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Abstract

Deep learning models have been shown to learn spurious correlations from data that
sometimes lead to systematic failures for certain subpopulations. Prior work has typically
diagnosed this by crowdsourcing annotations for various protected attributes and measur-
ing performance, which is both expensive to acquire and difficult to scale. In this work,
we propose UDIS, an unsupervised algorithm for surfacing and analyzing such failure
modes. UDIS identifies subpopulations via hierarchical clustering of dataset embeddings
and surfaces systematic failure modes by visualizing low performing clusters along with
their gradient-weighted class-activation maps. We show the effectiveness of UDIS in
identifying failure modes in models trained for image classification on the CelebA and
MSCOCO datasets. UDIS is available at https://github.com/akrishna77/
bias-discovery.

1 Introduction
Computer vision technology has become increasingly dependent on deep learning models to
help make intelligent decisions in high-stakes applications. Such models are often trained
on large datasets of images like ImageNet [37] and MSCOCO [29], which have been shown
to contain implicit biases [42, 43] that are imbibed and sometimes amplified [6, 39] by these
models. Further, these pretrained models are frequently used as an initialization for other
downstream tasks through transfer learning [41]. It is thus crucial that in addition to being
accurate, models be fair and perform equitably across different dataset subpopulations.

However, recent studies have shown several examples where state-of-the-art deep com-
puter vision models learn spurious correlations from their training data which leads to signif-
icant performance variance across subpopulations, sometimes across sensitive attributes like
race and gender [2, 8, 20, 47, 49], or even contextual and reporting biases [4, 13, 15, 35].
Learning such spurious correlations typically leads to poor performance on underrepresented
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dataset subpopulations and out-of-distribution test data. These models are typically evalu-
ated based on standard performance metrics like test set accuracy, but it is equally important
to ensure that the model will perform fairly across different subpopulations when provided
with previously unseen data.

Determining whether a trained model is biased is a challenging problem. Prior work has
relied on enumerating sensitive attributes (such as race and gender), collecting annotations
from domain experts, and measuring performance across these [5, 7, 9, 24, 27, 28]. This
process requires considerable manual effort and cost, and is challenging to scale to large
datasets.

In this work we present UDIS, a tool to audit deep learning models for biases before
deploying them in the wild. UDIS discovers subpopulations of the dataset for which the
model systematically underperforms, without requiring any protected attribute annotations
whatsoever and using only the dataset test split. UDIS performs hierarchical clustering of
dataset embeddings and identifies systematic failure modes by visualizing low performing
clusters along with their gradient-weighted class-activation (GradCAM [38]) maps. We show
the effectiveness of UDIS in identifying failure modes in visual recognition models trained
on the CelebA and MSCOCO datasets. We make the following contributions:

• We present UDIS, the first unsupervised method for discovering model bias which
identifies dataset subpopulations on which the model systematically underperforms,
without the need for protected attribute annotations.

• We demonstrate the effectiveness of UDIS at identifying failure modes on the CelebA
and MSCOCO datasets.

2 Related Work

While there has been considerable prior work in measuring bias in deep learning models, to
the best of our knowledge all of them require apriori knowledge as well as annotations for
protected classes across which we desire the model to be unbiased. We summarize these
lines of prior work below:
Observational methods. Torralba and Efros [34, 42] were among the first to stir up the
conversation of dataset bias in computer vision, introducing simple measures like cross-
dataset generalization and negative set bias to understand how datasets may bias trained
models. Recently, Singh et al. [40] proposed the use of statistical information to identify
biased categories. They define a category b as biased by category c if (1) the prediction
probability of b drops significantly in the absence of c and (2) b co-occurs frequently with
c. This requires knowledge of the dataset attributes to determine categories that are biased,
along with their co-occurring context category. Other related works tackle the problem of
dataset bias by defining algorithms [14, 25, 45] and metrics [17, 26, 33, 48] to establish
fairness. In contrast, our method leverages dataset embeddings that can be computed using
a forward pass with the model, and is able to identify model biases on the dataset without
explicit knowledge of protected attributes and their annotations.
Bias detection toolkits. Most recently, Wang et al. [43] released an open-source tool that
assists in investigating biases within visual datasets, surfacing potential biases along three
specific dimensions: object-based, gender-based, and geography-based. Their method how-
ever requires datasets to have object, gender, and geography annotations to discover these
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biases. Two limitations of their method are that i) these annotations may not be easily avail-
able, ii) the method would miss failure modes along other dimensions. Further, as they
acknowledge, some of their insights are derived from pretrained models and external tools
that may themselves contain implicit biases. IBM's AI Fairness 360 [5] uses a comprehen-
sive set of metrics, algorithms and mitigation strategies to measure, report and reduce biases
in datasets and machine learning models. Similarly, FairML [1] is a toolbox that helps audit
predictive models by computing the relative signi�cance of the model's inputs. Models are
then queried with sample data that emulates real world inputs, and perturbing this data helps
determine model fairness. Cabreraet al. present Fairvis [9], a visual analytics tool that helps
audit fairness in machine learning models by allowing domain experts to investigate sub-
groups of data, reporting a high-level overview of their performance and suggesting similar
subgroups to explore for detecting bias. These methods require full knowledge of the dataset
and report bias through well-de�ned fairness metrics. Our tool works explicitly with visual
recognition models and reports bias through underperforming data subpopulations, utilizing
visual explanations to understand failure modes. A few methods rely on small image pertur-
bations to determine salient regions of the input image for tasks to establish the presence of
bias [10, 11, 16, 18].
Counterfactual Approaches. Dentonet al. [23] and Balakrishnanet al. [3] present a coun-
terfactual method to identify biases in a smiling attribute classi�er. They accomplish this by
building a generative model of face images that manipulates speci�c image characteristics
along meaningful factors of variation. They then test how the prediction of the trained clas-
si�er changes if a characteristic (deemed irrelevant to the classi�cation task by humans) is
altered in a speci�c targeted manner. They use this technique to identify a causal relationship
between features in an image and the classi�er output and establish a source of bias. The
effectiveness of such methods highly depend on how well the model is able to suf�ciently
disentangle different image attributes, and ensuring that the newly generated images contain
no other signi�cant changes that may affect the outcome of the task. Dashet al. [12] and Joo
and Kärkkäinen [24] also propose counterfactual methods to identify bias in visual models.
However, they explore bias with respect to speci�c protected attributes like race and gender.
Our method does not require speci�c sensitive attributes and tries to identify sources of bias
of any form that lead to systematic failure modes.

3 Approach

We introduceUDIS for the unsupervised discovery of model biases. We combine a hierar-
chical clustering technique to discover data subsets deemed similar by the model and use a
performance ranking criteria to sort hundreds of clusters and propose to the developer only
the few sets most likely to be caused by model bias (see Figure 1), eliminating the cost of
annotating large-scale data.

Given attribute annotations, prior work [23] has shown it is possible to learn latent vec-
tors corresponding to semantic concepts, and using these to detect bias via evaluating coun-
terfactual queries. More recent work [32] has shown that it may be possible to learn such
disentangled latent vectors in an unsupervised fashion. But image generation is hard and
learning to manipulate one speci�c attribute at a time is even harder, even in a supervised
manner. Further, it is not guaranteed that the learned attributes will be semantic or corre-
spond to features we care about. It is also not clear if this approach will generalize to more
complex / smaller datasets. One possible approach is to use off-the-shelf attribute predictors
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Figure 1: We proposeUDIS for unsupervised discovery of biases in a model.Left: The
input model is used as a feature extractor for the test dataset. Bottom-up agglomerative
clustering is performed on these feature vectors to obtain a binary cluster tree.Right: We
use silhouette score as a measure to determine the best clustering from this tree, and �lter
and sort the clusters based on their accuracies before presenting them to the developer.

as an alternative to not having attribute annotations, but such models may contain implicit
biases themselves.

Our method utilizes model interpretability, in an effort to �nd similar sets of images
where the model behaves similarly. Since we would like to use this tool mainly for error
analysis, we focus on the groups of images for which the model performs poorly.

3.1 Notation

Let x andy represent the input images and predicted class respectively. Then for a trained
convolutional neural network,M : x ! y, our goal is to identify clusters of similar images that
could potentially suggest model biases. For a given input imagex, the model M generates a
K-dimensional output (forK classes) for the classi�cation task,

y = argmaxM(x) = argmaxF(h(x)) (1)

whereh(x) is the penultimate layer embeddings andF(:) is the �nal classi�er layer.
We de�ne the overall accuracy of the model on the test datasetT asACC(T) and accuracy

of the model on a cluster of images,C asACC(C). In the multi-label classi�cation setting,
when discovering biases with respect to a categoryb, ACC(T) represents the model accuracy
with respect to categoryb over the full test datasetT.

3.2 Visual Explanations

On retrieving clusters of images, we wish to discover the features of the input image that is
responsible for the classi�cation decision. In this regard, we use heatmaps based on Grad-
CAM [38] to visualize a mask over the region of the image that the model is focusing on for
its classi�cation decision. We compute this mask by computing the gradient of the score for
the predicted classy, with respect to the feature map activations of the �nal convolutional
layer and global-average-pooling them to obtain importance values for the feature maps. We
then apply a ReLU over the weighted linear combination of feature maps and their impor-
tances, to obtain a localization heatmap on the region of interest for the classy.
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3.3 UDIS: Unsupervised Discovery of Bias in Deep Visual Recognition
Models

3.3.1 Feature Extraction and Cluster Tree Generation

In both the binary and multi-label classi�cation settings, we compute hidden representations
h(x) using the penultimate layer of the network (i.e. the layer before the logits layer). For
the binary classi�cation setting, we do so for each image in the test dataset, whereas, for
multi-label classi�cation, to observe bias with respect to a categoryb we computeh(x) for
all the images in the test dataset where the model's predictions contain the categoryb.

We then perform hierarchical bottom-up clustering [46] on these hidden representations
h(x). We begin with each hidden vector as a singleton cluster, and recursively merge the
pair of clusters that leads to the least increase in total within-cluster variance after merging.
We use euclidean distance as the metric to compute linkage. This results in a binary tree
of image clusters, where leaf nodes represent each image inT as an individual cluster and
the root node representsT. Parsing the tree from the root, we notice that clustering in this
feature space recursively splits clusters into a relatively high accuracy cluster and a relatively
low accuracy cluster at every iteration (see Figure 1, left).

3.3.2 Cluster Selection and Thresholding

We now present our approach for selecting a set of disjoint and important clusters from our
binary cluster tree to present to the developer (see Figure 1, right). We begin by exploring
the binary tree bottom-up and evaluating the silhouette score [36] for each cluster at different
clustering iterations. Since our method focuses on determining failure modes indicative of
model bias, we treat the highest ancestor with 100% cluster accuracy along any tree branch
as a single cluster, while evaluating the silhouette score.

The silhouette score is a measure of how similar an image is to other images within the
same cluster and different from images in other clusters. Our goal is to �nd a disjoint set
of image clusters with the highest silhouette score. Here, the silhouette score for a given
clustering refers to the mean silhouette coef�cient across all samples. The silhouette coef�-
cient for a single sample is de�ned using its mean intra-cluster distance(mintra) and its mean
nearest-cluster distance(mnear) as:

s=
mnear� mintra

max(mintra;mnear)
(2)

The silhouette scores at different clustering iterations form a bitonic sequence, which
is strictly increasing, and after the bitonic point, strictly decreasing. This is indicative of
poor clustering at the top of the tree where all the images form a single cluster and poor
clustering at the bottom of the tree where each image is its own cluster. Thus, the best
clustering of images corresponds to the clustering with the bitonic point as its silhouette
score. To determine this right set of image clusters optimally, we use a modi�ed binary
search. Consider an array of silhouette scores corresponding to every clustering iteration, we
check the right subarray if the silhouette score of the array midpoint is part of an increasing
subsequence, and the left subarray otherwise. We also impose an additional size constraint
on the cluster, to ensure that the smallest cluster contains at least 5 images, and the largest
cluster contains no more than 100 images, for the sake of visualization.

For a given clusteringC = f C1;C2; :::Cng, we sort the retrieved clusters in increasing
order of their cluster accuracies. Our interest lies in �nding failure modes that lead to a large
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drop in performance. Clusters with small drops in performance compared toACC(T) tend
to be misclassi�cations or errors and not biases. To surface clusters indicative of bias, we
�lter the retrieved clusters to obtainC0by dropping the clusters where the cluster accuracy is
more than two-thirds of the overall model accuracy on the test set, i.e.

C0=
�

Ci j ACC(Ci) <
2
3

� ACC(T)
�

(3)

We experiment with different thresholds to �lter the clusters that are potentially indicative
of bias. We notice across our different settings that clusters with accuracies below 50% (for
binary problems) are re�ective of systematic errors and potentially model bias. To allow
for the examination of additional, less obvious or cohesive error types, we return a superset
which includes all clusters with accuracy less than 66% of the overall test accuracy.

For each cluster,Ci , we also compute the average feature vectorhCi
avg as,

hCi
avg =

1
jCi j

å
x2Ci

h(x) (4)

which is used to provide the user with the nearest neighbor cluster with a high accuracy,
based on the euclidean distance metric in the feature space. This provides the user with
insight on deviant features amongst similar images that may be responsible for failures. If
ground truth attribute information is present, the tool also presents the developer with the
nearest neighbor cluster with a high accuracy, based on euclidean distance in ground truth
attributedistribution space (details in supplementary material).

4 Experiments

4.1 Overview

We show the results of our method for three settings – two single attribute prediction tasks
on the CelebA [30] dataset and multilabel classi�cation on the MS COCO [29] dataset.

1. Smiling prediction on CelebA. We train a Resnet50 [19] backbone (initialized with
ImageNet weights) on the CelebA dataset to predict if a person is Smiling/Not Smiling.
The trained model has an accuracy of 92% on test data.

2. Smiling prediction on biased CelebA.In this setting, weintentionallyinduce bias in
the dataset towards the “Black Hair” attribute. We do this by manually subsampling
the training dataset to increase the proportion of images containing the “Black Hair”
attribute that are labeled as “Smiling”. Conversely, we increase the proportion of
imagesnot having the “Black Hair” attribute that are labeled as “Not Smiling”. We
ensure that the despite the induced bias, we have a model that performs well on test
data (93% accuracy).

3. Multilabel classi�cation on MS COCO. As UDIS is model agnostic, we also include
a multi-label 80-way classi�cation task. We use an open-source DenseNet [21, 22]
classi�er trained on the MSCOCO dataset from Wanget al. [44], that uses a binary
cross-entropy loss to predict multiple labels for an input image.

4.2 Implementation details

The ResNet50 models are trained with PyTorch [31] on 8 NVIDIA RTX 2080 GPUs with the
SGD optimizer, batch size 64, weight decay 1� 10� 4, learning rate 5� 10� 4, momentum




