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Abstract
We consider the task of semi-supervised video object segmentation (VOS). Our ap-

proach mitigates shortcomings in previous VOS work by addressing detail preservation
and temporal consistency using visual warping. In contrast to prior work that uses full
optical flow, we introduce a new foreground-targeted visual warping approach that learns
flow fields from VOS data. We train a flow module to capture detailed motion between
frames using two weakly-supervised losses. Our object-focused approach of warping
previous foreground object masks to their positions in the target frame enables detailed
mask refinement with fast runtimes without using extra flow supervision. It can also
be integrated directly into state-of-the-art segmentation networks. On the DAVIS17 and
YouTubeVOS benchmarks, we outperform state-of-the-art offline methods that do not
use extra data, as well as many online methods that use extra data. Qualitatively, we also
show our approach produces segmentations with high detail and temporal consistency.

1 Introduction
Video object segmentation (VOS) has become an increasingly studied task in the computer
vision community. The goal of VOS is to label each pixel of each frame of a video with a cor-
responding class—either one of potentially several foreground objects, or the background.
In particular, the semi-supervised inference setting of this task provides the ground-truth seg-
mentation mask for the first video frame, and methods aim to segment these objects for all
subsequent frames. This task is difficult because objects in motion can move and deform in
different ways, not to mention additional challenges such as camera motion and occlusions.

Many deep learning-based methods have been proposed to tackle this problem. Re-
cent state-of-the-art offline methods [12, 13] have used a memory bank of encoded previous
frames and masks, which is queried when segmenting later frames. The advantage of these
approaches is that the learned latent spaces robustly encode higher-level features of the tar-
get objects from previous frames; however, they lack the detail to propagate fine features and
movements across consecutive frames and thus can suffer from temporal inconsistency.
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Figure 1: We introduce a weakly-supervised visual warping approach for VOS that improves
detail and temporal consistency. Our lightweight flow module learns to regress a foreground-
targeted flow field that warps the previous mask from time t−1 to align it to frame t. To learn
detailed flow fields, we directly exploit the VOS data using two weakly-supervised losses,
rather than learning the cumbersome general optical flow task. We show that our warped
masks effectively refine the final segmentations. Our method can be easily integrated into
state-of-the-art segmentation models, does not require extra data, and has fast frame rates.

Our work’s key insight is to mitigate these issues of detail preservation and temporal
consistency using visual warping, which captures small deviations between video frames.
As shown in Figure 1, our method warps the object masks from previous frames toward
the target frame to add detail and temporal consistency to the final segmentation. To learn
these deltas between frames, we introduce a weakly-supervised flow module that can be
easily used with state-of-the-art segmentation networks. Some early VOS works employed
traditional optical flow methods to perform visual warping [20, 23], but they use highly time-
costly online optical flow optimization methods. More recent VOS works [3, 14, 15] incor-
porate warping by using state-of-the-art deep learning optical flow estimation networks like
FlowNet 2.0 [10]. However, these networks have high computational cost and require exten-
sive pretraining on supervised data focused on the full optical flow task [6, 17]. Their ability
to predict detailed motions also degrades significantly even with small speed increases.

In this work, we address these shortcomings by proposing a novel visual warping ap-
proach for VOS. Unlike prior works that approach visual warping using standalone, pre-
trained optical flow methods, we do not predict traditional optical flow. Instead, we directly
train on the VOS data of interest to learn an offline flow module for VOS-specific visual
warping. Our foreground-targeted approach focuses on aligning previous foreground objects
to their new positions. Specifically, we introduce two weakly-supervised flow losses that
enforce pixel-level consistency between warped previous masks and frames and the target
masks and frames. These train the flow module to capture small changes between timesteps
in pixel-wise flow fields, which warp previous object masks to propagate detail to the final
prediction. Moreover, since we do not learn the general optical flow task, our flow module
can stay lightweight for fast frame rates, and by training directly on the VOS data, we do
not need any supervised flow data. As such, our method can generalize to diverse data not
studied by traditional optical flow techniques, and more generally to object-focused scenes.

On the two major VOS benchmarks, DAVIS17 [20] and YouTubeVOS [29], our method
achieves state-of-the-art performance among offline works that do not use extra training data
(e.g. additional datasets, image segmentations, supervised optical flow, or synthetic data).
Additionally, we outperform or stay competitive with those that use online learning and
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extra data. We also qualitatively show that our method achieves greater segmentation detail
preservation and temporal consistency. Our contribution can be summarized as follows:

• We propose a novel foreground-targeted visual warping approach that improves seg-
mentation detail and temporal consistency for VOS. We show that instead of learning
traditional optical flow, our flow module jointly learns detail-preserving flow fields by
exploiting the target VOS data directly using two weakly-supervised losses.

• Our purely offline-learned flow module for VOS is fast and can be easily integrated
into state-of-the-art segmentation networks (here, we integrate it into STM-cycle [13]).

• On DAVIS17 [21] and YouTubeVOS [29], we achieve state-of-the-art performance
among works that do not use online learning nor extra data. We also outperform or
stay competitive with those that do, while maintaining faster frame rates.

2 Related Work
Semi-Supervised Video Object Segmentation. With the success of deep learning, semi-
supervised VOS has seen a large number of works in recent years. These works leverage
a variety of strategies, including online versus offline optimization, mask propagation, seg-
mentation by tracking, coarse-to-fine refinement, and usage of attention and memory banks.

Semi-supervised VOS methods can be considered online or offline, where inference in-
cludes learning in the former and does not in the latter. Online techniques are often used for
mask refinement. OSVOS [2] introduced the first deep learning-based online VOS method,
which gradually refines the model from segmenting general objects to those in the initial
reference mask; OnAVOS [25] adds an adaptive learning mechanism. MaskTrack [20]’s on-
line learning method learns mask refinement from external static images. PReMVOS [15]
achieves strong performance via coarse-to-fine refinement of object proposals and optical
flow, though it is among the most computationally intensive. More recent work also em-
ploys online learning on the initial reference mask to refine the prediction [9]. While online
learning methods can produce detailed segmentations, their high computational cost causes
slow inference frame rates impractical for real-time settings.

In contrast, offline learning methods do not update during inference, generally yield-
ing faster frame rates. Our method lies in this category. Recently, D3S [16] proposed
segmenting frames independently with explicit foreground-background separation, though
its temporal consistency drops in multi-object settings. To enforce consistency, some of-
fline methods leverage previous frames; S2S [29] and RVOS [24] use recurrent networks,
while RGMP [19] use Siamese encoders for the previous and current frame. The weakness
of these methods is that they do not target specific features across frames. Many meth-
ods [12, 13, 14, 26, 28] therefore use attention mechanisms to achieve stronger performance.

One such work, FEELVOS [26], leverages the initial reference mask for explicit feature
matching with subsequent frames. AGSS-VOS [14] further attends over the previous frame
and mask, while STCNN [28] attends over multi-scale feature maps. STM [12] achieves even
higher performance by introducing an external memory bank and attending over multiple
previous frames by querying them using the target frame. State-of-the-art STM-cycle [13]
adds a cyclic loss to reduce error propagation. Concurrently, some works [7, 18] instead use
attention via transformers to address pixel spatiotemporal relations and model scalability.
While attention works capture higher-level features of foreground objects, their segmenta-
tions often lack detail or fail to propagate fine deformations and movements across frames,
even when the object does not change much. Our insight is that explicitly learning the differ-
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ences between pairs of frames can address these issues. Thus, improving on previous work,
we leverage visual warping to add temporal consistency and segmentation detail.

Optical Flow Estimation in VOS. Previous VOS works that perform visual warping all
use optical flow prediction methods to do so. Early VOS works such as [23] and Mask-
Track [20] use traditional online optical flow estimation methods. Later work uses deep
learning-based optical flow prediction approaches, such as FlowNet [6], which pioneered the
task as a supervised problem using convolutional neural networks. Using [6], SegFlow [3]
jointly learns optical flow and segmentation with deep learning, but requires online learning
and learns the full optical flow task, thus requiring supervised flow annotations. Works such
as [3, 20, 23] are either online, use online optical flow estimation, or both, rendering them
computationally costly and unfit for real-time settings. [3, 20] also require extra data for
training, and they do not exploit the warped masks themselves to guide the segmentation.

More recent VOS work uses state-of-the-art optical flow prediction networks that outper-
form FlowNet [6]; notably, FlowNet 2.0 [10] achieves a significant improvement by stacking
multiple convolutional networks end-to-end. While [10] is state-of-the-art, it requires exten-
sive pretraining on several supervised optical flow datasets [6, 17] and is computationally
costly to stack on top of a segmentation model. Moreover, without extensive ensembling of
multiple networks end-to-end, its ability to predict detailed movements drops. Still, many
strong VOS works accept these tradeoffs and use [10]. In particular, recent works PRe-
MVOS [15] and AGSS-VOS [14] use the pretrained FlowNet 2.0 [10] to predict optical flow,
which they use to warp previous masks either for further refinement or to guide attention
mechanisms. However, these works suffer from FlowNet 2.0 [10]’s accuracy-speed tradeoff;
they use the FlowNet 2.0 ensemble at the cost of significant frame rate drops. Moreover, they
rely on the extensive extra flow data used to pretrain FlowNet 2.0, which generates additional
complexity and data requirements, while importantly not being foreground object-targeted.

Our approach mitigates these issues in prior work. Specifically, our key insight is to learn
a weakly-supervised, foreground-targeted visual warping model for VOS instead of learning
general optical flow. Even with no extra data and at faster speeds, our approach produces
detailed and temporally consistent segmentations and can train directly on the target data.

3 Methods
Our method tackles semi-supervised video object segmentation (VOS), improving the detail
and temporal consistency of prior work. The key contribution of our approach is the weakly-
supervised flow module, which learns to regress foreground object-targeted flow fields that
warp previous masks toward objects in the target frame to preserve fine detail and temporal
consistency. As it need not learn general optical flow, it can remain lightweight. It can be
used with any segmentation network to refine masks; we use STM-cycle [13] in this work. To
train the flow module, we introduce two weakly-supervised losses for flow field regression,
which encourage pixel-level consistency between warped previous object masks and frames
and the target masks and frames. Unlike prior work [14, 15], these losses exploit the VOS
data to regress object-targeted flows without any extra supervision from ground-truth flow
fields. Below, we review the semi-supervised VOS problem definition, describe our model
architecture, formalize the two weakly-supervised flow losses, and discuss model training.

We first define notation for semi-supervised VOS. Given a video with T frames, let the t-
th frame in temporal order be Xt and its corresponding ground-truth mask be Yt , for t ∈ [1,T ].
In training, all ground-truth masks are provided; in inference, only the first ground-truth
mask Y1 is provided. The goal of the model is to predict masks Ŷt for all subsequent frames.
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Figure 2: Overview of the proposed flow module. Given a previous and target frame (here
shown as Xt−1,Xt ), it regresses a flow field to warp the previous frame and mask to the current
ones. The previous mask Ỹt−1 can be either the ground-truth or predicted mask from timestep
t−1 in training (Sec. 3.4), but only the predicted mask in inference. Two weakly-supervised
losses train the flow module: the Mask Flow Loss minimizes the difference between the
warped previous mask Ỹ t

t−1 and target mask Yt (yellow double-dashes), and the Visual Flow
Loss minimizes the difference between the warped previous frame X t

t−1 masked by Ỹ t
t−1 and

the target frame Xt masked by Yt to eliminate background noise (purple dotted lines).

3.1 Flow Module
As shown in Figure 2, we introduce a lightweight flow module F to address detail preser-
vation and temporal consistency. F is an hourglass network to enable learning features of
different scales (Implementation Details in Sec. 4.2). Given a pair of frames from the same
video, F generates a flow field that describes object movement between the previous and
current frame. For a target frame Xt , the flow module takes two frames in temporal se-
quential order, here {Xt−1,Xt}, and an object mask Ỹt−1 for the previous frame (in training
either the ground-truth Yt−1 or predicted mask Ŷt−1 (Sec. 3.4); in inference only the latter).
It outputs a flow field F̂ t

t−1 that warps Xt−1 to Xt and Ỹt−1 to Yt . The flow field has the same
spatial dimensions as the video frames, with two channels corresponding to pixel-wise x and
y displacements normalized by frame width and height. The flow module’s function is thus

F̂ t
t−1 = F(Xt−1,Xt ,Ỹt−1). (1)

This flow field F̂ t
t−1 warps the previous object mask Ỹt−1 toward the target mask using

the differentiable warping layerW introduced in Spatial Transformer Networks [11], which
transforms images using a sampling kernel. The resulting warped previous mask Ỹ t

t−1 is thus

Ỹ t
t−1 =W(Ỹt−1, F̂ t

t−1). (2)

We train the flow module to regress effective visual warping flow fields with only VOS
data and no extra flow data. To do so, we introduce two weakly-supervised losses.

3.2 Weakly-Supervised Flow Losses
Our work contributes a novel weakly-supervised approach to regress visual warping flow
fields for VOS. In contrast to prior works that use heavy pretrained optical flow models,
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our key insight is to leverage existing VOS data to directly learn flow fields in a weakly-
supervised manner using two losses: the Mask Flow Loss (MFL) and Visual Flow Loss
(VFL). Both train the flow module to warp previous objects toward the targets by penalizing
pixel-level differences after warping. The MFL minimizes differences between warped and
ground-truth target masks, while the VFL does the same for warped and target video frames.

Mask Flow Loss (MFL). Our goal is to align previous object masks to the target frame.
As such, we require the warped previous mask Ỹ t

t−1 (Eq. 2) to be close to the target mask Yt .
The MFL minimizes the difference between the warped previous mask and target mask. It
combines the commonly-used cross-entropy and mask IOU losses between these two masks,

LMF =
1
|P| ∑u∈P

(
(1−Yt,u) log(1− Ỹ t

t−1,u)+Yt,u log(Ỹ t
t−1,u)

)
−λ

∑u∈P min(Ỹ t
t−1,u,Yt,u)

∑u∈P max(Ỹ t
t−1,u,Yt,u)

, (3)

where P is the set of pixel coordinates, Yt,u and Ỹ t
t−1,u are the mask pixel values at coordinate

u for the ground-truth and warped previous masks respectively, and λ weights the two losses.
This combines their strengths: cross-entropy favors pixel-level accuracy and optimizes more
stably, while the IOU loss enforces overall object shape and better handles class imbalances.

Visual Flow Loss (VFL). To warp previous objects to the target frame, we can similarly
exploit visual appearance; we thus also require the warped previous frame denoted X t

t−1
(achieved via the analogous operation on Xt−1 using Eq. 2) to be close to the target frame Xt .
A naive formulation of the VFL may be the pixel-wise mean squared error (MSE) between
the warped previous frame and the target frame. However, the disadvantage of this formu-
lation is that video frames can exhibit large amounts of visual noise in the background that
is irrelevant to the objects of interest. This could be caused by background activity, camera
motion, occlusions, or motion blur, among other factors.

Thus, since we are only concerned with the motion of the foreground objects for the
VOS task, a stronger Visual Flow Loss will only take these pixels into consideration to more
precisely capture object movement. Specifically, we use the MSE loss between two masked
frames: the target frame Xt masked with the target mask Yt , and the warped previous frame
X t

t−1 masked with the warped previous mask Ỹ t
t−1 to obtain (continuing the notation in Eq. 3):

LV F =
1
|P| ∑u∈P

(
(X t

t−1,u)(Ỹ
t
t−1,u)− (Xt,u)(Yt,u)

)2
. (4)

3.3 End-to-End Segmentation Method
Our flow module can be easily integrated into state-of-the-art segmentation networks; here,
we present a version of our method that uses STM-cycle [13], which is based on STM [12].
Our end-to-end method, shown in Figure 3, uses the flow module’s output flow field to re-
fine the final segmentation. To integrate our flow module into the segmentation network, the
regressed flow field first warps the previous mask Ỹt−1 to yield Ỹ t

t−1, as discussed in Eq. 2.
We concatenate this warped previous mask with the output of the second-to-last convolu-
tional block of the decoder D. The last convolutional block of D outputs the final predicted
segmentation Ŷt . (Note that networks without decoders can use a structure with a similar
purpose, such as a refinement module). The segmentation network loss is a combination of
the mask IOU and cross-entropy losses (as in Eq. 3), encouraging the final segmentation to
be close to the ground-truth mask Yt . See Supplementary for further details.
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Figure 3: End-to-end FlowVOS method. Our flow module takes the previous and target
frames Xt−1,Xt as input. We train it to generate a flow field F̂ t

t−1 that warps a previous
mask to align it with the target frame Xt using two weakly-supervised losses. The warped
mask Ỹ t

t−1 is concatenated to the segmentation decoder’s second-to-last convolutional block
feature map to predict the final mask Ŷt . In training, the weakly-supervised losses are used
together with a standard segmentation loss (mask IOU and cross-entropy, as in Eq. 3).

3.4 Training
As the flow module learns only from weakly-supervised signals, it produces distorted flow
fields when given unreasonable previous masks. This can occur early in training or during
simple joint training of the flow module and segmentation network, when predicted masks
are noisy. To overcome these challenges, we use two training mechanisms that stabilize
learning: previous mask teacher-forcing and two-stage training. We analyze hyperparameter
robustness and comment further on these two mechanisms in the Supplementary.

Previous mask teacher-forcing. Teacher-forcing [1] is a sampling technique widely used
in autoregressive model training, where a model’s own output is used for its next prediction
during inference. As noted in Sec. 3.1, our flow module warps the previous predicted mask
in inference. Thus, we use teacher-forcing in training to allow it to learn good flow fields
from warped ground-truth masks as well. In training only, the previous mask Ỹt−1 warped by
the flow module is teacher-forced with the ground-truth mask Yt−1 with probability p, and
the network’s previous predicted mask Ŷt−1 with probability 1− p.

Two-stage training. We alternately freeze the segmentation model weights to let both
modules learn from the progress of the other. [3] used a similar strategy when training their
joint models. First, we train the segmentation model S for Es epochs. We then add the flow
module F , which stays unfrozen for the rest of training. We alternately unfreeze and freeze
S every Ea epochs until convergence.

4 Experiments
4.1 Datasets and Evaluation Metrics
We train and evaluate on two major benchmark datasets for the VOS task: DAVIS17 [21] and
YouTubeVOS [29]. For reproducibility, our code and models will be made available online.

DAVIS 17. DAVIS17 [21] has 120 videos total, with a maximum of 10 objects per
video. Using the official dataset splits, we train on the 60 training videos and evaluate on the
30 validation and 30 test-dev videos. We use the official DAVIS17 evaluation protocol [21],
which is the Jaccard (IOU) mean J and contour F-score F across all objects and videos, as
well as the mean of J and F for the overall score.
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OL & ED methods ED OL J% F% J&F% FPS

STCNN [28] X X 58.7 64.6 61.7 0.26†

OnAVOS [25] X X 64.5 71.2 67.9 0.1
BoLTVOS [27] X X 72.0 80.6 76.3 0.69
TANDTM [9] X X 72.3 79.4 75.9 7.1
PReMVOSF [15] X X 73.9 81.7 77.8 0.03

OSMN [30] X - 52.5 57.1 54.8 8
RGMP [19] X - 64.8 68.6 66.7 3.6
AGSS-VOSF [14] X - 64.9 69.9 67.4 10
DMM-Net [31] X - 68.1 73.3 70.7 -
FEELVOS [26] X - 69.1 74.0 71.5 2
STM [12] X - 79.2 84.3 81.8 6.3

OSVOS [2] - X 64.7 71.3 68.0 0.1
STM-cycle [13] - X 69.3 75.3 72.3 9.3

non-OL, non-ED ED OL J% F% J&F% FPS

FAVOS [4] - - 54.6 61.8 58.2 0.8
D3S [16] - - 57.8 63.8 60.8 25
STM-cycle [13] - - 68.7 74.7 71.7 31.9*

Ours - - 70.6 75.8 73.2 17.3

(a)

OL & ED methods ED OL J% F% J&F% FPS

OnAVOS [25] X X 53.4 59.6 56.9 0.03
TANDTM [9] X X 61.3 70.3 65.4 7.1
PReMVOSF [15] X X 67.5 75.7 71.6 0.02

RGMP [19] X - 51.3 54.4 52.8 2.4
AGSS-VOSF [14] X - 54.8 59.7 57.2 9
FEELVOS [26] X - 55.2 60.5 57.8 1.8

STM-cycle [13] - X 55.3 62.0 58.6 6.9

non-OL, non-ED ED OL J% F% J&F% FPS

RVOS [24] - - 48.0 52.6 50.3 22.7
STM-cycle [13] - - 55.1 60.5 57.8 25.9*

Ours - - 57.1 63.1 60.1 13.7

(b)

OL & ED methods ED OL G% JS% JU% FS% FU% FPS

MaskTrack [20] X X 53.1 59.9 45.0 59.5 47.9 0.05
OnAVOS [25] X X 55.2 60.1 46.6 62.7 51.4 0.05
DMM-Net [31] X X 58.0 60.3 50.6 63.5 57.4 -
PReMVOSF [15] X X 66.9 71.4 56.5 75.9 63.7 0.17
BoLTVOS [27] X X 71.1 71.6 64.3 - - 0.74

OSMN [30] X - 51.2 60.0 40.6 60.1 44.0 4.2
DMM-Net [31] X - 51.7 58.3 41.6 60.7 46.3 12
RGMP [19] X - 53.8 59.5 - 45.2 - 7
AGSS-VOSF [14] X - 71.3 71.3 65.5 75.2 73.1 12.5
STM [12] X - 79.4 79.7 72.8 84.2 80.9 6.3

OSVOS [2] - X 58.8 59.8 54.2 60.5 60.7 0.06
S2S [29] - X 64.4 71.0 55.5 70.0 61.2 0.06
STM-cycle [13] - X 70.8 72.2 62.8 76.3 71.9 13.8

non-OL, non-ED ED OL G% JS% JU% FS% FU% FPS

RVOS [24] - - 56.8 63.6 45.5 67.2 51.0 24
S2S [29] - - 57.6 66.7 48.2 65.5 50.3 6
STM-cycle [13] - - 69.9 71.7 61.4 75.8 70.4 30.3*

Ours - - 71.1 71.7 64.0 75.2 73.3 16.7

(c)

Table 1: Comparison with state-of-the-art methods on DAVIS17 validation (a), DAVIS17
test-dev (b), and YouTubeVOS validation (c). ‘ED’ denotes usage of extra training data.
‘OL’ denotes online learning. Superscript ‘F’ denotes usage of optical flow. In (a), † denotes
runtimes only available on DAVIS16. In (c), S , U subscripts denote classes seen and unseen
in training, and G is the global mean. Other method results in (c) taken from [12, 13].

YouTubeVOS. YouTubeVOS [29] is the largest VOS dataset to-date, with a maximum of
12 objects per video. We use the official dataset splits, with 3,471 training videos (training)
and 474 validation videos (evaluation). The evaluation protocol also averages J and F
scores over seen and unseen classes separately, which are then averaged for the overall score.

4.2 Implementation Details
Model. Our flow module’s lightweight U-Net [22] structure uses a ResNet50 [8] encoder
pretrained on ImageNet [5] and skip-connections between symmetric encoder-decoder blocks.
Decoder layers use bilinear upsampling, followed by two 3× 3 convolutions. We integrate
our module into the recent state-of-the-art STM-cycle [13].* Following training procedures
in [12, 13, 26], we pool DAVIS17 and YouTubeVOS training splits in all experiments. See
Supplementary for training details (e.g. hyperparameters, hardware, and data augmentation).

4.3 Quantitative Results
We compare our method’s performance and speed against state-of-the-art works on DAVIS17
[21] and YouTubeVOS [29]. These include works that use extra annotated data (ED), online
learning (OL), and optical flow (shown as superscript F). Tables 1(a), 1(b), and 1(c) respec-
tively show DAVIS17 validation, DAVIS17 test-dev, and YouTubeVOS validation results.

DAVIS17. As shown in Tables 1(a) and 1(b), on the official validation and test-dev
splits, we achieve state-of-the-art performance among methods that do not use extra data
(ED) nor online learning (OL) (and many that do), while maintaining high frame rates. We
achieve +1.9% and +2.0% J gains over [13] respectively. Notably, on both splits, we out-
perform STM-cycle [13]’s online learning version, even though it optimizes for performance

*We ran STM-cycle [13] using the authors’ provided code and could not replicate the reported frame rates
in [13]. With our TITAN RTX GPU, which is faster than the TITAN Xp in [13], we still only achieved the FPS in
the tables. For fair comparison, since [13] is the closest work to ours, we report our replicated FPS on the same
GPU we used to benchmark our model. [13]’s reported FPS corresponding to Tables 1(a), 1(b), and 1(c) are 38, 31,
and 43, respectively. Note that the reported YouTubeVOS validation set result in Table 2 of [13] also incorrectly
switched the STM [12] FS ,JU scores. We show the correct version from [12] here in Table 1(c).
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(a) Ground-truth (b) STM-cycle [13] (c) Ours (c1) Flow field (c2) Warp diff. (c3) Warped frame

Figure 4: Qualitative comparison with STM-cycle [13] on DAVIS17 validation (a, b, c), and
our method’s intermediate outputs (c1-3). Following [10], we color-code flow fields (c1)
with polar coordinate displacements. (c2) brightens pixels that exist in the previous, but not
the warped mask, highlighting motion that corresponds to the flows. The masked warped
frames (c3) show that our warping operation accurately preserves object detail. In row 1, our
flow (c1) captures the target car’s leftward (green, blue) motion, but not the distractor due
to the foreground-focused losses. In row 2, our detailed flow field propagates object details,
such as warping the back hoof upward (purple). In row 3, even with fast-moving objects, the
flow accurately warps boundaries of details like the lower right wheel and upper left head.

by adding time-costly iterative mask refinement. This demonstrates that our flow module’s
warped masks can replace detailed mask refinement without sacrificing speed. Among works
that use optical flow, on validation, we achieve a +5.8% J&F improvement over AGSS-
VOS [14] and stay competitive with PReMVOS [15] with significantly faster speeds.

YouTubeVOS. YouTubeVOS is the largest VOS benchmark. Since it evaluates perfor-
mance on classes unseen in training, it measures generalization well. As shown in Table 1(c),
on the official validation set, we achieve state-of-the-art performance among methods that
do not use extra data (ED) nor online learning (OL), while maintaining a high frame rate.
We also outperform all but two works that use ED, OL, or both, which both have lower
frame rates. Crucially, our method generalizes significantly better to unseen classes than
both offline (+2.6% JU , +2.9% FU ) and online versions of STM-cycle [13], showing that
our foreground-targeted approach learns motion priors to better segment unseen objects. We
outperform the optical flow-equipped PReMVOS [15] by +7.5% JU with 98 times the speed,
highlighting the strengths of our visual warping compared to traditional optical flow.

4.4 Ablation Analysis

In the top half of Table 2, we analyze relative contributions of key components of our method.
Our score drops 1.0% with either just the Mask Flow Loss or Visual Flow Loss (VFL); this
shows the benefit of leveraging both warped masks and frames in our method. Without mask-
ing the warped frame in the VFL, our score is similar to not using the VFL at all, showing the
importance of masking the foreground to eliminate background noise, such as the distractors
in the first row of Figure 4. In the bottom half of Table 2, we show the importance of using
the warped previous mask for mask refinement. When we replace the input to the decoder
with the previous predicted mask or video frame, the network performs on-par with STM-
cycle [13], meaning these inputs provide less useful information for refining the mask. With
the flow field, performance still lacks by 0.6%, showing the benefit of explicitly warping the
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Ablations J&F%

STM [12] (same train protocol as [13], no extra data) 70.5
STM-cycle [13] +Cycle consistency loss 71.7

Weakly-supervised +Mask Flow Loss only 72.2
flow module losses +Visual Flow Loss only 72.2

Foreground masking VFL w/o foreground masking 72.4

Alternative inputs to segmentation decoder
Previous predicted mask 71.6
Previous video frame 71.9
Flow field 72.6
Previous masked warped frame 73.0

Ours 73.2

Table 2: Ablation study of our method components on DAVIS17 validation. On top, we show
ablations using only the Mask Flow Loss (MFL) or Visual Flow Loss (VFL), and without
foreground masking of the VFL. The bottom shows alternative segmentation decoder inputs
instead of the warped previous mask that our method uses.

previous mask. The previous masked warped frame expectedly performs on-par with our
method, since we warp it identically to the previous mask; still, this shows that the warped
mask provides stronger signal about object motion.

4.5 Qualitative Results
In contrast to prior works, we show that our foreground-targeted approach for VOS-specific
visual warping produces detailed flow fields without needing to learn the general optical
flow task. Figure 4 illustrates our method’s improvements over the state-of-the-art STM-
cycle [13] in segmentation detail (see Supplementary figures for temporal consistency).

In Figure 4, we show that our method preserves segmentation detail in cases with back-
ground distractors (row 1), small object details (2), and fast-moving objects (3). Notice that
our flow fields (c1) are detailed and correspond to the pixel-wise differences between the pre-
vious and warped mask highlighted in (c2). Note that since we do not learn general optical
flow (which has ground-truth), there is more than one possible flow field that can accurately
warp a foreground object in our VOS-specific setting. This means we can learn detailed mo-
tion with greater flexibility; for instance, our model often warps background pixels to achieve
better foreground alignment (e.g. the car boundary in row 1), which traditional optical flow
would penalize, but our weakly-supervised losses do not. Our visual warping method also
enables stronger temporal consistency despite diverse challenges (see Supplementary).

5 Conclusion
We propose a novel foreground-targeted visual warping approach that improves segmenta-
tion detail and temporal consistency for semi-supervised video object segmentation (VOS).
Instead of learning full optical flow, our flow module learns detailed flow fields using two
weakly-supervised losses that directly leverage the target VOS data, which could benefit di-
verse use cases. We show that the resulting warped masks from our method effectively refine
the final segmentations. Our module can be easily integrated into state-of-the-art segmenta-
tion networks. Since it does not predict full optical flow, it is lightweight, fast, and requires
no extra training data. On the DAVIS17 and YouTubeVOS benchmarks, we achieve state-of-
the-art performance among methods that do not use online learning nor extra data. We also
outperform or stay competitive with those that do, while maintaining faster frame rates.
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