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Abstract

In recent years, deep neural network based shadow detection approaches achieve high
performance on benchmarks, but they require large amounts of labeled data for training
to learn the statistical attributes of the shadowed and unshadowed regions. The physical
relationship between non-grid regions is ignored due to the character of deep convolution
network. In this paper, we seek to analyze the physical principle of the shadowed region
and present a paired region based algorithm for shadow detection without extra model
training. To be specific, we first segment the image via a region growing based approach
to maintain the character of shadowed region. Then the penumbra is detected and used as
an important cue. After that we adopt three physics based confidence coefficients when
comparing the color of two regions. At last, we design a novel objective function to find
the best paired strategy and detect the shadowed region. The proposed approach is tested
on three public datasets. The comparative results show that the proposed non-learning
approach performs favorably against the state-of-the-art approaches.

1 Introduction
Shadow detection is a fundamental task in the computer vision community. Its result can
provide important cues for calculating light direction [14], scene geometry [22] and the
parameters of camera location [12] from image. It can also benefit some high-level computer
vision tasks such as image segmentation [5], object detection [4], visual tracking [20] and
so on. Despite the importance and long researched history of shadow detection, it is still a
challenging and ill-posed task, particularly when only a single image is available.

In the past few years, deep neural network based approaches are prevalent in shadow
detection [29] [11] [32]. These approaches train a deep neural network to learn the feature
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Figure 1: Some incorrect results of the state-of-the-art deep shadow detection approaches.
The first row is caused by penumbra region and inaccurate ground truth. The second row is
because the relationship between non-grid regions is not clearly explored.

representation of shadowed and unshadowed regions under the guidance of the ground truth
data. Although these detectors have achieved remarkable performance on the benchmarks,
the training process requires large amounts of expensive and time-consuming labeled da-
ta. Besides, state-of-the-art deep approaches may fail to deal with pictures that have lots of
penumbra regions precisely as shown in the first row of Figure 1. Furthermore, the deep
neural network based approaches adopt the convolution operation to generate convolution-
al features, only the local region around each pixel is involved. The relationship between
regions in non-grid structure is not clearly analyzed, which may hamper the final detection
results as shown in the second row of Figure 1. The data distribution between training data
and testing data is also required to be consistent. If a new dataset is adopted for testing, the
deep network needs to be retrained [32] [3].

To address these problems, we propose a non-learning approach for shadow detection
following the paired regions theory [9] [31], which detects shadowed region by finding a
paired unshadowed region that has the same spectral reflectance. First, the input image is
segmented using a region growing approach to maintain the character of shadowed region,
especially the penumbra information. Then we locate the candidate paired regions for each
region using mathematical morphology operations. Next, when comparing the color of t-
wo regions, we adopt physics based confidence coefficients to evaluate whether the darker
region belongs to the shadowed region. Finally, we acquire the best paired strategy by max-
imizing an objective function that combines the relationship between regions, confidence
coefficients, penumbra, and other information. Different from [9], the proposed approach
uses physical confidence coefficients to improve the reliability when comparing two regions.

The contribution of this paper can be summarized as i), we adopt three non-learning
physics based confidence coefficients when evaluating the relationship between two regions.
ii), we propose a feasible way to detect the penumbra region around the shadow’s edge and
take it as an important cue for shadow detection. iii), we design a novel objective function
to evaluate the paired strategy and achieve good performance.

2 Related Work
Traditional approaches The traditional approaches explore the illumination models like
[24] [19], then design different hand-craft features to identify shadowed regions. For exam-
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Figure 2: The illustration of our framework. The input image is first segmented using region
growing approach. After that we model the relation between regions and detect penum-
bra region. Finally, the relation between regions and penumbra are used as cues to detect
shadowed region.

ple, Zhu et al. [33] classified regions using a conditional random field (CRF). The feature
was built based on statistics of intensity, gradient, and texture, computed over local neigh-
borhoods. Huang et al. [30] collected and analyzed the color and intensity change across the
edge of shadowed region, then they used the statistical observation to determine whether a
detected edge is a shadowed region’s edge. Guo et al. [9] and Vicente et al. [28] combined
different kinds of hand-craft features into a histogram as the feature of a candidate region for
shadow detection. This kind of approaches rely on the reliability of hand-craft features and
traditional discriminators.

Deep neural network based approaches Data-driven deep based approaches use the
deep neural network for shadow detection. The large amount of labeled training data as-
sure the performance of these approaches. Nguyen et al. [21] designed a discriminator
network to determine whether the generated image is consistent with ground truth. Le et
al. [16] designed adversarial training based framework to detect shadowed region. Wang
et al. [29] used a generative network to directly produce the shadow detection result un-
der the constrain of both shadow detection and shadow removal. Hu et al. [11] designed
a direction-aware module for the backbone network. This module can provide neural net-
work the ability to capture the direction information between pixels, which is very useful for
shadow detection. Zhu et al. [34] designed a recurrent attention residual (RAR) module to
combine the contexts of adjacent layers to iteratively integrate spatial contexts. Zheng et al.
[32] presented a distraction-aware shadow (DS) module to predict hard examples, and fused
the obtained distraction features for shadow detection. Chen et al. [3] adopted Multi-Task
Mean Teacher(MTMT) structure to reduce the requirement for labeled data when training
shadow detection network. Deep neural network based approaches have the advantage of
fully-automatic and end-to-end pipeline. But their performance heavily relies on the training
data and the consistency between training data and testing data. The convolutional operator
also can not effectively model the non-grid relationship between different regions in detail.

In this paper, based on the illumination model [24], we utilize physical equations to
analyze the relationship between shadowed region and paired unshadowed region. We also
propose an effective strategy to model the relationship between regions for shadow detection.

3 Methodology
According to the paired regions based theory [9], a region can be determined as shadowed
region only when a paired unshadowed region is found. To detect shadowed regions, we
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Figure 3: (a) The mathematical morphology operation on how to locate candidate paired
regions. The black region is the query region. The red line is the edge of dilated query
region. All the regions shown in this figure are the candidate paired regions of query regions.
(b) The illustration of getting candidate penumbra region. For two input regions (marked
in black and red), the dilated operation is used to get their surrounding regions (marked in
yellow and blue). Their intersection region (marked in green) is the candidate penumbra
region. (c) The color matching functions of sRGB color space proposed by [25].

need to segment the image properly and find the most reasonable paired strategy between
shadowed regions and unshadowed regions.

The illustration of our framework is shown in Figure 2. The input image is first seg-
mented into superpixels using SLIC [1]. Then the superpixels are merged into regions using
a region growing image segmentation approach like [24]. We adopt the region growing ap-
proach based on the following reasons. (i) The shadowed region only covers some parts of an
object in most cases, semantic segmentation [23] and instance segmentation [15] approach
may fail to segment the shadowed region correctly. (ii) As a paired regions based approach,
the color and texture inside each segmented region should be consistent. (iii) The penum-
bra region is an important cue for shadow detection and the region growing approach can
segment it.

After image segmentation, we model the relation between regions using relative position
and confidence coefficients. The penumbra region is detected at the same time. Finally, we
evaluate all possible paired strategies that are built based on the relation between regions to
find the best one through an objective function.

3.1 Candidate Paired Regions and Penumbra Regions
The step after segmentation is to find candidate paired regions for each region. Because the
existence of penumbra region, using adjacent regions as candidates may lead to incorrect
results. So we define the regions whose shortest distance to the query region is smaller than
a threshold τ as the query region’s candidate paired regions. In practice, the query region is
dilated by size τ . All the regions that have some parts in the dilated region P are defined as
its candidate paired region as shown in Figure 3 (a).

For each region, to detect whether the penumbra region exists between it and one of
its candidate paired regions, we design the following operations. First, the darker region
is dilated by a small size S1, then minus the original region from dilated region to get its
surrounding region, denoted by A1. S1 is set to be a small number (5 pixels in the proposed
approach) to ignore the involvement of irrelevant regions. The same morphology operation
is done to the brighter region to get its surrounding region A2. The dilation size S2 for
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the brighter region is τ because the penumbra region sometimes can be very large. The
intersection region of A1 and A2 is the candidate penumbra region. The illustration of this
process is shown in Figure 3 (b). Next, all regions that have some parts covered by candidate
penumbra region are explored. If the mean color of a region is bigger than darker region
and smaller than brighter region in three channels, and all its pixels lie in the P region of the
darker region, we determine there exists penumbra region between these two regions.

3.2 Confidence Coefficients of Candidate Paired Regions
When comparing a candidate paired region with its query region, we adopt physics based
confidence coefficients using their mean color to ignore the error caused by feature extrac-
tion. According to the illumination model of shadowed region proposed by [24], the only
difference between the shadowed region and its paired unshadowed region is that they have
different lighting conditions. The color and intensity of shadowed region lack the effect of
shielded light source since it is only lighted by the remaining light source. To separate the
effect of shielded light source and remaining light source, for each candidate paired regions,
we use the following equation:

I d = I − I s (1)

where I refers to the mean RGB color of the brighter region. Is is the mean color of
the darker region. If any channel of Id is negative, this candidate paired region can not be a
paired region of its query region. Because if a light source is added to light a region, each
channel of the new color should be at least the same as its original value. This character is set
as the first confidence coefficient. So if negative value appears, this region will be eliminated
from the candidate paired regions of the query region.

For the remaining candidate paired regions, we need to calculate their relationship be-
tween Id and Is. To represent these two colors using physical equation, we follow the color
estimation proposed by [6]. The three channels of Id and Is can be expressed as:

I j
i = L j

∫ 700

400
E(λ ,T j)R(λ )Q i(λ )dλ (2)

In this equation, j is used to represent d and s. i refers to the i-th channel of the three
channels in sRGB color space. L j refers to the intensity of shielded light source and remain-
ing light source. The spectral distribution function of light source E is simulated by Planck’s
Law. T j refers to the color temperature of shielded light source and remaining light source.
R(λ ) refers to the spectral reflectance. Qi(λ ) is the parameter of i-th channel in sRGB color
matching functions (CMFs), which is shown in Figure 3 (c). To explore the relationship
between Id and Is, we compare the ratio of their the corresponding channels using Equation
2.

The ratio calculated by Equation 2 can not be used directly, so we need to simplify this
equation. The authors in [8] assumed the CMFs is a Dirac delta function, Qi = qiδ (λ -λ i),
for simplify, then the relationship of Id and Is can be expressed as:

cc 1(d,s) = |( λ r λ b

λ r −λ b
)log(

I d
r /I d

b
I s

r /I s
b
)− (

λ g λ b

λ g−λ b
)log(

I d
g /I d

b

I s
g /I s

b
)| (3)

Equation 3 is used to decide whether the shadowed and unshadowed regions belong to the
same material in [18], it is also used for intrinsic color calculation in [13]. Here it is set as the
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second confidence coefficient. During experiment, we realize that there exists a problem in
this equation. According to the CMFs shown in Figure 3 (c), many visible wavelengths have
influence on the three channels of RGB color. The assumption like [8] lost many details
of E and R. To reinforce this confidence coefficient, we design a new one. Based on the
conclusion that naturally occurring spectral reflectance are relatively smooth functions with
respect to wavelength [7] [2], we assume the reflectance R(λ ) to be a constant. Then the
ratio of Id and Is can be expressed as:

I d
i

I s
i
=

L d P i(T d)

L s P i(T s)
,where P i(T ) =

∫ 700

400
E(λ ,T )Q i(λ )dλ (4)

From Equation 4, we can see that if two regions have the same spectral reflectance but
different lighting conditions, the ratio of each corresponding channel is mainly affected by
the color of light sources in the scene. So we define the third confidence coefficient as follow:

cc 2(d,s) = arg min
T d∈U d T s∈U s

∑3
i=1 |C

d
i /C s

i −C i(T d)/C i(T s)| (5)

Ud and Us are the possible color temperature set of remaining light source and shielded
light source. In the proposed approach, Ud∈[3500K,6500K] and Us∈[6500K,12000K]. Ci
refers to the value of i-th channel after the intensity of color is regularized to one. The overall
confidence coefficient of candidate paired regions is defined as:

cc(d,s) = α 1 cc 1(d,s)+α 2 cc 2(d,s) (6)

3.3 Paired Strategy and Objective Function
According to the result of candidate paired regions, we can build the candidate paired strate-
gies set. First, for all the regions with candidate paired shadowed regions, their indexes are
listed as a vector Mn×1. For each element Mi, it has a corresponding vector V i that contains
the index of its candidate paired shadowed regions. The regions in V i are divided into gi
groups by putting the regions that have similar color and intensity into the same group. Then
the paired strategy can be symbolized by a vector Yn×1. The element Y i={0,1,..., gi} refers
to the index of shadowed region group under the current paired strategy, and 0 means it has
no paired shadowed regions. For the candidate paired regions with penumbra region, corre-
sponding Y i is fixed. The candidate paired strategies set is formed by all possible values of
Y. According to the physical characteristics of the scene, in one paired strategy Y each shad-
owed region can only have one paired unshadowed region and one region can’t be shadowed
and unshadowed at the same time. If a candidate paired strategy disobeys this, it is removed
from the candidate set.

To find the best paired strategy, we design an objective function using the pixel number,
intensity of region and confidence coefficients, which is defined as following:

Ŷ = arg max
Y

σ 1
N d +N s

N
+∑P

i (σ 2
l i

l j P
−σ 3 max(cc(i, j)−δ ,0)) (7)

In the equation, Nd refers to the pixel number of the unshadowed region while Ns is the
pixel number of the shadowed region under the current paired strategy. N is the pixel number
of the whole image. i is the index of unshadowed region and j refers to its paired shadowed
regions. l is the intensity of corresponding region. P is the number of unshadowed regions
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Figure 4: Visual comparison of shadow detection results between different approaches.

in the current paired strategy. δ is a hyperparameter to relieve the error caused by different
factors such as noise and secondary reflected light.

4 Experiment

4.1 Datasets and Metrics
We adopt three widely-used shadow detection datasets to evaluate the proposed approach.
The first dataset is SBU dataset [27]. It contains 4089 training images and 638 testing images.
The second dataset is UCF dataset [33], which has 221 images. The authors in [17] divide
this dataset into 111 training images and 110 testing images. The third dataset is ISTD
dataset [29], containing 1870 image triplets of shadow image, shadow mask, and shadow-
free images. 1330 of them are used as the training set.

To quantitatively evaluate the performance of an approach, we employ the common used
shadow detection metrics, the balance error rate (BER) and average precision (AP). They are
calculated by:

BER = (1− 1
2
(

T P
N p

+
T N
N n

))×100, AP =
T P+T N
N p+N n

(8)

In this equation, TP and TN are true positives pixels and true negatives pixels in the result
of the evaluated approach. N p and Nn are the number of shadow pixels and the number of
non-shadow pixels in the ground truth data.
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SBU [27] UCF [33] ISTD [29]
AP BER AP BER AP BER

Deep Method

scGAN [21] 0.94 9.1 0.92 11.5 0.97 4.7
stacked-CNN [26] 0.92 11.00 0.89 13.00 0.95 8.6

ST-CGAN [29] 0.89 13.56 0.87 17.69 0.97 3.85
A+D Net [16] 0.95 7.67 0.92 11.05 0.97 2.97
BDRAR [34] 0.96 6.61 0.93 9.45 0.98 2.69

DSC [11] 0.97 5.59 0.93 10.38 0.97 3.42
DSD [32] 0.97 4.45 0.95 7.59 0.98 2.31

stacked-ADN [10] 0.97 4.7 0.94 9.4 0.98 2.72

Traditional Method Guo[9] 0.76 25.03 0.72 28.32 0.73 27.16
Zhang[31] 0.95 7.13 0.91 9.21 0.92 8.56

Ours 0.97 4.65 0.95 7.56 0.98 2.21

Table 1: Quantitative comparison results on shadow detection with AP and BER metric.
Bigger AP and lower BER is better.

(a) (b) (c) (d) (e) (f)

Figure 5: Some intermediate results of the proposed approach.(a)(c)(e) represent the results
of image segmentation after SLIC. (b)(d)(f) represent the results after merging superpixels
and the arrows represent the paired results.

4.2 Shadow Detection Results and Comparison

Comparison Approaches. Since there are no non-learning shadow detection approach-
es available, we compare the proposed approach with some classical shadow detection ap-
proaches. These approaches include two traditional paired regions based approaches, Guo
[9] and Zhang[31], and several state-of-the-art deep based approaches, stacked-CNN [26],
scGAN [21], ST-CGAN [29], A+D Net [16], BDRAR [34], DSC [11], DSD [32], stacked-
ADN [10]. For deep based approaches, we obtain their evaluation metrics by directly taking
the results from the authors if their shadow detection results are not publicly available.

Quantitative comparison. Table 1 represents the quantitative comparison results. It can
be seen that although the proposed paired regions based approach is a non-learning approach,
it outperforms the best traditional paired based approach [31] by 34.8 %, 17.9 % and 74.1
% on SBU, UCF and ISTD under BER metric, respectively. Early deep based approaches
also have a lower performance comparing with the proposed approach. As to the latest deep
based approaches, the proposed approach performs favorably against them. The unique deep
algorithm that outperforms our approach is DSD [32], which obtains slight performance
gains on SBU dataset resorting to data training.

Visual comparison. Some shadow detection results produced by the proposed approach
and several state-of-the-art deep neural network based approaches are visualized and com-
pared in Figure 4. From these results, we can see that the involvement of relationship be-
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SBU [27] ISTD [29]
DSD [32] trained on SBU 4.45 4.80
DSD [32] trained on ISTD 8.51 2.31

Ours 4.65 2.21

Table 2: The model adaptability experiment with BER metric. The numbers in red color refer
to the results when the data distribution of training data and testing data are not consistent.

(a) (b) (c) (d)

Figure 6: Some shadow detection results using different objective term. (a) are input images.
(b) are the results using all objective terms. (c) are the results when the pixel number term is
not used. (d) are the results when the intensity term is not used.

tween non-grid regions makes the proposed approach successfully distinguish the dark un-
shadowed region, while the deep based approaches sometimes generate wrong results.

Intermediate Results. We present some intermediate results in Figure 5. From these
results, it can be seen that the merging of superpixels can segment the shadowed region and
penumbra region. The paired results satisfy the requirement that the shadowed region and
unshadowed region have the same spectral reflectance. These intermediate results show that
our approach works well.

4.3 Experiment on Adaptability
We design an experiment to evaluate the adaptability of learning based approaches in d-
ifferent domains. In this experiment, we choose the deep based approach DSD [32] as a
comparison. The DSD is trained on SBU dataset and tested on ISTD dataset first. Then, it
is trained on ISTD dataset and tested on SBU dataset. The quantitative results are shown
in Table 2. It can be seen that if the data distribution of training data and testing data are
not consistent, the performance of deep based approaches degrades obviously. Since our
approach does not require model training, it is more flexible and robust to handle different
testing data in various scenes.

4.4 Objective Function and Failure Cases
Objective function term discussion. We discuss the influences of different objective terms
on the final results of shadow detection. We randomly select some pictures from the dataset
and show the result of shadow detection using different term combinations as the objective
function. The results are shown in Figure 6. From these results, we can see that if the
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Input Ours GT Chromaticity Input Ours GT Chromaticity

Figure 7: Some failure cases of the proposed approach. The red boxes in chromaticity
represent the failure regions.

pixels term is not involved, only the paired region that has the largest ratio in intensity is
chosen as the result of optimization. If the intensity ratio term is not involved, the paired
result will be very easy to make a mistake, which makes the unshadowed region paired with
unshadowed region. If either of these two terms is removed, the proposed approach won’t
be able to detect shadowed regions anymore. So we don’t explore the quantitative metric on
benchmark datasets if one of these two terms is removed. The confidence coefficient term is
the key part of the proposed approach. So the effect of this term is not explored.

Failure cases. We represent some failure cases in Figure 7. The red boxes in chromatic-
ity images represent the failure regions. In the upper left image, it can be seen the shadowed
region in the red box has a different color with the main part of shadowed region, which
leads to incorrect segmentation result. In the upper right image, the shadowed region is too
shallow to be segmented. These two failure cases are caused by incorrect segmentation re-
sults. The remaining two images have dark unshadowed regions and these regions do not
have paired shadowed regions, which lead to failure cases.

5 Conclusion and Future Work
In this paper, we propose an updated paired region based approach for shadow detection.
First, we design a region growing image segmentation approach to maintain the character
of shadowed region. Second, we use physics based confidence coefficients and penumbra
to evaluate the relationship between two regions. Then we handle the shadow detection
task by designing and maximizing an objective function. The quantitative result proves
that these updated operations help the proposed approach outperforms the traditional paired
based approaches, and it performs favorably against the state-of-the-art deep neural network
based approaches.

Although the proposed approach achieves remarkable shadow detection results, its weak-
ness is also obvious. When a shadowed region doesn’t have paired unshadowed region in the
picture, the proposed approach will have difficulty in finding it. If two unshadowed regions
accidentally meet the confidence coefficient and don’t have paired shadowed regions, the
proposed approach may fail too. More information such as global features will be explored
to solve these problems in the future. We will also try to combine the relationship between
non-grid regions with deep neural network to improve performance.
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