.1 87.4 0.0 72.4 75.6
IterLNL 88.7 83.4 78.3 67.7 91.4 87.6 91.8 79.5 86.2 86.7 78.7 77.2 83.1 81.2

Table 3: Ablation study on VisDA-2017 dataset (ResNet-101).
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Figure 5: Illustration of (a) estimated noise rate in different iterative steps and (b-c) IterLNL’s
results with fixed ε in different iterative steps on VisDA-2017 and Digits dataset.

4.1 Ablation Study and Analyses
Ablation study. We introduce several variants of IterLNL to investigate the individual com-
ponents in IterLNL. Specifically, following [6], we replace the category-wise sampling (6)
by simply using the R(n) percent samples with smaller losses in the n-th iteration for model
learning, leading to ‘IterLNL (w/o CateS)’. We also present the results of IterLNL by con-
ducting noisy labeling and learning with noisy labels only once (i.e., setting M = 1 in Al-
gorithm 1, resulting in ‘IterLNL (w/o Iter)’. As illustrated in Table 3, IterLNL improves
over the IterLNL (w/o CateS) and IterLNL (w/o Iter) significantly, justifying the efficacy of
category-wise sampling (6) and iterative learning. Specifically, the category-wise sampling
(6) largely alleviates the biased prediction prior, which is due to the unbalanced label noise
across categories (cf. Figure 2(c)), and leads to more balanced results and better mean ac-
curacy. We also intuitively visualize the accuracy improvement of model F in the iterative
learning process (i.e., with different m∈ [1,M]). As illustrated in Figure 4(a), the accuracy of
F via LNL significantly outperforms that of initial noisy labels in the beginning; the improve-
ment is gradually reduced as the iterative step m increases, leading to the final convergence.
As presented in Figure 5(a), the noise rate estimated via our method (5) approximates that
calculated with labeled target data (i.e., GT in Figure 5(a)) and, on VisDA-2017 dataset,
IterLNL achieves 83.4% with GT noise rate, which is close to our result of 83.1%. We
also make in-depth analysis for the noise rate estimation by utilizing fixed noise rate in all
iterative steps, which is illustrated in Figures 5(b) and 5(c), and detailed in the appendices.
Analyses on γ and h. We investigate the hyper-parameters γ (4) and buffer length h in
Section 3.2 on A→W task of Office-31 dataset. As illustrated in Figure 4(b) and 4(c), γ ∈
[0.9,0.95] leads to the best result and IterLNL performs robustly under a wide range of h
values. We empirically set γ = 0.9 and h = 100, which work well for all tasks but not
necessarily result in the best results.
Comparison with LNL Method. We conduct the LNL methods of Co-teaching [6] and
DivideMix [21] with our estimated noise rate ε (5) and noisy labels {ŷt

i}nt

i=1 introduced by
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Tasks Method A→D A→W D→A D→W W→A W→D Avg

B2UDA

Source Model [15] 79.7 78.1 64.9 96.0 65.4 99.2 80.1
BPDA [42] 89.4 88.4 61.4 93.3 60.7 94.8 81.3
sMDA [3] 80.5 79.3 65.7 96.3 67.3 99.2 81.4
IterLNL 92.6±0.3 92.2±0.0 74.3±1.3 98.0±0.1 74.3±0.0 99.4±0.0 88.5

WBUDA

SDDA [18] 85.3 82.5 66.4 99.0 67.7 99.8 83.5
PrDA [16] 91.1±0.3 98.2±0.3 99.5±0.2 92.2±0.2 71.0±0.2 71.2±0.2 87.2
SHOT [23] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
3C-GAN [22] 92.7±0.4 93.7±0.2 75.3±0.5 98.5±0.1 77.8±0.1 99.8±0.2 89.6

UDA
DANN [4] 79.7±0.4 82.0±0.4 68.2±0.4 96.9±0.2 67.4±0.5 99.1±0.1 82.2
CDAN [25] 92.9±0.2 94.1±0.1 71.0±0.3 98.6±0.1 69.3±0.3 100.0±.0 87.7
RWOT [43] 94.5±0.2 95.1±0.2 77.5±0.1 99.5±0.2 77.9±0.3 100.0±.0 90.8

Table 4: Results on Office31 dataset, where all methods are based on a ResNet-50 model.

the black-box source model F̂s on the S→M task. The results of 91.0% with Co-teaching
and 93.3% with DivideMix are lower than 97.7% with our IterLNL, justifying the advantage
of IterLNL over vanilla LNL method on B2UDA.
Comparison with Knowledge Distillation [11] and Label Smoothing [27]. To adapt
knowledge distillation to B2UDA, we promote target student model to produce similar pre-
diction probabilities (e.g., soft labels) to the black-box source model, leading to a result of
56.9% on VisDA-2017. Besides, we learn the target model with smoothed pseudo label in-
troduced by the black-box source model [27] with a label smoothing factor of 0.1, resulting
in a result of 57.1%. Compared to IterLNL (83.1%), they are less effective for B2UDA, pos-
sibly since knowledge distillation promotes the target student to be similar to the not-good
source teacher, and the label smoothing only partially alleviates the problem of label noise.

4.2 Results
The results of IterLNL on datasets of Digits, Office31, and VisDA-2017 are illustrated in
Table 1, Table 4, and Table 2, respectively. Most comparable results are directly reported
from their original papers, except the Source Model [15] and sMDA [3], which are imple-
mented by ourselves. Taking advantages of feature learning, our IterLNL improves over ex-
isting methods of B2UDA [3, 46] significantly; for example, IterLNL improves over sMDA
[3] and SoFA [46] by 30.0% and 22.7% on the VisDA-2017 dataset respectively. Besides,
IterLNL also outperforms WBUDA methods on VisDA-2017 dataset. All in all, although we
only use the black-box source model for the transfer use in target domain, IterLNL achieves
comparable results to methods of WBUDA and traditional UDA.

5 Discussions and Broader Impact
Considering that the source model itself may not be available due to commercial and/or
safety considerations [29], we investigate the B2UDA task, and propose a baseline algorithm
by modeling domain shift as the initial label noise and tackling DA with a LNL-like method.
We verify its efficacy on popular DA benchmarks with thorough experiments. The B2UDA
task is of broad practical value since it could further improve the utilities of APIs as cloud
services, pushing the DA research closer to practical applications.

Acknowledgement. This work was partially supported by the Guangdong R&D key project
of China (No.: 2019B010155001), the National Natural Science Foundation of China (No.:
61771201), and the Program for Guangdong Introducing Innovative and Entrepreneurial
Teams (No.: 2017ZT07X183).

Citation
Citation
{Junguangprotect unhbox voidb@x protect penalty @M  {}Jiang} 2020

Citation
Citation
{Wu, Shi, Han, Shao, and Li} 2021

Citation
Citation
{Chidlovskii, Clinchant, and Csurka} 2016

Citation
Citation
{Kurmi, Subramanian, and Namboodiri} 2021

Citation
Citation
{Kim, Cho, Panda, and Hong} 2020{}

Citation
Citation
{Liang, Hu, and Feng} 2020

Citation
Citation
{Li, Jiao, Cao, Wong, and Wu} 2020{}

Citation
Citation
{Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, and Lempitsky} 2016

Citation
Citation
{Long, Cao, Wang, and Jordan} 2018

Citation
Citation
{Xu, Liu, Wang, Chen, and Wang} 2020

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{M{ü}ller, Kornblith, and Hinton} 2019

Citation
Citation
{M{ü}ller, Kornblith, and Hinton} 2019

Citation
Citation
{Junguangprotect unhbox voidb@x protect penalty @M  {}Jiang} 2020

Citation
Citation
{Chidlovskii, Clinchant, and Csurka} 2016

Citation
Citation
{Chidlovskii, Clinchant, and Csurka} 2016

Citation
Citation
{Yeh, Yang, Yuen, and Harada} 2021

Citation
Citation
{Chidlovskii, Clinchant, and Csurka} 2016

Citation
Citation
{Yeh, Yang, Yuen, and Harada} 2021

Citation
Citation
{OpenAI} 



ZHANG ET AL.: UNSUPERVISED DA OF BLACK-BOX SOURCE MODELS 11

References
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