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Abstract

We present a novel Tensor Composition Net (TCN) to predict visual relationships
in images. Visual Relationship Prediction (VRP) provides a more challenging test of
image understanding than conventional image tagging, and is difficult to learn due to a
large label-space and incomplete annotation. The key idea of our TCN is to exploit the
low-rank property of the visual relationship tensor, so as to leverage correlations within
and across objects and relations, and make a structured prediction of all visual relation-
ships in an image. To show the effectiveness of our model, we first empirically compare
our model with Multi-Label Image Classification (MLIC) methods, eXtreme Multi-label
Classification (XMC) methods and VRD methods. We then show that, thanks to our
tensor (de)composition layer, our model can predict visual relationships which have not
been seen in training dataset. We finally show our TCN’s image-level visual relationship
prediction provides a simple and efficient mechanism for relation-based image-retrieval
even compared with VRD methods.

1 Introduction

Building on recent progress in image classification [14] and object detection [20], under-
standing the high order semantics of complex images is becoming increasingly topical in
machine perception. This requires not only recognizing individual objects, but also pre-
dicting visual relationships [17, 22]. Extracting visual relationships in images is critical to
comprehend the visual world beyond mere object classification.

To this end, many recent works address Visual Relationship Detection (VRD) [17, 27,
30]. These works commonly formulate visual relationships as subject-predicate-object triplets
(e.g. person-ride-bike, dog-next to-cat) [27, 30]. With the supervision of both the category
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and location (bounding box) of each object, they train or fine-tune an object detection net-
work (e.g. Faster R-CNN) first, then a predicate prediction step is followed. In this paper,
we promote the task of Visual Relationship Prediction (VRP), where visual relationships are
predicted, but not registered to specific bounding boxes. Accordingly, our VRP problem
only require image level visual relationship annotations without any localization.

Due to the lack of object level annotations (bounding boxe and object category), we could
simply regard each unique visual relationship triple as a distinct category and formulate VRP
as a multi-label image classification (MLIC) problem. However, one critical challenge is that
the space of potential relationships is combinatorially large. There are n X n X m potential
relationships for a dataset with n subjects, n objects and m predicates. A simple heuristic
for managing this growth in label-space is to filter out visual relationships never seen during
training. However the number of unique seen relationships is already large (over 20000 for
Visual Genome dataset), which is orders of magnitude larger than that of common MLIC
datasets (20 for PASCAL and 80 for MSCOCO).

More fundamentally, this strategy prevents us from predicting unseen visual relation-
ships at runtime. In many object classification problems the train and test dataset easily
share exactly the same label space. But due to huge label space and long tail distribution of
visual relationships, it is common to have testing relationships that are unseen during train-
ing. Therefore, an effective VRP model should be capable of predicting unseen/rarely seen
relationships. Fortunately, different relationships are semantically related [17]. For exam-
ple, person-ride-horse might be understandable without any training examples, given prior
experience of “person-ride-bike” and “horse” object, if the model can re-combine the riding
predicate and horse object.

To enable such compositional reasoning, and to exploit correlations within- and across
relationship triples, we model the space of relationships to predict as a three-way tensor in-
stead of a long vector. This provides two benefits: (i) It enables zero-shot prediction of novel
relationships at runtime, (ii) it provides knowledge sharing between every occurrence of any
given subject, object, or predicate among all unique relationships in which it occurs. To
achieve these benefits our model termed Tensor Composition Net for Visual Relationship
Prediction (TCN-VRP) exploits the low rank property of the proposed tensor by incorpo-
rating a tensor composition layer into a neural network so that it can predict all potential
relationships without inducing a combinatorial number of parameters.

To summarize our contributions: (i) We propose a simple and elegant neural tensor net-
work to predict visual relationships in an image without filtering out unseen relationships. To
the best of our knowledge, this is the first work to employ a neural tensor network to solve
VRP based on image-level annotations; (ii) Thorough experiments show that TCN-VRP
provides better visual relationship prediction compared to prior MLIC and XMC alterna-
tives, especially for unseen or few-shot relationships. (iii) We show that TCN-based VRP
provides a rich yet efficient query modality for image retrieval.

2 Related Work

Visual Relationships  With the release of visual relationship datasets [13, 17] and the con-
tinued advances of object detection methods [4], a growing body of work [27, 30, 31] has
studied detecting generic visual relationships. These methods usually decompose VRD task
as object detection and predicate recognition so that the problem is tractable. Message pass-
ing technology (e.g. graph convolution, RNN) is used in these methods to boost both object
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detection and predicate recognition. Although recently popular, these methods require RPNs,
object detectors and expensive message passing techniques for inference, which makes them
complicated and computationally costly to apply in practice. Crucially, due to reliance on
object detection, these models require high-quality annotations of object localization.

In this paper, we propose to address the VRP rather than VRD task. Although VRP
produces less detailed information (no bounding boxes), it only requires image-level annota-
tion to train. Furthermore, one key motivating application of visual relationship detection is
relationship-based image-retrieval. This particular capability does not depend on detection
and can be driven by VRP, making it simultaneously simpler and cheaper to train.

Multi-Label Classification = Multi-Label Image Classification(MLIC) aims to annotate
images with multiple labels. Early attempts [1] tackle this problem by reformulating it
as single-label classification. Recent studies [16, 26, 28] pay more attention on label de-
pendencies to facilitate multi-label prediction. Various strategies including exploiting graph
structure [3, 16], matrix completion [2] and recurrent neural networks [26] have been ex-
plored to model label correlations. However, many previous strategies can not be directly
applied to VRP. For example, [3] use a predefined matrix to represent label co-occurrence,
and information propagation is conducted by multiplying the feature map with this matrix.
In our VRP context, the size of this matrix would be over 1'%, making it computationally
intractable.

MLIC typically only considers dozens of object categories, another group of work fo-
cus on eXtreme Multi-label Classification (XMC), where the label space is extremely large
(usually over 1 million). These works usually employ label embeddings or tree to build
correlation between different labels and make a structed prediction. For our VRP task, one
crucial problem is to model the semantic correlation among different labels, which has not
been considered by previous XMC methods.

Tensor Decomposition Tensor decomposition methods are widely used in relationship
induction for knowledge-bases [18, 24]. Popular approaches include training a low-rank ap-
proximation of a label tensor to induce missing labels [18], or training low-rank factors to
estimate a label tensor [24] using a neural network. These methods address completing the
missing element in a single relationship tuple — without any grounding to an image. In con-
trast, we use tensor composition to generate a unique image-specific label tensor that predicts
all relations in an input image. Few studies have used tensor methods in the context of VRD.
[9] constructs a visual relationship tensor as prior to boost visual relationship detection [27].
It is completely different to ours in that we dynamically predict the tensor corresponding to
each input image.

3 Method

Problem Definition and Notation = We assume a dataset of N images, annotated with
image-level visual relationships, based on n object and m predicate types. Each image is an-
notated with a number of relationship triplets, and a triplet is represented as (o;, p,0;) to de-
note the fact that, in this image, the object i € {1,2,...,n} has the predicate k € {1,2,...,m}
with the object j € {1,2,...,n}. The set of relationship triplets can be naturally encoded as
a 3-way relation tensor T € R™™™! A tensor entry T; ik = 1 denotes the existence of a
relationship triplet (0;, py,0;) in the image, otherwise T, jx = 0. Our overall goal is to predict

! Assuming that every object in an image can potentially take both subject and object role in a relation
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a relationship tensor that describes the full set of relationships that exists in a given image.
That is, given a set of images and associated label tensors (x(i) , T(i))f.i 1» We want to learn a
model f(-) that predicts the label tensor corresponding to an image f (x(i)) —T0 ~ 10,
Computational Challenge A naive predictor for T given x contains d X (n X n X m) pa-
rameters, where d is the image feature dimension. In modern CNNSs, d is usually larger than
1000, and for the commonly used benchmark dataset, n or m is at the scale of 100. This
means the number of parameters in predictor alone scales up to 1 billion easily, which is 15
times larger than the whole ResNet-152. Clearly, the computational cost is prohibitive, and
we need to find a lightweight proxy of T instead of predicting it directly.

Tensor Decomposition Since T is inherently a tensor, a route to a more compact form
is tensor decomposition. Tucker-decomosition [15] is a popular and safe choice for tensor
decomposition. It decompose T as T =S x| A X, B x3C. Here X; denotes tensor-matrix dot
product at the ith axis of tensor. S is the 3-way tensor sized r; X rp X r3 (called core tensor),
and A, B, C are matrices sized r| X n, rp X n, r3 X m, respectively (called factor matrices).
(r1,r2,r3) is called Tucker rank of tensor, and they are hyper-parameters in our context.
Since we usually set r| < n, rp < n, r3 < m, the number of entities in {S,A,B,C} is much
smaller than the T, but we can reconstruct T from {S,A, B,C} for the final prediction.

Knowledge Sharing We can propose to predict {S,A,B, C} then reconstruct T instead
of predicting T directly. A question that arises, is whether it is necessary to deduce all of
{S,A,B,C} from the image feature?

In Tucker-decomposition, A, B, or C can be understood as word embedding matrices
defining three distinct latent spaces. The use of three distinct spaces is intuitive because: (i)
The fact that A and B are not tied, i.e., A # B, reflects that words have different embeddings
depending on whether they are subject or object [25]. (ii) The fact that r| # rp # r3 reflects
that we do not need the same capacity to encode the words from different vocabularies.

If we exhaustively compute the outer products of the columns of A, B, C, we get a stack
of r| X ry X r3 tensors, each sized n X n X m, and the role of core tensor S is simply to
rescale those n X n x m tensors in order to reconstruct the original tensor. Based on this
understanding, each column in the factor matrix encodes embedding of a specific word, and
the core tensor contains the coefficients to recover the relationships of the given image with
those basis. Therefore, we predict the core tensor S from the given image only, and factor
matrices A, B, C are shared among all images, i.e., not conditioned on image features.

3.1 Tensor Composition Network

Network Design  Based on the reasoning above, we present our model — Tensor Composi-
tion Network (TCN), illustrated in Fig. 1. TCN consists of three components: (i) the image
feature extractor gg(x) that produces a d-dimensional fused feature vector for a given image
X (ii) the predictor that deduces the core tensor from image feature S = hy(g¢(x)) (iii) the
composer that generates the final prediction 74 g c(S) =S X1 A X2 B x3C. Here hy is a fully-
connected layer that links every neuron produced by gg to every neuron in S, which results
in d x ryryr3 parameters. The trainable parameters are {6,¢9,A,B,C}.

Similar to many related studies [14, 20], we use a CNN to extract image features. To
exploit features at different levels of abstraction that are helpful to predict relationships
in scenes, we employ Global Average Pooling (GPA) to extract image features at multi-
ple depths. The fused feature could enable the subsequent relationship prediction module to
be aware of both local and global features.
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Figure 1: Overview of our Tensor Composition Net for Visual Relationship Prediction
model. An image (left) is to be annotated with relevant (subject, predicate, object) relation-
ship triplets (right). These triplets can be encoded as a relation tensor T, where a positive
entry at 'i‘,-_y .k indicates the corresponding triplet exists. The tensor is generated via Tucker
composition where the core tensor S is predicted from the image and contracted with three
factor matricies A, B,C that learn subject, predict and object embeddings. Blue blocks are
learned parameters, and uncolored blocks (i.e., feature embedding, S and T) are activations.

With a fully connected layer, an intermedia vector is predicted from extracted image
feature and it would be further folded as the core tensor (S). Finally, the visual relationship
tensor is generated via Tucker composition where the core tensor S is contracted with three
factor matricies A, B, C that learn subject, predict and object embeddings.

Loss Function When we get the predicted tensor T =17(/(g(x))), we adopt to softmax [6]
loss, which has been proven effective for multi-label prediction problem. Softmax loss is
defined as,

(T, T) = — sum(ﬂ:lzzlz,(r’l)‘)

where © denotes element-wise product. This is essentially a cross entropy loss with ground
flatten(T)
sum(T) *

®log(softmax (flatten(T)))) (1)

truth probability of

4 Experiments

As far as we know, this is the first work to address image level visual relationship predic-
tion. To evaluate of our model, we compare it with classic and state of the art MLIC and
XMCmethods, with a particular focus on unseen and few-shot relationship prediction, and
relation-based image retrieval (RBIR).

Datasets VR [17] and Visual Genome [13] are commonly used benchmark datasets for
scene understanding [27, 30, 31]. As a small and early benchmark, VR only contains 5000
images with 37993 relationship instances in total. In contrast, Visual Genome contains more
than 100k images but its raw annotations are very noisy, so data cleansing is needed before
using it for visual relationship prediction. Among several cleaned version of this dataset [13,
27, 31], we use VG200 [31] since it involves a relatively large number of images, object and
predicate categories. We provide detailed statistics and low-rank analysis of the two datasets
in supplemental material.

Implementation Details For fair comparison, we employ VGG-16 [23] pretrained on
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ImageNet [21] as backbone network to extract features for all compared methods. We set
relative error € = 0.02 (VR) and € = 0.05 (VG200) for HOSVD to initialize A, B, C. Our
model is trained for 40 epoches, using SGD with momentum, batchsize of 16 and an initial
learning rate of 2 x 1073, which is divided by 2 every 10 epoches. To address the problem
of imbalanced distribution of visual relationship labels, we use weighted sampling during
batch generation. Specifically, we first assign each existing visual relationship label /; (i =
1,2,...,L) with a weight wy,, w;, = Z§:1 1; /t;, t;; denotes the number of times that the label
l; occurs in the dataset. And the sampling weight for each image is w; = ) ;c;w;, so that
images with rare relationship types or multiple relationships are prioritized during training.

4.1 Visual Relationship Prediction

Setup Given an image, we aim to predict the set of subject-predicate-object triplets in it.
Based on the predicted tensor T, we sort all potential triplets by their scores T and select
the top K triplets as our predicted relationships.

Metrics  As the annotated relationships in VR and Visual Genome are known to be in-
complete [17, 27], we follow previous works [27, 30, 31] by using Top-K recall to measure
performance. Specifically, we use Recall @K (K = 20, 50 and 100) and calculate the propor-
tion of correctly predicted ground truth relationships in the top K most confidently predicted
relationships.

Competitors We compare TCN-VRP with both MLIC and XMC methods. Note that
many state-of-the-art MLIC works employ a relational matrix to represent label depen-
dencies which is not feasible for VRP due to the large label space, thus we compare: (1)
WAREP [5], which explores different loss functions for multi-label classification. We evaluate
all three loss functions they consider (i.e. softmax [6], pairwise ranking [11] and weighted
approximate ranking (WARP) losses). (2) Att-Consist [7], a two-branch network which in-
troduces a new loss that measures the attention heatmap consistency between origin image
and its transformed image to their network. (3) CNN-RNN [26] proposed a multi-label RNN
model to sequentially predict the labels for each image, and the recurrent neurons in their
model can capture high-order label co-occurrence dependency. For XMC competitors, we
compare with 3 state-of-the-art methods : (4)Slice[10], a large-scale multi-label classifica-
tion algorithm for low-dimensional, dense, deep learning features. (5) EXMLDS [8] leverage
word embedding techniques for extreme multi-label classification. (6) Parabel [19] promote
XMC problem based on balanced label tree. For fair comparison, we employ the same
feature extraction module as our TCN-VRP for all XMC competitors. (7) VTransE[31] ex-
ploits embedding translation from the natural language processing to enable object-relation
knowledge transfer and improve relationship detection. (8) VSPNet [29] proposed a bipartite
message passing framework to detect visual relationships in an image. A graph-alignment
algorithm is employed to enable the network to be trained without bounding-box annotation.
Note that unlike the other competitors VTransE uses strong supervision (bounding boxes)
during training, which provides an advantage.

Results Table 1 shows that our model is competitive with state-of-the-art alternatives.
We attribute this success to our low rank Tensor composition layer, which compresses the
label space and models label correlations with few learnable parameters. In comparison,
CNN-RNN [26] models label correlation through sequential recurrence, outputting a label
at each time-step given the previous steps’ prediction. A wrong prediction at one step can
affect all later predictions, a problem which is exacerbated in datasets such as VG200 with
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VR VG200

R@20 R@50 R@100 R@20 R@50 R@I100
SoftmaxLoss [5] 23.73  36.26  46.31 3032 4332 50.85
PairwiseLoss [5] 2494 3756 4691 30.72  45.05 56.41

Model

O
—  WARPLoss [5] 2370  34.18 41.93 30.28  43.23 52.94
= CNN-RNN [26] 23.80 3590 44.94 26.13  39.67 50.74
Att-Consist [7] 1871  27.74 36.13 9.89 1581 21.44
) Slice[10] 23.29  32.26 39.69 29.43  40.12 4437
= ExMLDS [8] 16.61  23.16 27.08 2245 3221 38.46
*< Parabel [19] 2431 2948 34.64 28.77  39.43 43.35
a VTransE* [31] 2175 30.72 37.26 1549 2273 28.08
> VSPNet [29] - - - 10.08  14.95 18.71

Our TCN-VRP 2942 4354 5346 3297 4782  59.04

Table 1: Comparison of methods for relationship prediction. We re-evaluated Att-Consist [7]
using their official code but replacing the backbone with VGG16 newtork. Since CNN-
RNN [5] and [26] (WARP, Pairwise, Softmax) don’t release their code, we implement their
network according to their papers. * Strongly supervised.

more relations per image. WARP [5] introduces weighted approximate ranking loss to op-
timize top-k annotation accuracy, which means the advantage of WARP loss heavily rely
on complete annotation for each image. However, acquiring a completely annotated VRP
dataset is particularly expensive since there could be hundreds of relationships in each im-
age. Att-Consist [7] addresses MLIC by penalizing the discrepancy between heatmaps of
original image and transformed image in loss function. However, the increased complexity
of optimization makes it easy to be trapped in a local minima.

VRD methods also provide potential competitors. In particular weakly-supervised VRD
methods are fair competitors which use the same supervision (image-level triples) as the
other competitors. Our results show that VRD methods do not necessarily perform well
for our VRP problem. VSPNet [29] outperformed many alternatives on weakly supervised
VRD. However, it achieves comparatively low recall on our VRP problems. Our TCN can
even outperforms the strongly supervised VRD method VTransE. This is because the VRD
based methods heavily rely on the object detection module, If an object in the scene is missed
by their detector (an event that is especially risky in the weak supervision case), VTransE
and VSPNet can never recover. All relations involving that object are automatically missed.

Qualitative Results  Qualitative results of our model’s relationship prediction in Figure 2
suggest that our predictions are better than the quantitative results imply, since many pre-
dictions that do not exist in the ground-truth (blue) are actually correct. On the other hand,
small objects like “leaf" in the bottom-left image are not recognized by our model.

4.2 Few-shot and Zero-shot Relation Learning

Due to the long tail distribution and large label space, it is infeasible to build a VRP dataset
with sufficient annotated instances for each relationship category. Some relationships may
only occur few times or even never in the training dataset. Therefore, it is important for a
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person-wear-sock
person-hold-racket
racket-in-hand
person-wear-short
person-wear-shirt
shadow-on-ground
person-wear-shoe
line-on-court
court-have-line
person-have-foot
person-with-racket
racket-have-shadow
shadow-on-court

picture-hang on-wall

clock-on-wall
frame-on-wall
tv-on-stand

picture-on-wall
shelf-on-wall
tv-on-wall
picture-in-frame
box-on-shelf
shelf-hang on-wall
wall-behind-couch
wall-behind-stand
wall-behind-tv

glass-on-table writing-on-sign

knife-on-table light-on-pole
food-on-plate word-on-sign
fork-on-table sign-on-sign
plate-of-food pole-hold-sign

sign-on-pole
letter-on-sign
sign-attach to-pole
sign-near-light
sign-attach to-sign

plate-on-table
knife-on-napkin
fork-on-napkin
fork-by-knife
leaf-on-food

Figure 2: Qualitative examples of TCN-VRP relationship prediction using Recall@8. Sub-
figure: Input image (left) and top 8 relationship predictions (right). Green: True positive
predictions. Blue: False positive predictions. Red: False negative predictions.

VRP model to be able to predict visual relationships with few examples.

Setup, Metrics and Competitors We compare the competing methods on m-shot (m =
0,1,5) learning, by selecting those triplets which exist in the test dataset but occur < m times
in training. We use the sparser VR dataset for this experiment, and compare the same set
of methods using Recall @K evaluation as per general VRP. Existing VRD methods [? ? ]
tackling the zero-shot setting are trained under a strongly supervised condition and therefore
are not directly comparable.

Results Table 2 presents results on few-shot visual relationship prediction. XMC meth-
ods build correlations between different labels through label embeddings or a balanced tree,
which helps them to perform better for few-shot relation prediction than MLIC methods.
Our TCN-VRP outperforms both MLIC and XMC methods by a large margin on few-shot
learning, confirming that our tensor composition layer helps our model to learn from few
examples. The top 100 recall of TCN-VRP is at least 1.4 times better then the competitors.
And the advantage is greater for 1 shot learning, while MLIC competitors achieve less than
1% recall@100 for 1-shot relationship prediction, compared to our 6% for this task.

4.3 Relation-Based Image Retrieval (RBIR)

A key benefit of visual relationship prediction is to enable image retrieval by more sophis-
ticated relationship-triplet queries (e.g., person-push-bike, dog-ride-surfboard). Recently,
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0-shot 1-shot 5-shot
Model
R@50 R@100 R@50 R@100 R@50 R@100
SoftmaxLoss[5] - - 0.37 0.81 4.35 7.96
o PairwiseLoss[5] - - 0.12 0.31 1.14 2.94
—  WARPLoss[5] - - 0.00 0.00 0.00 0.00
= CNN-RNN [26] - - 0.00 0.12 0.63 243
Att-Consist[7] - - 0.00 0.00 0.00 0.00
o Slice[10] - - 2.04 3.84 6.90 12.11
= ExMLDSI8] - - 0.0 0.00 0.0 0.0
< Parabel[19] - - 211 428 463 843
Our TCN-VRP 1.03 3.24 2.56 6.03 7.74 16.02
Table 2: Few-shot visual relationship prediction results on VR. “-”: Previous MLIC and

XMC methods can’t be applied to zero-shot visual relationship prediction.

VRD-based methods have been applied to this task. We explore whether VRP is sufficient
to perform RBIR well, given its appealing cheaper annotation requirements, and simpler
inference method.

Setup and Metrics Given a query triplet and a set of test images, we predict a relation
score tensor for each image. We then sort all the images according to their scores for the
query triplet. There could be multiple images containing the query triplet, so we regard an
image as a correct hit if it has at least one query triplet in its annotation. We adopt the same
setting as [31] which used Median rank (Med r) as metric. Median rank refers to the the
median rank of the most confident correctly retrieved image. To show that our VRP model
is sufficient for RBIR though it doesn’t localize relationships, we use the existing protocol
of evaluating using the rop 1000-frequent triplets as queries [31].

Competitors To show the effectiveness of our TCN-VRP for RBIR, we compare against
VRD competitors. Specifically, we compare with VisualPhrase [22], DenseCap [12], LP [17]
and VTransE [31]. Note that these are all strongly supervised methods that benefit from box-
level supervision during training that is not used by our TCN.

Results Tab. 3 shows that our TCN-VRP performs relation-based image retrieval compa-
rably or better than state of the art VRD methods on both VR and VG200 benchmarks. One
reason for this is the sparse annotation in the VR dataset, which makes it hard to finetune an
accurate object detector on it, and that further affects the performance of VRD methods. In
contrast, our TCN-VRP is robust to sparse annotation and still achieves good performance
on this dataset. Qualitative results of our model for RBIR are provided in supplemental
material.

Dataset \ Method  VisualPhrase DenseCap LP LP-VLK VTransE TCN-VRP
VR [17] 204 199 211 137 41 18
VG200 [31] 18 13 - - 7 6

Table 3: RBIR (Relation-Based Image Retrieval) results versus VRD alternatives (Top-1000
frequent triplets). Metric is median rank ({) of the target image. Results for VisualPhrase
[22], DenseCap [12], LP [17] and VTransE are reported in [31].
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4.4 Ablation Study

We finally perform some further analysis to better understand our network. To anwser wheter
Tucker factorization provides a good low-rank assumption to use as a layer in our model, we
compare with a canonical polyadic (CP) alternative [15] (TCN-VRP-CP). CP decomposes a

. 3
three way tensor T € RA1*d2xd3 44 3 sum of R rank one tensors, i.e. T = Zle ugl) o u£2> o u( ),

where o denotes outer product. We can predict all these uﬁ') (i=1,2,3) based on the extracted
features and then perform CP tensor composition to construct the relation tensor T. We then
attempt to regard core tensor (i.e. S) as parameter and predict factor matrics (i.e. A, B,C) for
each image (TCN-VRP-ABC). To evaluate the feature extraction strategies, We compare:
(i) TCN-VRP-FC. which takes the more common strategy [23] of flattening the feature map
of last max pooling layer. (ii)) TCN-VRP-FL. Instead of just flattening the feature from last
max-pooling layer, we use a GAP layer to embed the feature from last layer.

VR VG200

R@20 R@50 R@100 R@20 R@50 R@I100
TCN-VRP-CP 18.21  25.13 31.29 2421 3506  44.01
TCN-VRP-ABC 19.78 2693 3264 27.67 3959  48.72
TCN-VRP-FC 26.70  39.00  48.03 30.25 4532 5576
TCN-VRP-FL 27.86  41.01 50.87 30.05 43.80  54.57
TCN-VRP 2943 4354 5346 3297 47.82  59.04

Method

Table 4: Ablation study of our TCN-VRP model

Results in Table 4 show that: (i) Tucker is much better than CP-composition for relation-
ship prediction. Our Tucker decomposition model explicitly separates common knowledge
about object/predicate from specific information about an image, which makes it more reli-
able and stable to train. (ii) Core tensor (S), rather than factor matrics (A, B,C) should be re-
garded as image-specific. This corroborates our earlier analysis about Tucker-decomposition
for visual relationship tensor. (iii) The GAP feature extraction helps our model resist over-
fitting by extracting a lower dimensional representation. (iv) Our TCN-VRP can be further
improved by fusing features from different pooling layers to combine global and local infor-
mation.

5 Conclusion

We proposed a neural tensor network to predict visual relationships in images. By introduc-
ing a Tensor composition layer, we compressed the relation tensor label-space and leverage
semantic correlations between relationships. We achieve better visual relationship predic-
tion compared to related MLIC methods. We also achieve competitive relation-based image-
retrieval performance with strong supervised VRD works. In future we will explore scaling
annotation by using existing caption data together with text parsing to automatically acquire
weak relation annotation at large scale.
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