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Abstract

3D point clouds are playing pivotal roles in many safety-critical applications like
autonomous driving, where adversarially robust 3D deep learning models are desired.
In this study, we conduct the first security analysis of state-of-the-art (SOTA) defenses
against 3D adversarial attacks and design adaptive evaluations on them. Our 100% adap-
tive attack success rates demonstrate that SOTA countermeasures are still fragile. We fur-
ther present an in-depth study showing how adversarial training (AT) performs in point
cloud classification and identify that the required symmetric function (pooling opera-
tion) is paramount to 3D models’ robustness. Through systematic analysis, we unveil
that the default-used fixed pooling (e.g., MAX pooling) generally weakens AT’s effective-
ness. Interestingly, we also discover that sorting-based parametric pooling significantly
improves the models’ robustness. Based on the above insights, we propose DeepSym,
a deep symmetric pooling operation, to architecturally advance the robustness of Point-
Net to 47.0% under AT without sacrificing nominal accuracy, outperforming the original
design and a strong baseline by +28.5% (∼ 2.6×) and +6.5%, respectively.

1 Introduction
Despite the prominent achievements that deep neural networks (DNN) have reached in the
past decade, adversarial attacks [41] are becoming the Achilles’ heel in modern deep learning
deployments, where adversaries generate imperceptible perturbations to mislead the DNN
models. The emergence of 3D point cloud applications in safety-critical areas like au-
tonomous driving raises public concerns about the security of their DNN pipelines. Among
them, classification is an essential and fundamental task on point clouds. While it seems
intuitive to extend convolutional neural networks (CNN) from 2D to 3D for point cloud
classification, it is in fact, not a trivial task. The difficulty mainly inherits from that point
cloud is a sparse and unordered set structure that CNN cannot handle. Pioneering point
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cloud recognition models [34, 61] address this problem by leveraging a symmetric func-
tion, which is permutation-invariant to the order of points, to aggregate local features, as
illustrated in Figure 1. Such a primitive has been universally adopted in many other complex
learning tasks like semantic segmentation and object detection [21, 59]. In this paper, we
present a systematic study to analyze and enhance its robustness against adversarial attacks.

Our key contributions are three-fold and summarized below:
•Adaptive Attacks. Recent efforts [3, 40, 52] have demonstrated that various deep point

cloud models are vulnerable to adversarial attacks, and a few countermeasures have been
lately proposed. However, the failure of gradient obfuscation-based defenses in 2D vision
tasks motivates us to re-think whether current defense designs provide true robustness [43]
for 3D point cloud classification. Especially, DUP-Net [63] and GvG-PointNet++ [6] have
claimed significant improvements in adversarial robustness. However, we find that both
defenses belong to gradient obfuscation through our analysis, hence further design adaptive
attacks to break their robustness. Our 100% attack success rates show that current defense
strategies can still be circumvented by adaptive adversaries.
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Figure 1: The general specification of point cloud classification
(σ ◦ρ ◦Φ)(X), where n is the number of points, di is the num-
ber of hidden dimensions in the i-th feature map, Φ represents
the permutation-equivariant layers, ρ denotes the column-wise
symmetric function, and σ is the fully connected layer.

• Adversarial Training Analysis.
It is widely acknowledged that adver-
sarial training (AT) [27] is a more long-
standing defense [5]. We thus per-
form the first rigorous study of AT in
point cloud classification to further im-
prove its robustness. Through system-
atic analysis, we identify that the de-
fault used symmetric function bottle-
necks the effectiveness of AT. Specifi-
cally, popular models (e.g., PointNet) utilize fixed pooling operations like MAX and SUM
pooling as their symmetric functions to aggregate features. Different from CNN-based mod-
els that usually apply pooling operations with a small sliding window (e.g., 2× 2), point
cloud classification models leverage pooling operations to aggregate features from a large
number of candidates (e.g., 1024). We find that those fixed pooling operations inherently
lack smoothness and learnability, which AT does not favor. Moreover, recent research
has presented parametric pooling operations in set learning [48, 62], which also preserve
permutation-invariance. We take a step further to systematically study their impacts in mod-
els’ robustness under AT. Experimental results show that the sorting-based pooling design
benefits AT well, which outperforms MAX pooling, for instance, in adversarial accuracy by
+7.3% while maintaining similar nominal accuracy1.
• Architectural Improvement. Based on our experimental insights, we further propose

DeepSym, a sorting-based pooling operation that employs deep learnable layers, to architec-
turally advance the adversarial robustness of point cloud classification under AT. DeepSym
is intrinsically flexible and general by design. Experimental results show that DeepSym
reaches the highest adversarial accuracy in all chosen backbones, which on average, is a
+10.8% improvement compared to the default architectures. We also explore the limits of
DeepSym based on PointNet due to its broad adoption in multiple 3D vision tasks [11].
We obtain the best robustness on ModelNet40, which achieves the adversarial accuracy of
47.0%, significantly outperforming the default MAX pooling design by +28.5% (∼ 2.6×). We

1In this paper, we use nominal and adversarial accuracy to denote the model’s accuracy on clean and adversari-
ally perturbed data, respectively.
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demonstrate that PointNet with DeepSym also reaches the highest adversarial accuracy of
45.2% under the most efficient AT on ModelNet10 [51], exceeding MAX pooling by +17.9%
(∼ 1.7×).

2 Background and Related Work
3D Point Cloud Classification. Early works attempt to classify point clouds by adapting
deep learning models in the 2D space [29, 38, 39, 42, 47, 60]. PointCNN [24] tries to
address the unorderness problem by learning a permutation matrix, which is, however, still
non-deterministic. DeepSets [61] and PointNet [34] pioneer to achieve end-to-end learning
on point cloud classification and formulate a general specification (Figure 1) for point cloud
learning. PointNet++ [35] and DGCNN [49] build upon PointNet set abstraction to better
learn local features by exploiting k-nearest neighbors. Lately, DSS [28] generalizes DeepSets
to enable complex functions in set learning. Besides, ModelNet40 [51] is the most popular
dataset for benchmarking point cloud classification, which consists of 12,311 CAD models
belonging to 40 categories. Their numerical range is normalized to [−1,1].
Adversarial Attacks and Defenses on Point Clouds. Numerous attacks have been widely
studied for various tasks in 2D [4, 13, 20, 27, 53, 55, 57], including projected gradient
descent (PGD) [27] and C&W attacks [4]. Xiang et al. [52] perform the first study to extend
C&W attack [4] to 3D point cloud classification. Wen et al. [50] improve the loss function in
C&W attack to realize attacks with smaller perturbations and [12] present black-box attacks
on point cloud classification. Recently, [63] and [6] propose to defend against adversarial
point clouds by input transformation and adversarial detection. Besides, [25] conduct a
preliminary investigation on extending countermeasures in the 2D space to defend against
naïve attacks like FGSM [10] on point cloud data. Liu et al. [26] propose to certify the
robustness of point cloud recognition with a threat model only considering the number of
modified points. In this work, we first design adaptive attacks to break existing defenses and
analyze the adversarial robustness of point cloud classification under adversarial training
constrained by widely recognized Lp norms.

3 Breaking SOTA Point Cloud Defenses
3.1 Adaptive Attacks on DUP-Net

Table 1: Adversarial accuracy under adaptive attacks on
PU-Net and DUP-Net. For the denoiser layer g, k = 2
and α = 1.1 are set the same as [63]. † denotes the attack
setups evaluated in the original DUP-Net paper [63].

Attack Method Adversarial Accuracy Mean L2

Norm
Distance

PointNet ( f )
PU-Net
( f ◦ p)

DUP-Net
( f ◦ p◦g)

Clean point cloud 88.3% 87.5% 86.3% 0.0
C&W attack on f † 0.0% 23.9% 84.5% 0.77

C&W attack on f ◦ p 2.3% 0.0% 74.7% 0.71
Adaptive attack

on f ◦ p◦g 1.1% 0.8% 0.0% 1.62

PGD attack (ε = 0.01) 7.1% 5.9% 5.4% -
PGD attack (ε = 0.025) 3.5% 2.8% 2.1% -
PGD attack (ε = 0.05) 1.3% 1.0% 0.8% -
PGD attack (ε = 0.075) 0.0% 0.0% 0.0% -

DUP-Net [63] (ICCV’19) presents a de-
noiser layer and upsampler network struc-
ture to defend against adversarial point cloud
classification. The denoiser layer g : X →
X′ leverages kNN (k-nearest neighbor) for
outlier removal. Specifically, the kNN of
each point xxxi in point cloud X is defined as
knn(xxxi,k) so that the average distance di of
each point xxxi to its kNN is denoted as:

di =
1
k ∑

xxx j∈knn(xxxi,k)
||xxxi− xxx j||2 , i = {1,2, . . . ,n}

(1)
where n is the number of points. The mean µ = 1

n ∑
n
i=1 di and standard deviation σ =√

1
n ∑

n
i=1(di−µ)2 of all these distances are computed to determine a distance threshold as

µ +α ·σ to trim the point clouds, where α is a hyper-parameter. As a result, the denoised
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(b) L∞ norm-based adaptive PGD attack on DUP-Net

(a) L2 norm-based adaptive C&W attack on DUP-Net (c) L2 norm-based adaptive PGD attack on GvG-PointNet++

(d) L∞ norm-based adaptive PGD attack on GvG-PointNet++
Figure 2: Sampled visualizations of adversarial examples generated by adaptive attacks (ε = 0.05 and δ = 0.16).
More visualizations can be found in Appendix A.2.

point cloud is represented as X′ = {xxxi | di < µ +α ·σ}. The denoised point cloud X′ will
be further fed into PU-Net [59], defined as p : X′→ X′′, to upsample X′ to a fixed number
of points. Combined with the base classifier f , the integrated DUP-Net can be noted as
( f ◦ p◦g)(X). The underlying hypothesis is that g will eliminate the adversarial perturbations
and p will re-project the denoised off-manifold point cloud to the natural manifold.
Analysis. The upsampler network p (i.e., PU-Net) is differentiable and can be integrated
with the classification network f . Therefore, we find f ◦ p is vulnerable to gradient-based
adaptive attacks. Although the denoiser layer g is not differentiable, we treat it as a de-
terministic masking: M(xxxi) = 111di<µ+α·σ so that the approximated gradients (BPDA) [1]
can still flow through the masked points. By involvingM(xxxi) into the iterative adversarial
optimization process, we are able to find adversarial examples with high fidelity.

∇xxxi( f ◦ p◦g)(X)|xxxi=x̂xx ≈ ∇xxxi( f ◦ p)(X)|xxxi=x̂xx·M(x̂xx) (2)

Experimentation. We leverage the official codebase2 of DUP-Net for experimentation.
Specifically, a PointNet [34] trained on ModelNet40 is used as the classifier f . For the PU-
Net, the upsampled number of points is 2048, and the upsampling ratio is 2. For the adaptive
attacks, we exploit targeted L2 norm-based C&W attack and untargeted L∞ norm-based PGD
attack with 200 iterations (PGD-200). Detailed setups are elaborated in Appendix A.1.
Discussion. As presented in Table 1, adaptive C&W attacks achieve 100% success rates on
DUP-Net. Though the mean distance of adversarial examples targeting DUP-Net is larger
than those targeting PU-Net, they are almost indistinguishable, as visualized in Appendix
A.2. We find that naïve PGD attacks are also effective since the upsampler network is
sensitive to L∞ norm-based perturbations, which also showcase the fragility of the defense
pipeline. The design of DUP-Net is similar to ME-Net [58] in the 2D space, which has been
shown vulnerable to adaptive attacks [43]. We demonstrate that such input transformation-
based defenses cannot offer true robustness to point cloud classification, either.

3.2 Adaptive Attacks on GvG-PointNet++
GvG-PointNet++ [6] (CVPR’20) introduces gather vectors in the 3D point clouds as an
adversarial indicator to detect adversarial perturbations. The original PointNet++ [35] ag-
gregates local features fff i hierarchically to make final classification. Gather vectors vvvi are
learned from local features fff i to indicate the global center ccci of a point cloud sample. If the
indicated global center ccci is far away from the ground-truth global center cccg, the correspond-
ing local feature fff i will be masked out:

ccci = xxxci + vvvi ; Mi = 111||cccg−ccci||<r ; Fg = { fff i ·Mi} (3)

where xxxci is the geometry center of the local point set, r is the distance threshold to mask
the local feature, and Fg is the cleaned feature set for final classification. To train GvG-
PointNet++, it is necessary to optimize an auxiliary loss to correctly learn the gather vectors
besides the default cross-entropy (xent) loss:

2https://github.com/RyanHangZhou/DUP-Net
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Table 2: Adversarial accuracy under Lp norm-based adaptive attacks on
GvG-PointNet++. ε and δ are the perturbation boundaries. † denotes the
attack setups evaluated in the original GvG-PointNet++ paper [6].

Target Loss Adversarial Accuracy (L∞) Adversarial Accuracy (L2 )
ε = 0.01 ε = 0.025 ε = 0.05 ε = 0.075 δ = 0.08 δ = 0.16 δ = 0.32

Lxent † 30.6% 21.4% 5.4% 1.8% 25.2% 16.9% 15.4%
Ladv 20.1% 12.6% 2.2% 0.0% 7.5% 4.4% 2.1%

Lgather 17.9% 8.1% 0.0% 0.0% 8.5% 4.1% 2.7%

Table 3: Adversarial robustness of models with fixed pooling operations
under PGD-200 at ε = 0.05.

Pooling Operation Nominal Accuracy Adversarial Accuracy
PointNet DeepSets DSS PointNet DeepSets DSS

MAX 80.5% 71.1% 78.8% 16.1% 21.8% 21.5%
SUM 76.3% 54.1% 73.3% 25.1% 24.8% 25.3%

MEDIAN 84.6% 72.7% 82.4% 7.5% 11.0% 9.3%

Figure 3: Cross-entropy (xent) loss
and adversarial accuracy of PGD at-
tack on PointNet with three fixed
pooling operations (each data point is
averaged over 100 runs).

Ltotal = Lxent +λ ·Lgather , Lgather =
n′

∑
i=1
||ccci− cccg||1 (4)

where n′ is the number of local features and λ is a hyper-parameter.
Analysis. Dong et al. [6] evaluate white-box adversaries on GvG-PointNet++ with naïve L2

norm-based PGD attacks. Specifically, only Lxent is utilized as the objective loss in the ad-
versarial optimization process so that the maskingMi will hinder the gradient propagation.
However, sinceMi is learned from the network itself, it is highly possible to further break
this obfuscation with Lgather considered. We thus formulate the first adaptive attack as an
optimization problem with the objective function:

Ladv = Lxent −β ·Lgather (5)

where β is a tunable hyper-parameter. By maximizing Ladv with L2 norm-based PGD
attacks, adversaries not only strive to enlarge the adversarial effect but also minimize the
perturbations on gather vectors. We also design the second attack to make PGD attacks only
target Lgather. Such perturbations will potentially affect most gather vector predictions to
make vvvi masked out so that the rest features are insufficient for the final classification.
Experimentation. We train GvG-PointNet++ based on single-scale grouped PointNet++ [35]
on ModelNet40 and set r = 0.08 and λ = 1 as suggested by [6]. The model is trained by
Adam [19] optimizer with 250 epochs using batch size = 16, and the initial learning rate
is 0.01. For the adaptive attack, we use 10-step binary search to find a appropriate β . The
setup of L2 norm-based PGD attacks is identical to [6], and we also leverage L∞ norm-based
PGD-200 in the evaluation. Detailed setups are elaborated in Appendix A.1.
Discussion. As presented in Table 2, both adaptive PGD attacks achieve high success rates
on GvG-PointNet++. We also observe that the L∞ norm-based PGD attack is more effective
on Lgather since L∞ norm perturbations assign the same adversarial budget to each point,
which can easily influence a large number of gather vector predictions. However, it is hard
for the L2 norm-based PGD attack to affect so many gather vector predictions because it
prefers to perturb key points (i.e.. points with larger gradients) rather than the whole point
set. GvG-PointNet++ leverages DNN to detect adversarial perturbations, which is similar to
MagNet [30] in the 2D space. We validate that adversarial detection also fails to provide true
robustness under adaptive adversaries in point cloud classification.

4 Adversarial Training in Point Cloud Classification
We have so far demonstrated that SOTA defenses against adversarial point clouds are still
vulnerable to adaptive attacks. In this section, we conduct the first thorough study showing
how adversarial training (AT) performs in point cloud classification.
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(a) Attention-based pooling operations apply self-attention to
each point-level feature vector fff i. The learned weight αi is
multiplied with each element in fff i, and the aggregated fea-
ture is computed by a column-wise summation.
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(b) Sorting-based pooling operations sort each di-
mension to re-organize the feature set into an or-
dered matrix F̃FF to which complex operations (e.g.,
CNN) can be applied to aggregate features.

Figure 4: Design philosophy of attention-based and sorting-based pooling operations.

4.1 Adversarial Training Preliminaries
Madry et al. [27] formulate AT as a saddle point problem in Equation 6, where D is the
underlying data distribution, L(·, ·, ·) is the loss function, xxx is the training data with its label
yyy, εεε is the adversarial perturbation, and S denotes the boundary of such perturbations.

argmin
θθθ

E(xxx,yyy)∼D

[
max
εεε∈S

L(xxx+ εεε,yyy,θθθ)
]

(6)

Adversarial Training Setups. We choose PointNet [34]3 as the primary backbone due to
its extensive adoption in various 3D learning tasks [21, 36]. We also select DeepSets [61]
and DSS [28] to show the generality of our analysis. As illustrated in Section 3 and demon-
strated by [27], L∞ norm-based PGD attack tends to be a universal first-order adversary.
Thus, we select PGD-7 into the training recipe, and empirically set the maximum per-point
perturbation ε = 0.05 out of the point cloud range [−1,1]. We follow the default PointNet
training setting3 to train all models on the ModelNet40 training set. In the evaluation phase,
we utilize PGD-200 to assess their robustness on the ModelNet40 validation set with the
same adversarial budget ε = 0.05. Meanwhile, we also report the nominal accuracy on the
clean validation set. Each PGD attack starts from a random point in the allowed perturbation
space. More details can be found in Appendix B due to space constraints.

4.2 AT Meets Fixed Pooling Operations
As illustrated in Figure 1, point cloud classification models fundamentally follow a general
specification (σ ◦ ρ ◦Φ)(X). Φ represents a set of permutation-equivariant layers to learn
local features from each point. ρ is a column-wise symmetric function to aggregate the
learned local features into a global feature, and σ are fully connected layers for final clas-
sification. PointNet, DeepSets, and DSS leverage different Φ for local feature learning, but
all depend on fixed pooling operations as their ρ . Specifically, MAX pooling is by default
used in DeepSets [61] (for point cloud classification) and PointNet [34], while DSS utilizes
SUM pooling [28]. We also additionally select MEDIAN pooling due to its robust statistic
feature [14]. Though models with fixed pooling operations have achieved satisfactory accu-
racy under standard training, they face various difficulties under AT. As presented in Table 3,
models with MEDIAN pooling achieve better nominal accuracy among fixed pooling oper-
ations, but much worse adversarial accuracy, while SUM pooling performs contrarily. Most
importantly, none of them reaches a decent balance between nominal and adversarial accu-
racy.
Insights. AT consists of two stages: 1) inner maximization to find the worst adversarial
examples and 2) outer minimization to update model parameters. Fixed pooling operations
essentially leverage a single statistic to represent the distribution of a feature dimension [31].

3https://github.com/charlesq34/pointnet
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Table 4: Adversarial robustness of models with paramet-
ric pooling operations under PGD-200 at ε = 0.05.

Pooling
Operation

Nominal Accuracy Adversarial Accuracy
PointNet DeepSets DSS PointNet DeepSets DSS

ATT 73.5% 52.3% 72.8% 22.1% 23.2% 23.9%

ATT-GATE 75.1% 63.9% 73.3% 23.2% 24.8% 26.1%

PMA 73.9% 51.9% 72.5% 25.4% 20.9% 23.9%

FSPool 82.8% 73.8% 81.5% 29.8% 25.3% 26.1%

SoftPool 79.8% 72.1% 80.2% 30.1% 24.9% 26.5%
DeepSym

(ours) 82.7% 74.2% 81.6% 33.6% 26.9% 31.4%

Table 5: Adversarial robustness of PointNet with dif-
ferent pooling operations under attacks at ε = 0.05.

Pooling
Operation

White-box Attack Black-box Attack
FGSM BIM MIM SPSA NES Evolution

MAX 72.8% 24.3% 23.5% 69.2% 67.1% 53.4%
MEDIAN 77.6% 23.3% 14.5% 71.1% 65.2% 57.8%
SUM 44.4% 33.5% 37.5% 65.3% 62.3% 52.7%
ATT 43.1% 33.1% 35.0% 68.1% 64.8% 55.9%

ATT-GATE 43.9% 34.2% 33.9% 70.2% 65.9% 55.8%
PMA 47.2% 31.9% 30.1% 67.2% 64.1% 53.4%

FSPool 61.3% 45.4% 48.0% 72.8% 71.9% 69.9%
SoftPool 62.1% 47.6% 45.1% 69.2% 68.5% 70.0%

DeepSym (ours) 61.4% 52.5% 55.4% 72.4% 72.1% 73.1%

Although MEDIAN pooling, as a robust statistic, intuitively should enhance the robustness,
we find it actually hinders the inner maximization stage from making progress. We utilize
L∞ norm-based PGD attack to maximize the xent loss of standard trained model with three
fixed pooling operations. Figure 3 validates that MEDIAN pooling struggles to maximize
the loss, so that it fails to find the worst adversarial examples in the first stage with limited
steps. Though MAX and SUM pooling are able to achieve higher loss value, they encounter
challenges in the second stage. MAX pooling backward propagates gradients to a single point
at each dimension so that the rest n−1

n features do not contribute to model learning. Since
n is oftentimes a large number (e.g., 1024), the huge information loss and non-smoothness
will fail AT [56]. While SUM pooling realizes a smoother backward propagation, it lacks
discriminability because by applying the same weight to each element, the resulting repre-
sentations are strongly biased by the adversarial perturbations. Thus, with SUM pooling, the
models cannot generalize well on clean data (Table 3).

4.3 AT Meets Parametric Pooling Operations
Recent studies have also presented trainable parametric pooling operations for different
tasks in set learning, which are also qualified to be the symmetric function ρ . We further
group them into two classes: 1) attention-based and 2) sorting-based pooling. It is worth
noting we are the first to analyze their robustness in point cloud classification models.
Attention-based Pooling Operations. An attention module can be abstracted as mapping
a query and a set of key-value pairs to an output, making the models learn and focus on
the critical information [2]. Figure 4(a) shows the one example of attention-based pooling,
ATT [15], which leverages a compatibility function to learn point-level importance. The
aggregated global feature is computed as a column-wise weighted sum of the local features.
Let F= { fff 1, fff 2, . . . , fff n} be a set of features, ATT aggregates the global feature ggg by:

ggg =
n

∑
i=1

ai · fff i , ai =
exp(www> · tanh(VVV · fff>i ))

∑
n
j=1 exp(www> · tanh(VVV · fff>j ))

(7)

where www∈RL×1 and VVV ∈RL×dm are learnable parameters. We leverage ATT, ATT-GATE [15],
and PMA [22] in our study and detail their design and our implementation in Appendix B.3.
Sorting-based Pooling Operations. Sorting has been recently considered in the set learning
literature due to its permutation-invariant characteristic, as shown in Figure 4(b). For exam-
ple, let FFF ∈ Rn×dm be the matrix version of the feature set F, FSPool [62] aggregates FFF by
feature-wise sorting in a descending order:

F̃FF i, j = sort↓(FFF :, j)i ; g j =
n

∑
i=1

WWW i, j · F̃FF i, j (8)

where WWW ∈Rn×dm are learnable parameters. Therefore, the pooled representation is column-
wise weighted sum of F̃FF . We also utilize SoftPool [48] in our study, and its implementa-
tion details are elaborated in Appendix B.3 due to space constraints.
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4.3.1 Experimental Analysis

Table 4 summarizes the results of AT with different parametric pooling operations. To meet
the requirement of permutation-invariance, attention-based pooling is restricted to learn
point-level importance. For example, ATT applies the same weight to all dimensions of
a point embedding. As a result, attention barely improves the pooling operation’s expres-
siveness as it essentially re-projects the point cloud to a single dimension (e.g., fff i → ai in
ATT) and differentiates them based on it, which limits their discriminability. Therefore, little
useful information can be learned from the attention module, explaining their similar perfor-
mance with SUM pooling that applies the same weight to each point under AT, as presented in
Table 4. On the other hand, sorting-based pooling operations naturally maintain permutation-
invariance as sort↓(·) re-organizes the unordered feature set F to an ordered feature map F̃FF .
Thus, FSPool and SoftPool are able to further apply feature-wise linear transformation
and CNN. The key insight is that feature dimensions are mostly independent of each other,
and each point expresses to a different extent in every dimension. By employing feature-wise
learnable parameters, the gradients also flow smoother through sorting-based pooling opera-
tions. Table 4 validates that sorting-based pooling operations achieve much better adversar-
ial accuracy, e.g., on average, +7.3% better than MAX pooling while maintaining comparable
nominal accuracy.

5 Improving Robustness with DeepSym
In the above analysis, we have shed light that sorting-based pooling operations benefit AT in
point cloud classification. We hereby explore to further improve the sorting-based pooling
design based on existing arts. First, we notice that both FSPool and SoftPool apply
sort↓(·) right after a ReLU function [32]. However, ReLU activation leads to half of neurons
being zero [9], which will make sort↓(·) unstable. Second, recent studies have shown that
AT appreciates deeper neural networks [54]. Nevertheless, FSPool only employs one linear
layer to aggregate features, and SoftPool requires dm to be a small number. The reason is
that scaling up the depth in these existing sorting-based pooling designs requires exponential
growth of parameters, which will make the end-to-end training intractable.

To address the above limitations, we propose a simple yet effective pooling operation,
DeepSym, that embraces the benefits of sorting-based pooling and also applies deep learn-
able layers to the pooling process. Given a feature set after ReLU activation F ∈ R+

n×dm ,
DeepSym first applies another linear transformation to re-map F into Rn×dm so that fff ′i =
WWW · fff i

> where WWW ∈ Rdm×dm and F′ = { fff ′1, fff ′2, . . . , fff ′n}. Let FFF ′ be the matrix version of
F′, DeepSym further sorts FFF ′ in a descending order (Equation 8) to get F̃FF ′. Afterwards, a
column-wise shared MLP will be applied on the sorted feature map F̃FF ′:

g j = MLP(F̃FF ′:, j) , j = {1,2, . . . ,dm} (9)

to learn the global feature representation ggg. Each layer of the MLP composes of a linear
transformation, a batch normalization [17], and a ReLU activation function. Compared to
FSPool that applies different linear transformations to different dimensions, DeepSym
employs a shared MLP to different dimensions. By doing so, DeepSym deepens the pooling
process to be more capable of digesting the adversarial perturbations. DeepSym can also
address the problem of SoftPool that is only achievable with limited dm because the MLP
is shared by all the feature channels so that it can scale up to a large number of dm with
little complexity increases. Moreover, DeepSym is intrinsically flexible and general. For
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(a) PGD-1 adversarial training on ModelNet10. (b) PGD-20 adversarial training on ModelNet40.
Figure 5: Adversarial robustness of PointNet with various pooling operations under PGD-200 at ε = 0.05.

example, it clearly generalizes MAX and SUM pooling by specific weight vectors. Therefore,
it can also theoretically achieve universality with dm ≥ n [46] while being more expressive in
its representation and smoother in gradients propagation. To deal with the variable-size point
clouds, DeepSym adopts column-wise linear interpolation in F̃FF ′ to form a continuous feature
map and then re-samples it to be compatible with the trained MLP [18]. Last but not least,
DeepSym is by design flexible with its own number of layers and number of pooled features
from each dimension. It is easy to tune the depth and width of DeepSym (O(1)) across
different learning tasks, which is extremely hard for other pooling operations to achieve. For
example, it requires O(n2) complexity for FSPool to tune its architectural parameters.

5.1 Evaluations
As DeepSym is naturally flexible, we implement a 5-layer DeepSymwith [512,128,32,8,1]
hidden neurons on three backbone networks and adversarially train them on ModelNet40 the
same way introduced in Section 4.1. Table 4 shows that almost all models with DeepSym
reach the best results in both nominal and adversarial accuracy, outperforming the default
architecture by +10.8%, on average. Taking PointNet as an example, DeepSym (33.6%) im-
proves the adversarial accuracy by +17.5% (∼ 2.1×) compared to the original MAX pooling
architecture. Besides, DeepSym also achieves a +3.5% improvement in adversarial accu-
racy compared to FSPool and SoftPool. Overall, we demonstrate that DeepSym can
benefit AT significantly in point cloud classification.

We further leverage various white- and black-box adversarial attacks to cross-validate
the robustness improvements of DeepSym in PointNet. Specifically, we exploit well-known
FGSM [41], BIM [20], and MIM [7] as the white-box attack methods. We set the adversarial
budget ε = 0.05, and leverage 200 steps for the iterative attacks, as well. For the black-box
attacks, we choose two score-based methods: SPSA [45] and NES [16], and a decision-
based evolution attack [8]. We still select ε = 0.05 and allow 2000 queries to find each
adversarial example. The detailed setups are elaborated in Appendix C.1. As Table 5 shows,
PointNet with DeepSym consistently achieves the highest adversarial accuracy under white-
box attacks, except for FGSM since it is a single-step method that has limited ability to
find adversarial examples (Figure 3). Besides, we find the black-box attacks are not as
effective as the white-box attacks, which also demonstrate that AT with DeepSym improves
the adversarial robustness in point cloud classification without gradient obfuscation [5].

5.2 Exploring the Limits of DeepSym
There is a trade-off between the training cost and adversarial robustness in AT. Increasing
the number of PGD attack steps can create harder adversarial examples [27], which could
further improve the model’s robustness. However, the training time also increases linearly
with the number of attack iterations increasing. Due to PointNet’s broad adoption [11], we
here analyze how it performs under various AT settings. Specifically, we exploit the most
efficient AT with PGD-1 on ModelNet10 [51], a dataset consisting of 10 categories with
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4899 objects, and a relatively expensive AT with PGD-20 on ModelNet40 to demonstrate
the effectiveness of DeepSym. Other training setups are identical to Section 4.1.

Figure 5 shows the results of the robustness of adversarially trained PointNet with var-
ious pooling operations under PGD-200. We demonstrate that PointNet with DeepSym
still reaches the highest adversarial accuracy of 45.2% under AT with PGD-1 on Model-
Net10, which outperforms the original MAX pooling by +17.9% (∼ 1.7×) and SoftPool
by +4.0%. Surprisingly, PointNet with DeepSym also achieves the best nominal accuracy of
88.5%. Moreover, DeepSym further advances itself under AT with PGD-20 on ModelNet40.
Figure 5(b) shows that PointNet with DeepSym reaches the highest 47.0% adversarial ac-
curacy, which have +28.5% (∼ 2.6×) and +6.5% improvements compared to MAX pooling
and SoftPool, respectively while maintaining competent nominal accuracy. Other abla-
tion studies are presented in Appendix C due to space constraints, which further show the
general effectiveness of DeepSym under various training and evaluation settings.

6 Discussion and Conclusion
We have so far demonstrated that DeepSym has helped achieve significant robustness im-
provement compared to prior arts. we discuss more implications of our study and future
research directions.
Universal Robustness. By investigating prior SOTA defenses [6, 63], we find it alarming
to claim universal robustness in point cloud classification, which has been well shown in 2D
vision tasks [5], as such general defenses may give a false sense of security. In this work,
we primarily target defenses against L∞ norm-based adversaries. Recent studies present
sophisticated attacks [44, 64] that are not bounded by formal distances. We expect future
defensive studies that provide true robustness against general attacks.
Downstream Tasks. While the focus of this work is the adversarial robustness in point cloud
classification, DeepSym could be also used in downstream tasks (e.g. segmentation [33] and
object detection [21, 37]). However, there are no piratical AT strategies for such downstream
tasks as their complexities makes AT’s computational cost unacceptable. Therefore, it is
hard to quantify the effectiveness of DeepSym w.r.t. the robustness in those tasks. We plan
to bridge the gap between AT and 3D point cloud downstream tasks in our future work.
Set Learning. Point cloud recognition is a particular case of set learning [23], where set
elements themselves adhere to their own symmetries [28]. DeepSym is a general pooling
design that fits set learning as well. We hope our provided findings and insights will encour-
age more research on the adversarial robustness of set learning.

To conclude, in this work, we perform the first rigorous study on the adversarial robust-
ness of point cloud classification. We design adaptive attacks and demonstrate that SOTA
defenses fail to provide true robustness. Moreover, we conduct a thorough analysis of how
the required symmetric function affects the AT performance in point cloud classification. We
are the first to identify that the fixed pooling generally weakens the models’ robustness under
AT, and on the other hand, sorting-based parametric pooling benefits AT well. Lastly, we
propose DeepSym that further architecturally advances the adversarial accuracy of Point-
Net to 47.0% under AT, outperforming the original design and a strong baseline by +28.5%
(∼ 2.6×) and +6.5%.
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