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Abstract

We present a novel information-theoretic approach to introduce dependency among
features of a deep convolutional neural network (CNN). The core idea of our proposed
method, called MUSE, is to combine MUtual information and SElf-information to jointly
improve the expressivity of all features extracted from different layers in a CNN. We
present two variants of the realization of MUSE—Additive Information and Multiplicative
Information. Importantly, we argue and empirically demonstrate that MUSE, compared to
other feature discrepancy functions, is a more functional proxy to introduce dependency
and effectively improve the expressivity of all features in the knowledge distillation
framework. MUSE achieves superior performance over a variety of popular architectures
and feature discrepancy functions for self-distillation and online distillation, and performs
competitively with the state-of-the-art methods for offline distillation. MUSE is also
demonstrably versatile that enables it to be easily extended to CNN-based models on tasks
other than image classification such as object detection.

1 Introduction
There has been extensive research on convolutional neural networks (CNNs) for computer
vision tasks. A variety of deep convolutional network architectures have emerged, whether
empirically designed such as VGG [25], ResNet [8], WideResNet [34], DenseNet [12],
ShuffleNet [37], or constructed using Neural Architecture Search such as NASNet [39] and
the baseline network of EfficientNet [27]. While the large number of network weights store
the experience learned from the training data, the activations (or features) of the hidden layers
represent the direct response from the network to the data. It is still an open problem how to
fully utilize these intermediate features to advance the capacity of the models. In this work,
we aim to improve the existing neural architectures by fully exploiting the features.
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Based on provably effective neural estimator on mutual information [3], recent progress [10,
30] on unsupervised representation learning treat features as random variables and formulate
the information of the features to learn a maximally informative representation of the data.
Mutual Information (MI) is an information-theoretic measure to quantify the amount of
information shared by two random variables. We posit that Self-information (SI), which
quantifies the amount of information in one random variable, also plays an essential role. SI
can be viewed as MI between two identical random variables, which enables us to estimate it
using MI neural estimators. Instead of learning one single effective data representation, we
aim to estimate and combine the MI and SI of multiple intermediate features to further boost
the discriminative power of deep CNNs.

Knowledge distillation (KD) [9] is the practice that was proposed to learn a comparably
performant compact neural network from a powerful yet expensive teacher network without
additional architecture modification. The core idea is to let the compact student network
mimic the “soft targets” produced by the teacher network. It can be further divided into
offline distillation where the teacher network is pretrained and fixed, and online distillation
where the teacher and student networks are jointly trained from scratch. Unlike offline and
online distillation, self-distillation (SD) does not involve multiple networks, but aims to learn
by distilling its own knowledge. It is self-contained as it does not require an extra teacher
with additional training overhead and removes the need for teacher model selection while
focusing solely on the target model. Our work is under this category as we aim to improve
the overall performance by the intermediate features in one single network. Prior work on SD
usually relies on the penalty function proposed to distill knowledge between two networks. By
treating the features as random variables, we propose a novel discrepancy function based on
MUtual information and SElf-information, called MUSE, to better self-distill the knowledge
from different features extracted within one network and improve each feature. We validate
this approach on various backbone CNN networks on image classification and object detection
and show its effectiveness. We summarize our contributions as follows:

• A novel feature discrepancy function MUSE with two realization variants, Additive In-
formation and Multiplicative Information, to introduce strong dependencies among fea-
tures within a CNN. We demonstrate its effectiveness in feature distillation and how
self-information (SI) interacts with mutual information (MI) to improve distillation.

• Outperforming other state-of-the-art self-distillation (SD) methods when applying SD
framework on image classification and object detection, indicating the ability of the pro-
posed method to enhance the feature expressivity.

• Establishing the efficacy for model compression, where the compressed models perform
competitively or even better than the original architecture while significantly reducing
parameters and computation.

• Validating the general applicability of MUSE on online distillation and offline distillation.

2 Related Work
Mutual Information Estimation. MI is a widely used information-theoretic measure to
quantify the amount of information shared by two random variables, defined as a Kull-
back–Leibler (KL) divergence I(X ;Y ) = DKL(p(x,y)||p(x)p(y)). It performs as a measure
of true dependency between random variables [3, 16]. However, the exact computation
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Figure 1: Illustration of self-distillation framework with MUSE. Each color denotes a
different module with a task-specific head. MUSE is calculated between Module 1-3 and
Module 4. The entire network is jointly trained with MUSE and a task-specific loss.

of MI between continuous variables is intractable. Traditional parameteric [14] and non-
parameteric [17, 21] estimation methods are hard to scale up to high dimensionality or large
sample size. Mutual Information Neural Estimator (MINE [3]) presents a scalable parametric
neural estimator based on the dual representation of the KL divergence. MI is demonstrated in
unsupervised representation learning to learn useful representations [2, 10, 30]. These meth-
ods typically attempt to maximize a pair-wise MI between the input and the representations.
In practice, MI is often estimated and maximized in a multi-view formulation of the input to
allow more modeling flexibility (see [30]). The views [29] of the data are chosen from prior
knowledge to capture entirely different aspects, e.g., different image channels (luminance,
chrominance, and depth) [29] and an autoregressive manner of the patches [22]. We aim to use
MI to introduce dependencies between multiple intermediate features to combine information
from different levels. Thus, we follow Deep InfoMax (DIM) [10] to construct the views of
global and local structures. The global structure captures the summarized information while
the local structure models the structural information (e.g. spatial locality).
Knowledge Distillation. Larger CNNs have been shown to achieve higher accuracy as over-
parameterization brings more learning capacity to generalize to new data. Hence, Knowledge
Distillation [9] was originally proposed to train a compact student network supervised by the
logits from a larger teacher network. The “knowledge” can be captured by the KL divergence
between logits [9], or different feature discrepancy functions on the intermediate feature maps,
e.g., L2 loss [23, 36], adversarial loss [4, 24], Maximum Mean Discrepancy (MMD) [13],
etc. Based on the learning scheme, knowledge distillation can be divided into three main
categories: 1) Offline distillation [9, 23, 28], where the pretrained teacher network distills
its knowledge to supervise the student training; 2) Online distillation [4, 7, 38], where the
teacher and student models are both trained from scratch and the knowledge is distilled
simultaneously; 3) Self-distillation [31, 32, 33, 36], where one single network is trained to
distill its own knowledge into itself. In our work, we argue and empirically demonstrate that
the proposed feature discrepancy function based on MI and SI can significantly improve SD.
We also show its effectiveness when applying our method to offline and online distillation.

3 Methodology
We aim to leverage MI and SI to introduce strong feature dependencies and enhance feature
expressivity in a CNN, thereby effectively improving the distillation frameworks on different
tasks with various backbone CNN networks. At a high level, our self-distillation (SD)
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framework relies on multiple (three in Fig. 1) intermediate features and the last feature (e.g.,
features before fully-connected layers in classification networks). For each intermediate
feature, we calculate two components—task-specific objective Ltask and our proposed MUSE.
MUSE is an effective feature discrepancy function to introduce dependencies and enhance
expressivity of all features, thereby improving the overall performance and also obtaining
compact yet comparably performant subnetworks.

3.1 Notation and Preliminaries
Mathematical Formulation. A CNN can be parameterized by {θ 1,θ 2, · · · ,θ T}, where T is
the length of depth-wise decomposition and each θ i contains multiple consecutive hidden
layers. Let X ∼ pdata(x) be a random sample drawn from the empirical data distribution, the
feature at module t is obtained by a nonlinear transformation Ft = Eθ<t+1(X).

Mutual Information between features. For the features Fi and Fj (i < j), the MI can be
defined as conditional entropyH(Fj|Fi) subtracted from the self-informationH(Fj),

I(Fi;Fj) =H(Fj)−H(Fj|Fi) (1)

Self-Information in features. SI (or entropy) quantifies the amount of information of one
random variable, and can be defined as MI between identical variables. The SI of Fi is,

H(Fi) =H(Fi)−H(Fi|Fi) = I(Fi;Fi) (2)

3.2 Proposed Method
Introducing feature dependency by Mutual Information. Given the decomposition of
T modules, we have the features {F1,F2, · · · ,FT}. As we aim to enhance the performance
of CNNs, we choose the last feature FT as the base feature and introduce dependency from
shallow features {F1,F2, ...,FT−1} to FT . For any module i < T , the pair-wise MI is

I(Fi;FT ) =H(FT )−H(FT |Fi) =H(Fi)−H(Fi|FT ) (3)

MI quantifies the dependency between two features. Therefore, we can introduce a strong
dependency between each pair of features by optimizing the sum of each I(Fi;FT ). By
maximizing the MI between pairs of each shallow feature and the last feature, the information
shared between the feature pairs is captured and maximized. In CNNs, lower layers usually
learn features of simple patterns, whereas upper layers learn more invariant and global
features [26]. The intermediate features F1, ...,FT−1 can gain the global information from
the most parameterized and expressive feature FT within the CNN architecture. Meanwhile,
FT can be aware of more local information that is likely ignored without the introduction of
the dependency. To the best of our knowledge, we are the first to use mutual information to
introduce the feature dependency for self-distillation in an individual network.

Prior work [11, 36] typically uses L2 loss to minimize the distance in the feature space. We
argue that this practice is not a good proxy to introduce dependency. Minimizing L2 loss is
maximizing the likelihood by assuming the data is drawn from a Gaussian distribution. For a
pair of features F1 ∼ p(F1) and F2 ∼ q(F2), maximum likelihood estimation (MLE) is known
to be equivalent to minimizing the KL divergence DKL(p||q). Therefore, the minimum is
obtained when p = q. It necessitates two identical distributions. However, in the scenario of
self-distillation, we do not expect p = q, as they are obtained from different layers within one
single network. They depend on each other through non-linear projections, but inherently
should not be identical to preserve the semantics of different features learned by the networks.
In Section 4.3, we empirically demonstrate the effectiveness of MI in comparison to L2 loss.
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Enhancing feature expressivity by Self-Information. In Eq. 3, MI between shallow feature
Fi and last feature FT can be written in two analytically equivalent ways. Since FT is a
non-linear projection from Fi, we consider the first form I(Fi;FT ) =H(FT )−H(FT |Fi) to
reflect this casual relationship between Fi and FT . By maximizing I(Fi;FT ),H(FT ) drives FT
to spread in the feature space, and the conditional entropyH(FT |Fi) enforces FT to be easily
identified given corresponding shallow feature Fi. Besides maximizing SI of FT , we also aim
to explicitly maximize the SI of shallow features. To this end, we introduce two realizations
of MUSE to combine the MI and SI as follows.

Additive Information. The intuition originates from the two forms of MI (Eq. 3). Maximizing
pure MI is maximizing either form of an SI and a conditional entropy. Since both Fi and
FT are now dynamically learnable, they should be maximized jointly. Only the conditional
entropyH(FT |Fi) is considered to reflect the causal order of feedforward pass. One way to
maximize these terms jointly is the summation,

I+(Fi,FT ) =H(Fi)+H(FT )−H(FT |Fi) =H(Fi)+I(Fi;FT ) (4)

Eq. 4 can be interpreted as maximizing both SI of Fi and FT , while keeping FT easily identified
given Fi. The proven neural MI estimator can also be used to estimate and maximizeH(Fi) by
rewriting it as I(Fi;Fi). As we are not concerned with the precise value of MI and SI, a more
stable Jensen-Shannon MI estimator [10] is used, and the loss is by negating the estimation,

LJSD(Fi;FT ) := Epdata×p̃data [sp
(
Tφ ( f ′i , fT )

)
]−Epdata [−sp

(
−Tφ ( fi, fT )

)
] (5)

where fi, fT are the features given input from pdata, f ′i is the feature given another input from
p̃data = pdata. sp(α) = log(1+ eα) is the softplus function.

Multiplicative Information. The SI is a measure of information in the range of [0,1]. An
alternative is to combine MI and SI and let the SI function as a weighting scheme,

I×(Fi,FT ) =H(Fi)×I(Fi;FT ) (6)

Our goal is to jointly maximize each MI and SI. Since both the SI and MI are non-negative,
maximizing Eq. 6 can potentially result in maximizingH(Fi) and I(Fi;FT ). Practically, we
still use Eq. 5 as the loss of MI and SI. It is always positive, thus minimizing the multiplication
of loss can have the same affect as Additive Information that minimizes each term. Impor-
tantly, Multiplicative Information introduces an interesting property where SI functions as a
weighting scheme to control MI training process. The MI components of features that have
higher SI loss are accordingly weighed more in the penalty function (more details in Sec. 4.3).
In the following sections, we refer to our method as MUSE and use MI+SI or MI×SI to
specifically refer to the variant of Additive Information or Multiplicative Information.

Constraining features with supervision. In unsupervised representation learning, the MI
estimator is shown to be sensitive to different downstream tasks [10, 30]. As we tend to
construct dependencies between features via the lens of MI, it is essential that all features are
aware of the task content. For supervised tasks, we can explicitly provide supervision to guide
the learning process and improve the feature quality. To this end, each feature is accompanied
by a task-specific objective. We use cross-entropy loss with logits distillation loss for the
image classification task and bounding box regression loss along with focal losses on object
and class for the object detection task. In Section 4.3, we show task-specific loss can improve
the overall performance, though merely combining MI with SI in a task-agnostic manner can
already significantly outperform other baselines. This indicates the proposed method can
effectively introduce a necessary dependency between shallow features and the last feature.
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CIFAR100
Module 1 Module 2 Module 3 Module 4

BYOT MI+SI MI ×SI BYOT MI+SI MI×SI BYOT MI+SI MI×SI BYOT MI+SI MI×SI Baseline

VGG19 56.92±0.15 60.10±0.11 57.21±0.14 65.72±0.19 68.06±0.19 66.14±0.17 68.55±0.17 68.96±0.18 69.26±0.18 69.79±0.24 71.07±0.21 71.24±0.18 68.57±0.27
ResNet18 67.17±0.14 67.14±0.42 68.12±0.24 73.27±0.19 74.16±0.13 73.98±0.28 77.14±0.21 77.96±0.29 77.45±0.30 77.86±0.30 78.75±0.31 78.37±0.34 77.43±0.36
ResNet34 65.77±0.07 68.58±0.37 68.47±0.31 75.15±0.21 75.95±0.23 74.93±0.33 78.11±0.17 79.77±0.20 78.91±0.21 78.96±0.11 80.11±0.19 79.39±0.16 77.56±0.24
ResNet50 68.86±0.17 71.24±0.33 69.82±0.21 77.71±0.16 77.77±0.27 78.04±0.13 80.04±0.12 81.25±0.29 80.26±0.14 80.56±0.16 81.44±0.22 80.63±0.16 77.80±0.23
ResNet101 71.97±0.23 72.00±0.33 72.15±0.21 75.61±0.21 78.65±0.34 77.06±0.14 78.92±0.19 81.53±0.23 80.74±0.32 79.06±0.27 81.72±0.37 80.89±0.17 77.97±0.15
ResNet152 67.72±0.21 70.46±0.33 70.92±0.23 77.82±0.24 79.53±0.28 78.38±0.18 79.91±0.17 81.83±0.31 81.77±0.21 80.73±0.19 82.09±0.36 81.69±0.19 78.85±0.26
NASNet 66.85±0.21 67.45±0.33 66.50±0.39 73.73±0.26 74.17±0.19 74.43±0.21 75.01±0.31 76.81±0.28 76.41±0.33 75.85±0.29 77.11±0.27 76.87±0.21 75.64±0.41
EfficientNet-B0 70.21±0.09 70.96±0.16 70.83±0.17 77.28±0.13 78.15±0.16 78.40±0.11 77.93±0.08 78.40±0.18 78.44±0.12 78.00±0.14 78.56±0.14 78.89±0.12 77.61±0.13

TinyImageNet
Module 1 Module 2 Module 3 Module 4

BYOT MI+SI MI×SI BYOT MI+SI MI×SI BYOT MI+SI MI×SI BYOT MI+SI MI×SI Baseline

ResNet18 42.06±0.18 42.34±0.20 42.54±0.19 52.05±0.21 53.02±0.23 52.49±0.22 62.31±0.25 63.14±0.19 62.98±0.23 65.60±0.17 66.72±0.22 67.31±0.20 64.68±0.30
ResNet34 44.02±0.28 45.71±0.22 45.32±0.24 56.68±0.31 58.39±0.26 58.27±0.19 66.67±0.23 67.48±0.19 67.59±0.25 68.44±0.25 69.41±0.31 69.13±0.22 66.72±0.27
EfficientNet-B0 53.02±0.08 53.06±0.11 55.45±0.14 62.05±0.11 64.77±0.16 62.51±0.16 64.91±0.13 65.30±0.15 66.33±0.11 65.50±0.09 65.59±0.10 66.41±0.17 64.55±0.14

ImageNet
Module 1 Module 2 Module 3 Module 4

BYOT MI+SI MI×SI BYOT MI+SI MI×SI BYOT MI+SI MI×SI BYOT MI+SI MI×SI Baseline

ResNet18 41.26 41.51 41.24 51.94 52.36 51.99 62.29 63.45 63.71 69.84 70.35 70.57 69.64

Table 1: Image Classification on CIFAR100 (top), TinyImageNet (middle) and Ima-
geNet (bottom). Top-1 accuracy averaged over 3 runs, higher is better. The best of each
Module is in bold. The best for an architecture is in red. MI+SI: Additive Information,
MI×SI: Multiplicative Information. MUSE outperforms on all modules and the baseline.

Practical multi-view formulations on MI. In a CNN, deeper layers extract a high-level
representation of the data while shallower layers explore local patterns better. MUSE fol-
lows [10] to estimate MI by constructing the views of global and local structures (see the
supplementary material for implementation details). This formulation can possibly help intro-
duce dependencies among features from different levels, as deeper features are presumably
more related to global information and shallower features contain more local information.

4 Experiments
We conduct extensive experiments on our main target, self-distillation, with various CNN
architectures for image classification and object detection. We also include a variety of
ablation studies to show the effectiveness of each module. Then we apply MUSE to online
and offline distillation and demonstrate its effectiveness.

4.1 Image Classification
We consider a variety of backbone networks – VGG19 (BN) [25], ResNet [8], DenseNet [12],
NASNet [39] and EfficientNet [27] – on CIFAR100 [18], TinyImageNet∗, and ImageNet [5].
For classification, we use labels to calculate cross-entropy at each intermediate features.
We also add knowledge distillation loss [9] as part of the task-specific loss in this line of
experiments. We will further show in Section 4.3 that MUSE is necessary for the improvement
without knowledge distillation loss and cross-entropy loss. For CIFAR100 and TinyImageNet,
we train the networks with MUSE using SGD with momentum 0.9, weight decay 5e-4,
learning rate initialized as 0.1 and divided by 10 after epoch 75, 130, and 180 for total 200
epochs. For ImageNet, we use SGD with momentum 0.9, weight decay 1e-4, and learning
rate initialized as 0.1 and divided by 10 after epoch 30 and 60 for total 90 epochs. The batch
size is 128, 64, and 256 for CIFAR100, TinyImageNet, and ImageNet, respectively. The
depth-wise decomposition strategy empirically depends on the architecture, e.g., ResNet
has 4 stages, so each stage is a module; VGG is decomposed at the positions of the first 4
maxpooling layers. More details can be found in the supplementary material.

Comparison with BYOT. MUSE is related to BYOT [36] in the form of module decom-
position. Therefore, we decompose the backbone into 4 modules to fairly compare with
∗https://tiny-imagenet.herokuapp.com/
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Method Baseline CS-KD ONE DDGSD BYOT FRSKD† MI+SI (ours) MI×SI (ours)

ResNet18 77.43±0.36 78.01±0.11 77.03±0.21 77.88±0.32 77.86±0.30 77.71±0.14 78.75±0.31 78.37±0.34
DenseNet121 77.01±0.06 78.25±0.12 76.88±0.29 78.04±0.19 78.15±0.14 − 78.45±0.07 78.56±0.11

Table 2: Self-distillation comparison on CIFAR100. Evaluated by top-1 accuracy over 3
runs, higher is better. Best result is in bold. †: reported result from [15].

BYOT [36]. Table 1 shows that MUSE consistently outperforms BYOT significantly for
all modules on all networks. We posit that MUSE introduces the feature dependencies and
enhances feature expressivity by maximizing MI and SI. Meanwhile BYOT minimizes the L2
loss in the feature space which leads to an undesirable outcome that forces the feature distri-
butions to be identical (discussed in Section 3.2). It poses an unexpected regularization and
worsens the performance. Further empirical results and discussion on MUSE as a functional
proxy to introduce feature dependency can be found in Table 5 and Section 4.3. Interestingly,
for the two variants of MUSE, MI×SI is shown to be more likely to perform better on VGG19
and EfficientNet-B0, while MI+SI tends to outperform on other ResNets and NASNet. For
those networks where MI×SI performs worse, the performance gaps between layers are
shown to be larger, and therefore different features are not comparably informative. A direct
multiplication may allow the network to ignore some shallower features.

Comparison with self-distillation. We compare MUSE to other state-of-the-art SD ap-
proaches: Class-wise Self-knowledge Distillation (CS-KD) [33], On-the-fly Native Ensemble
(ONE) [19], Data-Distortion Guided Self-Distillation (DDGSD) [31], and Feature Refinement
via Self-Knowledge Distillation (FRSKD) [15]. We report the accuracy of the last module for
MUSE and BYOT. Table 2 indicates that MUSE can beat all other SD methods. Note that
MUSE serves as the feature discrepancy function and is therefore orthogonal to other SD
methods. It can be applied to these methods and potentially further improve their performance.

CIFAR100
Baseline MUSE

top-1 params FLOPs top-1 params FLOPs

VGG19 68.57 20.0M 20499M 69.26 2.3M 2380M
ResNet18 77.43 11.2M 256M 77.96 2.8M 248M
ResNet34 77.56 21.3M 393M 79.77 8.2M 380M
ResNet50 77.80 23.4M 431M 78.04 1.4M 370M
ResNet101 77.97 42.4M 507M 78.65 1.4M 370M
ResNet152 78.85 58.0M 636M 79.53 2.5M 441M
NASNet 75.64 5.1M 241M 76.81 1.9M 238M
EfficientNet-B0 77.61 4.0M 454M 78.40 0.8M 290M

TinyImageNet
Baseline MUSE

top-1 params FLOPs top-1 params FLOPs

ResNet34 66.72 21.3M 1543M 67.59 8.2M 1520M
EfficientNet-B0 64.55 4.0M 454M 64.77 0.8M 290M

Table 3: Compact networks by MUSE.

Model Compression. In addition to improving
accuracy as discussed in Section 4.1, MUSE can
intrinsically achieve model compression without
sacrificing performance. Since intermediate fea-
tures are extracted for predictions, the models
can be compressed if the prediction performance
from the intermediate features outperforms the
baseline. For example, Module 3 from VGG19
has higher top-1 accuracy compared to the base-
line on CIFAR100 (69.26% vs. 68.57%). Hence,
by training the model with MUSE, modules after
Module 3 can be discarded in inference while achieving higher accuracy with less parameters
and computation. Table 3 shows the comparisons between the compressed models and the
corresponding baseline models shown in Table 1. All the compressed models achieve higher
top-1 accuracy while the number of parameters and floating-point operations per second
(FLOPs) are significantly reduced (up to 30.3× and 8.6×, respectively). The compression
ratio can be traded off for accuracy by changing the layers where intermediate features are
extracted in MUSE. This approach is orthogonal to other model compression methods such
as pruning and quantization and can be combined with them to further compress the models.

4.2 Object Detection
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Figure 2: Training curves of MI loss on CIFAR100 EfficientNet-B0. X-axis: training steps
(per 100 iterations), y-axis: loss (always positive, lower means higher MI). Red, blue, green
denote MI loss between F4 and F1, F2, F3. The value of each MI loss is comparable as its
implementation is same for all.

Networks YOLOv5-S YOLOv5-M YOLOv5-L YOLOv5-X

Baseline 0.549±0.006 0.619±0.001 0.641±0.001 0.663±0.002

MI+SI 0.543±0.001 0.627±0.002 0.655±0.003 0.666±0.001

MI×SI 0.559±0.001 0.629±0.002 0.659±0.003 0.672±0.001

Table 4: Object Detection, mAP with
0.5 IoU. Higher is better.

We apply MUSE on the Yolov5 family for object
detection on COCO [20] dataset. Yolov5 models
consist of a backbone and a head. The backbone is
decomposed into two modules: the last 3 compo-
nents (Conv, SPP, C3) and the other components in
front of them. We estimate MI and SI using the features out of the two modules similar to
Section 4.1. A bottleneck layer is concatenated after the first backbone module followed by a
detection head (same as the original Yolov5). All networks are trained from scratch using
SGD with momentum 0.937, weight decay 0.01, and the learning rate initialized as 0.01 and
decayed to 0.002 in a sinusoidal ramp. We follow the batch size as official Yolov5 repo†.
As shown in Table 4, MI×SI variant can improve the detection performance of all Yolov5
models. The MI+SI variant, on the other hand, is able to improve the mAP of Yolov5-M and
Yolov5-L. Compared to image classification, low-level features like spatial locality is critical
for object detection. We hypothesize that the weighting scheme in MI×SI possibly attaches
more importance to those shallow features, rather than equivalently optimizing all terms as in
MI+SI.

4.3 Ablation study

Figure 3: SI loss on CI-
FAR100 EfficientNet-B0 of
F1, F2 and F3.

MI & SI interaction in MUSE. Though the MI and SI in
our implementation are not precisely estimated, the decrease
of the loss can indicate the relative value of MI and SI. In
Fig. 2(a) and 2(b), all MI losses in MI×SI converge to a
similar level, whereas converged MI losses in MI+SI are
diverse (significantly higher for shallower features). We can
see in Fig. 3 that shallower features consistently have higher
SI losses (lower SI) for both MI+SI and MI×SI. Therefore
for MI×SI where MI loss is weighted by SI loss (always
positive), the optimization of shallow features is boosted .
It also explains why MI×SI shows superior performance
in object detection (Table 4), as the information of lower-
level feature is better captured in MI×SI where shallow
features are weighted with more importance. Hence, shallow
features tend to have lower MI losses (higher MI) in MI×SI
than MI+SI after convergence. Dense prediction like object
detection may prefer such well-trained multi-scale feature information. If MI is the regularizer
for CNN training, we can further interpret SI as the regularizer for the MI training.
†https://github.com/ultralytics/yolov5
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MI in MUSE and conventional CNN. A typical strategy (including MUSE) is to estimate
and maximize MI jointly with CNN training. To compare with MI in baseline CNNs, we
evaluated on MI with trainable CNN (Fig. 2 (c)) and pretrained CNN (Fig. 2 (d)) for a full
picture of MI in baseline CNNs (EfficientNet in this example). Note that the implementation of
Fig. 2 (c) is the same as only MI in Table 5. The last MI loss between F3;F4 can still converge
to a very low value but the other two are poorly optimized, indicating the effectiveness of SI
in MUSE to control the MI training process. In Fig. 2 (d), the MI losses in the pretrained
CNN cannot converge to a stage as low as the other three. We speculate it is because—(1) the
MI between intermediate features of conventional CNNs are possibly much lower; (2) The
MI estimators cannot work properly without trainable parameters of the backbone.

Backbone ResNet18 EfficientNet-B0

Baseline 77.43±0.36 77.61±0.13

CE 77.66±0.27 77.94±0.11
CE + KD 77.98±0.21 78.06±0.18

L2 77.18±0.23 77.43±0.18
L2 + CE 77.65±0.25 77.51±0.16
L2 + CE + KD 77.86±0.30 78.00±0.14

MI 77.95±0.31 77.67±0.26
SI 77.81±0.44 77.69±0.25
MI + CE 78.07±0.33 78.07±0.11
MI + CE + KD 78.22±0.21 78.35±0.13
(MI+SI) 78.14±0.25 77.83±0.19
(MI×SI) 78.06±0.29 77.91±0.24
(MI+SI) + CE 78.63±0.26 78.46±0.17
(MI×SI) + CE 78.35±0.24 78.81±0.12
(MI+SI) + CE + KD 78.75±0.31 78.56±0.14
(MI×SI) + CE + KD 78.37±0.34 78.89±0.12

Table 5: Different terms in MUSE.

Effectiveness of different modules. In Section 4.1,
we empirically show MUSE outperforms other SOTA
SD methods. As our objective incorporates multiple
terms including classification loss (cross-entropy) and
knowledge distillation loss (KL divergence between
logits), we conduct experiments with individual terms
as in Table 5. We report the top-1 accuracy at Module
4 with 3 runs. CE and KD denote cross-entropy and
knowledge distillation loss between intermediate fea-
tures. We decompose the networks into 4 modules and
all terms (CE, KD, L2, MI, and MUSE) are calculated
between Module 1-3 and Module 4. In Table 5, we
can observe: (1) CE and KD can improve the overall
performance without other feature discrepancy functions; (2) L2 loss itself hurts the original
performance, while MI, MI+SI, and MI×SI can further improve the performance with CE
and KD. It corroborates with the argument in Section 3.2 that MI serves as a more functional
proxy to introduce dependencies between intermediate features; (3) MUSE, including both
MI+SI and MI×SI, outperforms MI, indicating the effectiveness of combining MI and SI; (4)
MUSE can improve the network even without CE and KD, showing that MI and SI can learn
more useful features without explicit supervision to the intermediate features; (5) Though
MUSE solely improves the performance, adding CE & KD together provides the maximum
improvement. MI estimators are sensitive to the tasks, therefore explicit supervision likely
helps introduce meaningful feature dependencies for specific tasks; (6) Using MI or SI solely
provides marginal improvement, while combining them performs the best.

Backbone ResNet18 EfficientNet-B0

Baseline 77.43±0.36 77.61±0.13
L2 77.65±0.25 77.51±0.16
MMD 76.22±0.19 77.03±0.16
adversarial 78.18±0.18 78.25±0.14
VID 76.97±0.54 77.37±0.35
MI+SI 78.63±0.26 78.46±0.17
MI×SI 78.35±0.24 78.81±0.12

Table 6: Feature discrepancy.

Advantages over other discrepancy functions. Prior
distillation works introduce feature dependencies via differ-
ent feature discrepancy functions, such as L2 loss [23, 35],
Maximum Mean Discrepancy (MMD) [13], adversarial
loss [4] and VID (a type of MI estimated by variational
bound [1]). To demonstrate the effectiveness of MUSE on
SD, we apply these feature discrepancy functions to intro-
duce the feature dependencies and compare to our proposed
MUSE in Table 6. All networks incorporate CE loss to provide explicit supervision. KD
loss is not included in Table 6 to better show the improvement from the feature discrepancy
functions. We observe a consistent improvement of MUSE over other functions: (1) L2 loss,
often used in offline distillation, cannot consistently improve performance. It demonstrates our
argument that enforcing the features to be identical (as L2 loss does) cannot introduce useful
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Net1 / resnet20 / resnet56 / resnet20 / ShuffleNetV1 [37] /
Net2 resnet20 resnet56 resnet56 WRN-40-2 [34]

Baseline 69.06 72.34 69.06/72.34 70.50/75.61
KD 70.51 75.24 70.11/74.69 70.50/75.61
DML [38] 70.84 75.63 71.13/74.97 75.89/78.16
KDCL [7] 70.23 75.28 70.36/74.83 74.79/77.53
AFD [4] 70.63 75.40 71.22/75.12 75.39/77.13
MI+SI 71.02±0.14 76.02±0.13 71.34±0.16/75.55±0.08 76.65±0.19/78.51±0.17
MI×SI 70.71±0.16 75.80±0.15 71.05±0.11/75.17±0.10 76.80±0.21/78.34±0.15

Teacher resnet56 (72.34) resnet110 (74.31)
Student resnet20 resnet32

Baseline 69.06 71.14
KD [9] 70.66 73.08
FitNets [23] 69.21 71.06
VID [1] 70.38 72.61
CRD [28] 71.16 73.48
MI+SI 71.30±0.09 73.34±0.17
MI×SI 71.27±0.22 73.48±0.29

(a) Online Distillation. (b) Offline Distillation.
Table 7: Traditional distillation with MUSE. Evaluated by top-1 accuracy. (a) Two settings
are considered in online distillation—two identical networks (averaged accuracy is reported)
and two different networks; (b) Pretrained teacher networks in offline distillation are static.

dependencies in SD; (2) MMD is the same as L2 that its minimum is obtained if and only if
the two features are identical; (3) Adversarial loss differently shows significant improvement
over baselines. Minimizing L2 loss is equivalent to minimizing the KL divergence between
two features DKL(p1||p2) (p is the probability density), while minimizing adversarial loss is
equivalent to minimizing the Jensen–Shannon (JS) divergence [6] between two features. It is
a symmetric version of KL divergence that DJS(p1||p2) = DJS(p2||p1). As both features are
not known, a symmetric discrepancy function without assumption on the direction is possibly
preferred. This also explains its empirical success in online distillation [4]. Yet, its minimum
is obtained if and only if two features are identical, which weakens its faculty in SD; (4)
MUSE outperforms MI estimated by variational bound [1], as this bound of MI only holds in
the offline distillation where the pretrained teacher is static (refer to Eq.3 and 4 in VID [1]).

Extension to Offline / Online Distillation. We have shown that MUSE necessarily improves
the SD framework on image classification and object detection. We further investigate its
potential application on offline and online distillation where the features are from different
CNNs. MUSE can be readily applied in this scenario by replacing the own last feature
of a CNN with the last feature of another teacher network. We also follow our previous
experimental setting to decompose the student network into four modules. To establish a fair
comparison, we do not include CE and KD loss for intermediate features, but only calculate
MUSE between intermediate features of the student network and the last feature of the teacher
network. We follow a traditional strategy to add KD loss on the last layer of the student
network. For online distillation, we consider two settings: two identical networks and two
different networks. We report the average accuracy for two identical networks. For offline
distillation, we use the fixed last feature of the teacher network to calculate MUSE. In Table 7,
we can observe consistent improvement from MUSE for online distillation, and comparable
performance with the state-of-the-art for offline distillation.

5 Conclusion
We propose a novel feature discrepancy function—MUSE, based on effective neural esti-
mators of MI and SI. We present two variants of MUSE to combine MI and SI. We argue
and empirically demonstrate on extensive experiments that MUSE is a more effective feature
discrepancy function for knowledge distillation. Especially on self-distillation, MUSE neces-
sarily introduces dependencies among features in a CNN, thereby significantly improving the
performance and obtaining more compact yet comparably performant subnetworks. MUSE
shows superior performance on image classification and object detection. By drawing the
features from different levels, MUSE can possibly be extended to architectures like RNN or
attention models. The level may not necessarily be the depth of the network, rather time steps
or sequential order. We leave these as future work on improving MUSE.
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