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Abstract

In this paper, we investigate the problem of video object segmentation from refer-
ring expressions (VOSRE). Conventional methods typically perform multi-modal fusion
based on linguistic features and the visual features extracted from the top layer of the
visual encoder, which limits these models’ ability to represent multi-modal inputs at dif-
ferent semantic and spatial granularity levels. To address this issue, we present an end-
to-end hierarchical interaction network (HINet) for the VOSRE problem. Our model
leverages the feature pyramid produced by the visual encoder to generate multiple levels
of multi-modal features. This allows more flexible representation of various linguistic
concepts (e.g., object attributes and categories) in different levels of the multi-modal fea-
tures. Moreover, we further extract signals of moving objects from optical flow input,
and utilize them as complementary cues for highlighting the referent and suppressing
the background with a motion gating mechanism. In contrast to previous methods, this
strategy allows our model to make online predictions without requiring the whole video
as input. Despite its simplicity, our proposed HINet improves over the previous state of
the art on the DAVIS-16, DAVIS-17, and J-HMDB datasets for the VOSRE task, demon-
strating its effectiveness and generality.

1 Introduction
As a fundamental task in computer vision, video object segmentation (VOS) has various real-
world applications including augmented reality [5], robotics [25], video surveillance [50],
and video editing [39]. According to the level of supervision provided at test time, the
VOS problem has traditionally been tackled in the semi-supervised (initialized by pixel-level
masks or scribbles) [40, 57] or unsupervised settings [3, 40]. In comparison, the recently
introduced task of video object segmentation from referring expressions (VOSRE) aims to
segment out an object from a video with the guidance of a natural language description.
This setting offers several advantages: (1) Language annotations are much more economical
and scalable than pixel-level masks [23, 43], while they are also more natural and intuitive
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Query 1: “A horse doing high jumps." Query 2: “A woman riding a horse."

Figure 1: The goal of VOSRE is to predict a pixel-level mask, in every frame, that delineates
the object described by a language query. Masks in this example are our predictions.

compared with scribbles for providing target identification, especially on mobile devices. (2)
Differently from the unsupervised setting where no target specification is given, language
queries greatly reduce the ambiguity in problem definition.

Due to the reasons above, VOSRE has attracted growing attention in recent years. With
the purpose of aligning semantic concepts between language and vision, the most existing
methods focus on developing new mechanisms for combining linguistic and visual features,
(e.g., dynamic convolutions [12, 28, 54], cross-modal attentions [53], concatenation [1, 15,
53], summation [43], and multiplication [1]). However, they merely extract visual feature
maps from a single layer of the visual encoder. Despite having the potential of effectively
fusing language and vision information, they have not exploited the fact that convolutional
networks (e.g., VGG [45], ResNet [13] and I3D [4]) encode visual features in a hierarchical
way, where the scale, complexity, and abstractness of encoded features grow progressively
from the bottom level to the top level.

In other related fields including object detection and segmentation, the importance of
utilizing not only top-level feature maps but an array of feature maps from different levels is
well known and has been widely explored. For instance, the feature pyramid network [29]
extracts region-of-interest features from outputs of five different stages in the backbone en-
coder to effectively capture objects of different scales, and PSPNet [63] and DeepLabV3+ [8]
combine low-level and intermediate features with high-level features for recovering more
accurate spatial and appearance details. As for our problem, a linguistic phrase typically
describes multiple concepts about the referent object, such as its category, attributes, actions,
etc. These different concepts may not all be best represented by the same level of visual
feature map, e.g., clues for a described color may be more evident in lower-level features,
and those for a category are more likely to be embedded in high-level features.

Motivated by these observations, we propose a hierarchical interaction network (HINet)
to learn more effective multi-modal representations for VOSRE. The HINet incorporates a
separate set of linguistic features with the visual feature maps from the different convolu-
tional blocks of the visual encoder. This simple strategy generates multi-level, multi-modal
representations at different semantic and spatial granularity levels, which greatly improves
the accuracy of object localization. Furthermore, unlike previous methods which typically
employ a 3D convolutional network [12, 53, 54] or space-time attention network [43] to
extract temporal information from multiple frames, we extract motion signals of moving ob-
jects from optical flow input and directly exploit them as complementary source of guidance
for object localization. Specifically, we utilize optical flow magnitude input in two ways: (1)
incorporating it with the RGB input to implicitly embed motion information in the resulting
visual feature pyramid; (2) encoding it into high-dimensional features and using them as
gating values to explicitly strengthen multi-modal features of moving objects and suppress
those of static regions. We conduct experiments on the DAVIS-16 [40], DAVIS-17 [42],
A2D [56], and J-HMDB [20] datasets. Despite its simplicity and online operability, our
method sets new state of the art on three datasets and performs competitively on the other.
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Figure 2: Comparison of different multi-modal feature fusion methods for VOSRE. (a)
Single-level multi-modal feature fusion [1, 15, 28, 54]. (b) Single-level multi-modal fea-
ture fusion followed by deconvolutions [43]. (c) Multi-resolution multi-modal feature fusion
in which only the top-level visual features are upsampled to multiple resolutions and then
combined with linguistic features [12, 53]. (d) Our hierarchical feature interaction approach,
which combines linguistic features with visual features from multiple levels of the encoder.

2 Related Work

Referring image segmentation. In the image domain, a variety of methods for referring ob-
ject segmentation perform multi-modal feature fusion by different strategies, e.g., concate-
nation [15], recurrent interaction [26, 30], cross-modal attention [6, 16, 44, 61], multi-modal
graph reasoning [17], and linguistic structure-guided context modeling [18]. Different from
previous methods which leverage multi-level features for multi-modal fusion[6, 16, 17, 18,
61, 62], we further integrate motion information from optical flow at different levels of the
network to tackle the more challenging VOSRE task in the video domain.
VOS. The VOS problem is traditionally tackled in the semi-supervised or unsupervised set-
tings. For semi-supervised VOS, the “supervision” refers to human guidance at test time
and comes in the form of pixel-level masks or scribbles in the first frame [42]. While early
methods [2, 24, 32, 34, 41, 51] apply an online fine-tuning strategy to adapt to object ap-
pearance at test time, they are particularly slow and impractical in many use cases. Instead,
recent methods directly propagate the first-frame annotations to the rest frames with sequen-
tial modeling approaches, e.g., leveraging space-time memory network [38], collaborative
foreground-background integration [60] and many others [9, 37, 52]. For unsupervised VOS,
there is no human supervision available at test time. Early benchmarks [36, 40, 55] assume a
single target object per video and the methods rely on optical flow [27, 48, 49], LSTM [46],
or cross-frame pixel similarities [59] for modeling appearance changes of the target object.
Recent benchmarks [3] address the more practical and challenging multiple-object scenario.
Researchers generally first predict an initial set of masks by an off-the-shelf instance seg-
mentation model (e.g., Mask R-CNN [14]), and then associate individual mask predictions
across different frames into consistent object tracks [11, 33, 58].
VOSRE. Fig. 2 displays a comparison of recent representative VOSRE approaches and our
method in the multi-modal fusion stage. Note that we group the language-guided actor-
action segmentation (L-AAS) methods [12, 19, 28, 31, 35, 53, 54] into the category of
VOSRE, since the only minor difference is that expressions in L-AAS put more emphasis

Citation
Citation
{Bellver, Ventura, Silberer, Kazakos, Torres, and Giro-i Nieto} 2020

Citation
Citation
{Hu, Rohrbach, and Darrell} 2016

Citation
Citation
{Li, Tao, Gavves, Snoek, and Smeulders} 2017

Citation
Citation
{Wang, Deng, Ma, and Yang} 2020

Citation
Citation
{Seo, Lee, and Han} 2020

Citation
Citation
{Gavrilyuk, Ghodrati, Li, and Snoek} 2018

Citation
Citation
{Wang, Deng, Yan, and Tao} 2019

Citation
Citation
{Hu, Rohrbach, and Darrell} 2016

Citation
Citation
{Li, Li, Kuo, Shu, Qi, Shen, and Jia} 2018{}

Citation
Citation
{Liu, Lin, Shen, Yang, Lu, and Yuille} 2017

Citation
Citation
{Chen, Jia, Lo, Chen, and Liu} 2019

Citation
Citation
{Hu, Feng, Sun, Zhang, and Lu} 2020

Citation
Citation
{Shi, Li, Meng, and Wu} 2018

Citation
Citation
{Ye, Rochan, Liu, and Wang} 2019

Citation
Citation
{Huang, Hui, Liu, Li, Wei, Han, Liu, and Li} 2020

Citation
Citation
{Hui, Liu, Huang, Li, Yu, Zhang, and Han} 2020

Citation
Citation
{Chen, Jia, Lo, Chen, and Liu} 2019

Citation
Citation
{Hu, Feng, Sun, Zhang, and Lu} 2020

Citation
Citation
{Huang, Hui, Liu, Li, Wei, Han, Liu, and Li} 2020

Citation
Citation
{Hui, Liu, Huang, Li, Yu, Zhang, and Han} 2020

Citation
Citation
{Ye, Rochan, Liu, and Wang} 2019

Citation
Citation
{Yu, Lin, Shen, Yang, Lu, Bansal, and Berg} 2018

Citation
Citation
{Pont-Tuset, Perazzi, Caelles, Arbel{á}ez, Sorkine-Hornung, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2017

Citation
Citation
{Caelles, Maninis, Pont-Tuset, Leal-Taixé, Cremers, and {Van Gool}} 2017

Citation
Citation
{Khoreva, Benenson, Ilg, Brox, and Schiele} 2019

Citation
Citation
{Luiten, Voigtlaender, and Leibe} 2018

Citation
Citation
{Maninis, Caelles, Chen, Pont-Tuset, Leal-Taixé, Cremers, and {Van Gool}} 2018

Citation
Citation
{Perazzi, Khoreva, Benenson, Schiele, and Sorkine-Hornung} 2017

Citation
Citation
{Voigtlaender and Leibe} 2017

Citation
Citation
{Oh, Lee, Xu, and Kim} 2019

Citation
Citation
{Yang, Wei, and Yang} 2020

Citation
Citation
{Chen, Pont-Tuset, Montes, and {Van Gool}} 2018{}

Citation
Citation
{Oh, Lee, Sunkavalli, and Kim} 2018

Citation
Citation
{Voigtlaender, Chai, Schroff, Adam, Leibe, and Chen} 2019

Citation
Citation
{Ochs, Malik, and Brox} 2013

Citation
Citation
{Perazzi, Pont-Tuset, McWilliams, {Van Gool}, Gross, and Sorkine-Hornung} 2016

Citation
Citation
{Wang, Shen, and Shao} 2015

Citation
Citation
{Li, Seybold, Vorobyov, Lei, and Jayprotect unhbox voidb@x protect penalty @M  {}Kuo} 2018{}

Citation
Citation
{Tokmakov, Alahari, and Schmid} 2017{}

Citation
Citation
{Tokmakov, Alahari, and Schmid} 2017{}

Citation
Citation
{Song, Wang, Zhao, Shen, and Lam} 2018

Citation
Citation
{Yang, Wang, Bertinetto, Bai, Hu, and Torr} 2019{}

Citation
Citation
{Caelles, Pont-Tuset, Perazzi, Montes, Maninis, and {Van Gool}} 2019

Citation
Citation
{He, Gkioxari, Dollár, and Girshick} 2017

Citation
Citation
{Garg and Goel} 2021

Citation
Citation
{Luiten, Zulfikar, and Leibe} 2020

Citation
Citation
{Yang, Wang, Bai, Hu, and Torr} 2019{}

Citation
Citation
{Gavrilyuk, Ghodrati, Li, and Snoek} 2018

Citation
Citation
{Hui, Huang, Liu, Ding, Li, Wang, Han, and Wang} 2021

Citation
Citation
{Li, Tao, Gavves, Snoek, and Smeulders} 2017

Citation
Citation
{Liu, Hui, Huang, Wei, Li, and Li} 2021

Citation
Citation
{McIntosh, Duarte, Rawat, and Shah} 2020

Citation
Citation
{Wang, Deng, Yan, and Tao} 2019

Citation
Citation
{Wang, Deng, Ma, and Yang} 2020



4 YANG, TANG, BERTINETTO, ZHAO, TORR: HIERARCHICAL INTERACTION NETWORK

spatial pyramid pooling

⊙

Sentence: “a horse 
doing high jumps” 

BERT

Global Pooling

L4

Language branch 

RGB + Optical Flow Prediction Optical Flow

Ψ1

+1x1 conv.

L3

L2

L1

V4

V3

V2

V1

O4

O3

O2

O1

T4

T3

T1

T2

⊙

⊙

⊙

⊙

⊙

⊙

⊙

Φ4

Φ3

Φ2

Φ1

Θ4

Θ3

Θ2

Θ1

Ψ3

Ψ2

Vision branch Motion gating branch Decoding branch 

Figure 3: Schematic illustration of our approach. We combine the multi-modal features
with a hierarchical feature interaction strategy, which allows flexible integration of various
concepts between the language and vision data, and optical flow information further helps
for highlighting moving objects. In this figure, � denotes element-wise multiplication. Φi
and Θi are 1×1 convolutions, where i = 1, 2, 3, 4. Ψ j is two 3×3 convolutions connected
by batch normalization and ReLU nonlinearity, where j = 1, 2, 3.

on describing what an actor is doing in each video. Besides the multi-modal fusion strategy,
we further design a gating mechanism to strengthen the moving object compared with [23],
which also utilizes optical flow as input. Moreover, our HINet does not require any iterative
refinement procedure at inference time compared with [43].

3 Method
Fig. 3 illustrates the pipeline of our proposed hierarchical interaction network (HINet).
Specifically, it employs three dedicated branches to extract high-dimensional features from
the language query input, the video frame input, and the optical flow magnitude input, re-
spectively. To effectively align language and vision semantics at different scales, we first fuse
the extracted visual and linguistic features at multiple levels to obtain the “language-vision”
feature maps. Then we extract multiple scales of motion feature maps from our motion
gating branch and fuse them with “language-vision” feature maps to produce our final sets
of multi-level, multi-modal feature maps, which capture motion information about objects
that are moving. Finally, the multi-level, multi-modal feature maps are fused in a top-down
manner for mask prediction. In the following, we describe our pipeline in more detail.

3.1 Multi-modal Feature Encoding
Encoding visual features. The input to our vision branch is a 4-channel image, which
is a concatenation of the 3-channel RGB frame with the 1-channel optical flow magnitude
image. We compute the optical flow magnitude after subtracting the mean flow vector from
the optical flow field. We use the ResNet-101 [13] network and an Atrous Spatial Pyramid
Pooling (ASPP) module [7] to extract multiple levels of visual feature maps and apply a 1×1
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convolution for channel reduction to each level of features. The multi-level visual features,
Vi ∈ Rci×hi×wi , i ∈ {1,2,3,4}, correspond to outputs from the first three residual blocks in
ResNet and the output from the ASPP module respectively, where ci, hi, and wi refer to the
number of channels, the height, and the width of the corresponding feature maps.
Encoding language features. We employ BERT [10], a deep language representation model
pre-trained from unlabeled text to extract a linguistic feature matrix, G ∈ Rl×cs , from the
input sentence. Here, l denotes the number of words and cs denotes the number of channels.
To generate sentence-level feature vectors for each level of the visual feature maps, we apply
average pooling to G along the word dimension, and then apply four independent linear
layers followed by batch normalization operations. We denote the output sentence-level
feature vectors as Li ∈ Rci , i ∈ {1,2,3,4}, where ci denotes the number of channels and are
the same ones defined for the visual feature maps.
Encoding optical flow features. We employ four independent 7× 7 convolutional layers
with stride 1 to extract four sets of motion feature maps from the optical flow magnitude
image input (same as the one described earlier). Each of the four sets of motion feature maps
are downsampled to the same spatial resolution as the corresponding visual feature maps.
We denote the output motion feature maps as Oi ∈ Rci×hi×wi , i ∈ {1,2,3,4}, where ci, hi,
and wi denote the number of channels, the height, and the width of the feature maps. These
notations are consistent with those defined for the linguistic and visual features.

3.2 Hierarchical Feature Interaction
To effectively utilize various linguistic concepts (e.g., object attributes and categories) for
the VOSRE task, we fuse the multi-modal representations at different semantic and spatial
granularity levels with a hierarchical feature interaction strategy. To achieve this, we first
combine the extracted vision and language features, Vi and Li, to generate “language-vision”
multi-modal features. Then we fuse them with the motion features, Oi, to generate the final
multi-modal feature maps. Concretely, our step to combine the vision and language features
is described mathematically as follows

F ′i = Φi(Vi�Li), i = 1, 2, 3, 4. (1)

Here � denotes element-wise multiplication, and Φi is a 1× 1 convolution applied for
feature fusion with the same number of input and output channels. The language feature
vector Li is element-wise multiplied with the visual feature vector at each spatial location on
the visual feature maps Vi. Note that as described in the previous section, Vi and Li have the
same number of channels, which makes them compatible for element-wise multiplication.
The 1× 1 convolution Φi is employed to project the results to a different high-dimensional
space. On the other hand, we combine the obtained “language-vision” features with the
motion features by utilizing a motion gating branch, which aims to highlight the moving
objects and suppress the static regions. Specifically, we design the fusion process as below

Fi = Θi(F ′i � (1+tanh(Oi))), i = 1, 2, 3, 4, (2)

where tanh is the hyperbolic tangent non-linearity, and Θi is a 1× 1 convolution applied
for feature fusion. In this step, the tanh non-linearity first scales each element in Oi to the
range of (−1,1), and then the addition of the constant 1 further scales each element to the
range of (0,2). Therefore, 1+tanh(Oi) is a scaling function which may scale up or scale
down each element in F ′i . Empirically, as detailed in the ablation studies of Table 4, we found
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that this gating branch improves the performance of the model. The 1×1 convolution Θi has
the same number of input and output channels, and performs a final projection to embed the
re-scaled features into a different high-dimensional space.

3.3 Multi-modal Feature Decoding
To fully exploit the information embedded in the feature maps at different granularity levels,
we employ a top-down decoding scheme for combining the multi-level, multi-modal feature
maps, Fi, i ∈ {1,2,3,4}, into a single set of feature maps for mask prediction. The fusion
process can be described by the following recursive function{

T4 = F4,
Ti = Ψi([U(Ti+1);Fi]), i = 3, 2, 1. (3)

Here ‘[ ; ]’ denotes feature concatenation along the channel dimension, U represents
upsampling via bilinear interpolation, and Ψi is two 3×3 convolutions connected by batch
normalization and ReLU nonlinearity. In words, progressing in the order of F4, F3, F2, and
F1, we repeat an “upsample-concatenate-project” procedure three times in a cascade manner.
At each step, we fuse feature maps from the top-down path with feature maps at the current
level. The final feature maps, T1, are projected into two class score maps by a classification
layer, which is a 1×1 convolution with stride 1 and 2 output channels. The entire network
is trained end-to-end with a cross-entropy loss. During inference, argmax along the channel
dimension of the score maps are used as the prediction.

4 Experiments
To evaluate the effectiveness of the proposed HINet, we conduct experimental evaluations on
four challenging datasets, including DAVIS-16 [23, 40], DAVIS-17 [23, 42], A2D [12, 56],
and J-HMDB [12, 20]. In the following, we first describe the implementation details and
evaluation metrics in Sec. 4.1, then we present extensive comparisons with the state-of-the-
art methods in Sec. 4.2, and finally discuss several ablation studies in Sec. 4.3.

4.1 Implementation Details and Evaluation Metrics
We implement the HINet in PyTorch. We use the SGD optimizer with momentum and
weight decay set to 0.9 and 0.0001, respectively. During training, we follow the procedure
of previous approaches [1, 12, 23, 43, 53] of pre-training first and then fine-tuning. We pre-
train our model on YouTubeVOS [57] and then fine-tune it on the experimental datasets for
evaluation respectively. During pre-training, we adopt a batch size of 24 and train for 50K
iterations. The initial learning rate is set to 0.01 with polynomial learning rate decay. During
fine-tuning, we adopt a batch size of 8 and train for 10 epochs on DAVIS-16 and DAVIS-17,
and 20 epochs on A2D, with initial learning rate 0.001. We use BERT [10] and RAFT [47]
for extracting language and optical flow features, respectively. For evaluation metrics, on
DAVIS-16 and DAVIS-17, we adopt the official evaluation metrics of mean region similarity
J [40] and mean contour accuracy F [40]. On A2D and J-HMDB, we adopt the metrics of
overall intersection-over-union (oIoU), mean intersection-over-union (mIoU), and precision
at five threshold values (P@α where α is a threshold value) [12, 35, 53, 54]. We include
detailed definitions for these metrics in the supplementary material.
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Method J (%) F(%) J&F(%) year
Khoreva et al. [23] 82.8 - - 2018
RefVOS [1] 71.8 71.0 71.4 2020
HINet (Ours) 84.4 85.3 84.8 -

Table 1: Results on DAVIS-2016 validation set. J and F are defined in Section 4.1. J&F
is the mean of J and F .

Method 1st frame full video binary eval. year
Khoreva et al. [23] 39.3 37.1 × 2018
RefVOS [1] 44.5 45.1 × 2020
HINet (Ours) 50.2 47.9 × -
URVOS [43] 51.6 –

√
2020

HINet (Ours) 52.0 50.4
√

-

Table 2: J&F on DAVIS-2017 validation set. “1st frame” and “full video” refer to results
using 1st-frame expressions and full-video expressions, respectively. For a fair comparison
with URVOS|[43], we also report performance under the “binary eval.” setting, in which
we evaluate each of the multiple referent objects in a video individually without resolving
overlaps in the predicted masks. Please see our supplementary material for more details.

4.2 Comparison with Others

Results on DAVIS-16 and DAVIS-17. In Table 1, we evaluate our method against state-of-
the-art VOSRE methods on DAVIS-16. Our method outperforms that of Khoreva et al. [23]
by 1.6 absolute point on the J metric (only J is available for their method). We outperform
RefVOS [1] by more than 10 absolute points on both the J and F metrics. As Bellver et
al. [1] did not report performance on DAVIS-16, we fine-tune their public model (which was
pre-trained on RefCOCO [22]) on DAVIS-16 and report the performance.

In Table 2, we evaluate our proposed model on the DAVIS-17 validation set. We com-
pare with the method of Khoreva et al. [23] and RefVOS [1] under the standard multiple-
object segmentation setting. Our method outperforms both methods when leveraging either
1st-frame expressions or full-video expressions. RefVOS [1] is a static segmentation model
which segments each frame independently and does not exploit any temporal information. In
addition, it only generates multi-modal feature maps from the top-level visual feature maps
and does not have a hierarchical feature interaction mechanism. Our performance gain com-
pared with RefVOS [1] validates our approach to integrate motion information and perform
multi-level, multi-modal feature fusion. Compared with the method of Khoreva et al. [23],
our method achieves more than 10% (absolute points) improvement in J&F , while being
end-to-end trainable and enjoys fewer components and significantly simpler training and in-
ference procedures. We compare with URVOS [43] under the binary evaluation setting (see
Sec. 2.1 in the supplementary material). Only performance on the 1st-frame expressions is
available for URVOS, and we outperform them by a small margin. We note that our method
operates in an online fashion without requiring access to future frames, while URVOS re-
quires the whole video as input for inference.
Results on A2D and J-HMDB. In Table 3, we evaluate our method against state-of-the-
art language-guided actor-action segmentation methods on A2D and J-HMDB. On the A2D
dataset, our method performs the best on 3 out of 7 evaluation metrics. Compared to our
model, the contemporary models of Hui et al. [19] and Liu et al. [31] achieve better precision
at the lower IoU thresholds of 0.5, 0.6, and 0.7 and a better mean IoU, but achieves lower
precision at the higher IoU thresholds of 0.8 and 0.9. While they demonstrate an overall
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Method P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 oIoU mIoU Year
A

2D

Gavrilyuk et al. [12] 50.0 37.6 23.1 9.4 0.4 55.1 42.6 2018
Wang et al. [53] 55.7 45.9 31.9 16.0 2.0 60.1 49.0 2019
McIntosh et al. [35] 52.6 45.0 34.5 20.7 3.6 56.8 46.0 2020
Wang et al. [54] 60.7 52.5 40.5 23.5 4.5 62.3 53.1 2020
RefVOS [1] 57.8 53.4 45.6 31.1 9.3 67.2 49.7 2020
Hui et al. * [19] 65.4 58.9 49.7 33.3 9.1 66.2 56.1 2021
Liu et al. * [31] (R2D) 59.0 52.7 43.4 28.4 6.8 64.9 51.5 2021
Liu et al. * [31] (I3D) 65.5 59.2 50.6 34.2 9.8 65.3 57.3 2021
HINet (Ours) 61.1 55.9 48.6 34.2 12.0 67.9 52.9 -

J-
H

M
D

B

Gavrilyuk et al. [12] 69.9 46.0 17.3 1.4 0.0 54.1 54.2 2018
Wang et al. [53] 75.6 56.4 28.7 3.4 0.0 57.6 58.4 2019
McIntosh et al. [35] 67.7 51.3 28.3 5.1 0.0 53.5 55.0 2020
Wang et al. [54] 74.2 58.7 31.6 4.7 0.0 55.4 57.6 2020
RefVOS [1] 73.1 62.0 39.2 8.8 0.0 60.6 56.8 2020
Hui et al. * [19] 78.3 63.9 37.8 7.6 0.0 59.8 60.4 2021
Liu et al. * [31] (I3D) 81.3 65.7 37.1 7.0 0.0 61.6 61.7 2021
HINet (Ours) 81.9 73.6 54.2 16.8 0.4 65.2 62.7 -

Table 3: Results on the A2D test set and the entire J-HMDB dataset. * denotes contemporary
work published or to be published in 2021.

Method J (%) F(%) J&F(%) ∆J&F
Full model 84.4 85.3 84.8 0.0
Full model w/o. hierarchical feature interaction 78.8 78.1 78.5 -6.3
Full model w/o. optical flow (motion gating branch) 81.9 82.2 82.0 -2.8
Full model w/o. optical flow (vision branch) 82.0 81.3 81.6 -3.2
Full model (original optical flow) 78.7 80.4 79.5 -5.3
Full model (concatenate) 80.2 79.0 79.6 -5.2
Full model (sum) 82.0 82.0 82.0 -2.8

Table 4: Ablation study on the DAVIS-16 validation set. ∆J&F denotes absolute declines
in the average of J and F .

better object localization ability on the A2D dataset, our model tends to generate finer, more
detailed segmentation masks. Our method outperforms the rest of the methods with notable
advantages across most of the metrics (except mean IoU on which our performance is lower
by 0.2% than that of [54]). Both Hui et al. [19] and Liu et al. [31] employ an I3D [4]
backbone which is pre-trained on Kinetics-400 [21] for action classification. When using
the same backbone as ours, the method of Liu et al. [19] obtains lower performance than
ours (“(R2D)” in Table 3). Following prior work [12, 35, 53, 54], we test the generalization
ability of our model on J-HMDB with weights fine-tuned on A2D. As shown in Table 3,
our method outperforms all other methods on all metrics, mostly by a significant margin. In
particular, we improve over the second best method in precision at the 0.8 and 0.7 thresholds
by as large as 8.0 and 15.0 absolute points, respectively. We also achieve non-zero precision
at the very hard IoU threshold of 0.9. These results highlight the remarkable generalization
ability of our model.

4.3 Ablation Study
We conduct several ablations to evaluate the effectiveness of several key design choices we
have made, and each corresponds to a row below Full model in Table 4.
Hierarchical feature interaction. We remove the hierarchical feature interaction mech-
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Ⅳ. Query: a brown and 
white colored piglet

Ⅲ. Query: a brown
colored piglet

Ⅱ. Query: a pigletⅠ. Query: a pig

Ⅴ. Query: an 
adult pig

Ⅵ. Query: a 
black adult pig

Video Frame

single-level 
feature fusion

hierarchical 
feature interaction

(ours)

single-level 
feature fusion

hierarchical 
feature interaction

(ours)

Figure 4: Qualitative results on DAVIS-2017. Comparing with single-level feature fusion, our hierar-
chical feature interaction method could generate results with fewer false positives, as indicated in red
dashed areas. Moreover, our model could better distinguish different concepts between a “pig” (I) and
a “piglet” (II), and learn the concepts of “brown” (III), “white” (IV), “adult” (V), and “black” (VI).

anism and simply feed the multi-modal feature maps generated from the output of the top-
level ASPP module to the final classification layer. This leads to the biggest performance
drop (6.3 absolute points) among all ablations, which demonstrates the importance of in-
tegrating multiple levels of features which capture context information at different scales
and encode semantics at different levels of complexity. Fig. 4 shows an example where the
hierarchical feature interaction design enables learning of different linguistic attributes and
fine-grained semantic concepts. The input query “a pig” generates a mask largely covering
all three pigs in the video frame as desired, whereas the input query “a piglet” generates a
mask mostly covering only the two small pigs. When more attributes are successively added
to describe an object, our model learns to leverage these attributes for more refined referral
results. Such trends are easy to see when our predictions are viewed in the orders of “a pig”
-> “an adult pig” -> “a black adult pig”, and “a piglet” -> “a brown colored piglet” -> “a
brown and white colored piglet”.
Optical flow. As shown in Table 4 (“(motion gating branch)”), removing the motion gating
branch leads to a moderate performance drop of 2.8 absolute points. We further evaluate
whether it is necessary to include optical flow magnitude in our input to the vision branch
(“(vision branch)”). This ablation leads to a decline of 3.2 absolute points in performance.
The above experiments show that motion information can be helpful when integrated both
at an early stage (to the RGB input) and at a late stage (to the “language-vision” representa-
tions). In another ablation experiment, we replace optical flow magnitude with the original
optical flow as input to our full model (“(original optical flow)”). The resulting large per-
formance drop of 5.3 absolute points illustrates the importance of choosing optical flow
magnitude as the representation. A comparison between this variant and the optical flow-
free hierarchical model (“H” in Table 5) also shows that using the original optical flow could
only bring marginal benefits over not using optical flow information (79.5% vs. 79.1%).
Feature fusion methods. We evaluate two variants which differ from our default model
in how they combine the language, vision, and motion features. In the “(concatenate)” vari-
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Model S H H + OF (V) H + OF (M) H + OF (V&M) OF
Inference time (ms) 82 88 88 + 30 92 + 30 92 + 30 30
J&F(%) 70.2 79.1 82.0 81.6 84.8 –

Table 5: Speed-accuracy trade-off analysis. S and H respectively denote single-level and hierarchical
feature interaction; H + OF (V) denotes H with optical flow input to the vision branch; H + OF (M)
denotes H with a motion gating branch; H + OF (V&M) denotes our full model; OF represents the
external optical flow estimation model. For timings in “x+y” format, “x” denotes network inference
time and “y” denotes extra optical flow computation time. Time is measured one sample per forward
and is averaged on the DAVIS-16 validation set.

ant, we replace multiplication in Equations (1) and (2) with concatenation followed by a
1× 1 convolution for channel reduction. This variant leads to a large performance drop of
5.2 points. In the “(sum)” variant, we replace multiplication in Equations (1) and (2) with
element-wise summation, and the performance decreases by 2.8 absolute points. These re-
sults validate our choice of using multiplication for fusing features from different modalities.
Network latency analysis. In Table 5, we analyze the latency trade-off when employing
our two computationally heavy designs: the hierarchical feature interaction scheme and the
incorporation of optical flow inputs. Compared with the single-level feature fusion baseline
(“S”), the hierarchical model without optical flow inputs (“H”) boosts the performance by
8.9 absolute points with only 6 milliseconds of extra inference time, a 12.7% improvement in
accuracy with just 7.3% increase in latency. The efficiency is due to the dilated convolutions
adopted in our visual encoder, which makes the lower-level features V3 and V2 have the same
resolution as the top-level features V4. In the following, we analyze the performance gains
and extra latency of our optical flow variants relative to the optical flow-free baseline “H”.
Our full model (“H + OF (V&M)”) achieves 7.2% improvement in accuracy with 39.8%
increase in inference time. Optical flow estimation accounts for most of the inefficiency.
When excluding optical flow estimation time, each of the three variants “H + OF (V)”, “H
+ OF (M)”, and “H + OF (V&M)” brings 3.7%, 3.2%, and 7.2% performance improvement
with just 0.0%, 4.5%, and 4.5% extra latency, respectively.

5 Conclusion

In this paper, we have proposed a Hierarchical Interaction Network (HINet) for the VOSRE
problem, which fuses multiple modalities (i.e., language, vision, and motion) in an end-to-
end and multi-level framework. Our method effectively associates different concepts in the
language expression with the corresponding visual features which contain different levels of
semantic and spatial details. Extensive experiments on four standard benchmarks demon-
strate the advantage of our method with respect to the state of the art. In the future, we hope
this work can serve as a strong baseline for VOSRE and inspire applications to other related
tasks, such as video-based visual question answering.
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