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Abstract

3D point clouds are playing pivotal roles in many safety-critical applications like
autonomous driving, where adversarially robust 3D deep learning models are desired.
In this study, we conduct the first security analysis of state-of-the-art (SOTA) defenses
against 3D adversarial attacks and design adaptive evaluations on them. Our 100% adap-
tive attack success rates demonstrate that SOTA countermeasures are still fragile. We fur-
ther present an in-depth study showing how adversarial training (AT) performs in point
cloud classification and identify that the required symmetric function (pooling opera-
tion) is paramount to 3D models’ robustness. Through systematic analysis, we unveil
that the default-used fixed pooling (e.g., MAX pooling) generally weakens AT’s effective-
ness. Interestingly, we also discover that sorting-based parametric pooling significantly
improves the models’ robustness. Based on the above insights, we propose DeepSym,
a deep symmetric pooling operation, to architecturally advance the robustness of Point-
Net to 47.0% under AT without sacrificing nominal accuracy, outperforming the original
design and a strong baseline by +28.5% (∼ 2.6×) and +6.5%, respectively.

1 Introduction
Despite the prominent achievements that deep neural networks (DNN) have reached in the
past decade, adversarial attacks [41] are becoming the Achilles’ heel in modern deep learning
deployments, where adversaries generate imperceptible perturbations to mislead the DNN
models. The emergence of 3D point cloud applications in safety-critical areas like au-
tonomous driving raises public concerns about the security of their DNN pipelines. Among
them, classification is an essential and fundamental task on point clouds. While it seems
intuitive to extend convolutional neural networks (CNN) from 2D to 3D for point cloud
classification, it is in fact, not a trivial task. The difficulty mainly inherits from that point
cloud is a sparse and unordered set structure that CNN cannot handle. Pioneering point
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cloud recognition models [34, 61] address this problem by leveraging a symmetric func-
tion, which is permutation-invariant to the order of points, to aggregate local features, as
illustrated in Figure 1. Such a primitive has been universally adopted in many other complex
learning tasks like semantic segmentation and object detection [21, 59]. In this paper, we
present a systematic study to analyze and enhance its robustness against adversarial attacks.

Our key contributions are three-fold and summarized below:
•Adaptive Attacks. Recent efforts [3, 40, 52] have demonstrated that various deep point

cloud models are vulnerable to adversarial attacks, and a few countermeasures have been
lately proposed. However, the failure of gradient obfuscation-based defenses in 2D vision
tasks motivates us to re-think whether current defense designs provide true robustness [43]
for 3D point cloud classification. Especially, DUP-Net [63] and GvG-PointNet++ [6] have
claimed significant improvements in adversarial robustness. However, we find that both
defenses belong to gradient obfuscation through our analysis, hence further design adaptive
attacks to break their robustness. Our 100% attack success rates show that current defense
strategies can still be circumvented by adaptive adversaries.
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Figure 1: The general specification of point cloud classification
(s ◦r ◦F)(X), where n is the number of points, di is the num-
ber of hidden dimensions in the i-th feature map, F represents
the permutation-equivariant layers, r denotes the column-wise
symmetric function, and s is the fully connected layer.

• Adversarial Training Analysis.
It is widely acknowledged that adver-
sarial training (AT) [27] is a more long-
standing defense [5]. We thus per-
form the first rigorous study of AT in
point cloud classification to further im-
prove its robustness. Through system-
atic analysis, we identify that the de-
fault used symmetric function bottle-
necks the effectiveness of AT. Specifi-
cally, popular models (e.g., PointNet) utilize fixed pooling operations like MAX and SUM
pooling as their symmetric functions to aggregate features. Different from CNN-based mod-
els that usually apply pooling operations with a small sliding window (e.g., 2× 2), point
cloud classification models leverage pooling operations to aggregate features from a large
number of candidates (e.g., 1024). We find that those fixed pooling operations inherently
lack smoothness and learnability, which AT does not favor. Moreover, recent research
has presented parametric pooling operations in set learning [48, 62], which also preserve
permutation-invariance. We take a step further to systematically study their impacts in mod-
els’ robustness under AT. Experimental results show that the sorting-based pooling design
benefits AT well, which outperforms MAX pooling, for instance, in adversarial accuracy by
+7.3% while maintaining similar nominal accuracy1.
• Architectural Improvement. Based on our experimental insights, we further propose

DeepSym, a sorting-based pooling operation that employs deep learnable layers, to architec-
turally advance the adversarial robustness of point cloud classification under AT. DeepSym
is intrinsically flexible and general by design. Experimental results show that DeepSym
reaches the highest adversarial accuracy in all chosen backbones, which on average, is a
+10.8% improvement compared to the default architectures. We also explore the limits of
DeepSym based on PointNet due to its broad adoption in multiple 3D vision tasks [11].
We obtain the best robustness on ModelNet40, which achieves the adversarial accuracy of
47.0%, significantly outperforming the default MAX pooling design by +28.5% (∼ 2.6×). We

1In this paper, we use nominal and adversarial accuracy to denote the model’s accuracy on clean and adversari-
ally perturbed data, respectively.

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, and Smola} 2017

Citation
Citation
{Lang, Vora, Caesar, Zhou, Yang, and Beijbom} 2019

Citation
Citation
{Yu, Li, Fu, Cohen-Or, and Heng} 2018{}

Citation
Citation
{Cao, Xiao, Cyr, Zhou, Park, Rampazzi, Chen, Fu, and Mao} 2019

Citation
Citation
{Sun, Cao, Chen, and Mao} 2020

Citation
Citation
{Xiang, Qi, and Li} 2019

Citation
Citation
{Tramer, Carlini, Brendel, and Madry} 2020

Citation
Citation
{Zhou, Chen, Zhang, Fang, Zhou, and Yu} 2019

Citation
Citation
{Dong, Chen, Zhou, Hua, Zhang, and Yu} 2020{}

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

Citation
Citation
{Carlini, Athalye, Papernot, Brendel, Rauber, Tsipras, Goodfellow, Madry, and Kurakin} 2019

Citation
Citation
{Wang, Tan, Navab, and Tombari} 2020

Citation
Citation
{Zhang, Hare, and Prügel-Bennett} 2020

Citation
Citation
{Guo, Wang, Hu, Liu, Liu, and Bennamoun} 2020



SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION 3

demonstrate that PointNet withDeepSymalso reaches the highest adversarial accuracy of
45.2% under the most ef�cient AT on ModelNet10 [51], exceedingMAXpooling by +17.9%
(� 1:7� ).

2 Background and Related Work
3D Point Cloud Classi�cation. Early works attempt to classify point clouds by adapting
deep learning models in the 2D space [29, 38, 39, 42, 47, 60]. PointCNN [24] tries to
address the unorderness problem by learning a permutation matrix, which is, however, still
non-deterministic. DeepSets [61] and PointNet [34] pioneer to achieve end-to-end learning
on point cloud classi�cation and formulate a general speci�cation (Figure 1) for point cloud
learning. PointNet++ [35] and DGCNN [49] build upon PointNet set abstraction to better
learn local features by exploitingk-nearest neighbors. Lately, DSS [28] generalizes DeepSets
to enable complex functions in set learning. Besides, ModelNet40 [51] is the most popular
dataset for benchmarking point cloud classi�cation, which consists of 12,311 CAD models
belonging to 40 categories. Their numerical range is normalized to[� 1;1].
Adversarial Attacks and Defenses on Point Clouds.Numerous attacks have been widely
studied for various tasks in 2D [4, 13, 20, 27, 53, 55, 57], including projected gradient
descent (PGD) [27] and C&W attacks [4]. Xianget al. [52] perform the �rst study to extend
C&W attack [4] to 3D point cloud classi�cation. Wenet al. [50] improve the loss function in
C&W attack to realize attacks with smaller perturbations and [12] present black-box attacks
on point cloud classi�cation. Recently, [63] and [6] propose to defend against adversarial
point clouds by input transformation and adversarial detection. Besides, [25] conduct a
preliminary investigation on extending countermeasures in the 2D space to defend against
naïve attacks like FGSM [10] on point cloud data. Liuet al. [26] propose to certify the
robustness of point cloud recognition with a threat model only considering the number of
modi�ed points. In this work, we �rst design adaptive attacks to break existing defenses and
analyze the adversarial robustness of point cloud classi�cation under adversarial training
constrained by widely recognizedLp norms.

3 Breaking SOTA Point Cloud Defenses
3.1 Adaptive Attacks on DUP-Net

Table 1: Adversarial accuracy under adaptive attacks on
PU-Net and DUP-Net. For the denoiser layerg, k = 2
anda = 1:1 are set the same as [63]. † denotes the attack
setups evaluated in the original DUP-Net paper [63].

Attack Method
Adversarial Accuracy Mean L2

Norm
Distance

PointNet (f )
PU-Net
( f � p)

DUP-Net
( f � p� g)

Clean point cloud 88.3% 87.5% 86.3% 0.0
C&W attack onf † 0.0% 23.9% 84.5% 0.77

C&W attack onf � p 2.3% 0.0% 74.7% 0.71
Adaptive attack

on f � p� g
1.1% 0.8% 0.0% 1.62

PGD attack (e = 0:01) 7.1% 5.9% 5.4% -
PGD attack (e = 0:025) 3.5% 2.8% 2.1% -
PGD attack (e = 0:05) 1.3% 1.0% 0.8% -
PGD attack (e = 0:075) 0.0% 0.0% 0.0% -

DUP-Net [63] (ICCV'19) presents a de-
noiser layer and upsampler network struc-
ture to defend against adversarial point cloud
classi�cation. The denoiser layerg : X !
X0 leverageskNN (k-nearest neighbor) for
outlier removal. Speci�cally, thekNN of
each pointxxxi in point cloudX is de�ned as
knn(xxxi ;k) so that the average distancedi of
each pointxxxi to its kNN is denoted as:

di =
1
k å

xxx j 2knn(xxxi ;k)
jj xxxi � xxx j jj2 ; i = f 1;2; : : : ;ng

(1)
wheren is the number of points. The meanm= 1

n å n
i= 1di and standard deviations =q

1
n å n

i= 1(di � m)2 of all these distances are computed to determine a distance threshold as
m+ a � s to trim the point clouds, wherea is a hyper-parameter. As a result, the denoised
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Figure 2: Sampled visualizations of adversarial examples generated by adaptive attacks (e = 0:05 andd = 0:16).
More visualizations can be found in Appendix A.2.

point cloud is represented asX0= f xxxi j di < m+ a � s g. The denoised point cloudX0 will
be further fed into PU-Net [59], de�ned asp : X0 ! X00, to upsampleX0 to a �xed number
of points. Combined with the base classi�erf , the integrated DUP-Net can be noted as
( f � p� g)(X). The underlying hypothesis is thatgwill eliminate the adversarial perturbations
andp will re-project the denoised off-manifold point cloud to the natural manifold.
Analysis. The upsampler networkp (i.e., PU-Net) is differentiable and can be integrated
with the classi�cation networkf . Therefore, we �ndf � p is vulnerable to gradient-based
adaptive attacks. Although the denoiser layerg is not differentiable, we treat it as ade-
terministic masking: M (xxxi) = 111di< m+ a �s so that the approximated gradients (BPDA) [1]
can still �ow through the masked points. By involvingM (xxxi) into the iterative adversarial
optimization process, we are able to �nd adversarial examples with high �delity.

Ñxxxi ( f � p� g)(X)jxxxi= x̂xx � Ñxxxi ( f � p)(X)jxxxi= x̂xx�M (x̂xx) (2)

Experimentation. We leverage the of�cial codebase2 of DUP-Net for experimentation.
Speci�cally, a PointNet [34] trained on ModelNet40 is used as the classi�erf . For the PU-
Net, the upsampled number of points is 2048, and the upsampling ratio is 2. For the adaptive
attacks, we exploit targetedL2 norm-based C&W attack and untargetedL¥ norm-based PGD
attack with 200 iterations (PGD-200). Detailed setups are elaborated in Appendix A.1.
Discussion.As presented in Table 1, adaptive C&W attacks achieve 100% success rates on
DUP-Net. Though the mean distance of adversarial examples targeting DUP-Net is larger
than those targeting PU-Net, they are almost indistinguishable, as visualized in Appendix
A.2. We �nd that naïve PGD attacks are also effective since the upsampler network is
sensitive toL¥ norm-based perturbations, which also showcase the fragility of the defense
pipeline. The design of DUP-Net is similar to ME-Net [58] in the 2D space, which has been
shown vulnerable to adaptive attacks [43]. We demonstrate that such input transformation-
based defenses cannot offer true robustness to point cloud classi�cation, either.

3.2 Adaptive Attacks on GvG-PointNet++
GvG-PointNet++ [6] (CVPR'20) introduces gather vectors in the 3D point clouds as an
adversarial indicator to detect adversarial perturbations. The original PointNet++ [35] ag-
gregates local featuresfff i hierarchically to make �nal classi�cation. Gather vectorsvvvi are
learned from local featuresfff i to indicate the global centerccci of a point cloud sample. If the
indicated global centerccci is far away from the ground-truth global centercccg, the correspond-
ing local featurefff i will be masked out:

ccci = xxxci + vvvi ; M i = 111jj cccg� ccci jj< r ; Fg = f fff i � M ig (3)

wherexxxci is the geometry center of the local point set,r is the distance threshold to mask
the local feature, andFg is the cleaned feature set for �nal classi�cation. To train GvG-
PointNet++, it is necessary to optimize an auxiliary loss to correctly learn the gather vectors
besides the default cross-entropy (xent) loss:

2https://github.com/RyanHangZhou/DUP-Net




