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Abstract

Existing temporal action localization (TAL) works rely on a large number of training
videos with exhaustive segment-level annotation, preventing them from scaling to new
classes. As a solution to this problem, few-shot TAL (FS-TAL) aims to adapt a model
to a new class represented by as few as a single video. Exiting FS-TAL methods assume
trimmed training videos for new classes. However, this setting is not only unnatural –
actions are typically captured in untrimmed videos, but also ignores background video
segments containing vital contextual cues for foreground action segmentation. In this
work, we first propose a new FS-TAL setting by proposing to use untrimmed training
videos. Further, a novel FS-TAL model is proposed which maximizes the knowledge
transfer from training classes whilst enabling the model to be dynamically adapted to
both the new class and each video of that class simultaneously. This is achieved by
introducing a query adaptive Transformer in the model. Extensive experiments on two
action localization benchmarks demonstrate that our method can outperform all the state-
of-the-art alternatives significantly in both single-domain and cross-domain scenarios.
The source code can be found in https://github.com/sauradip/fewshotQAT

1 Introduction
Temporal action localization (TAL) aims to identify the temporal duration (i.e., the start
and end points) and class label of action instances in naturally untrimmed videos [3, 14].
Existing TAL methods [2, 19, 33, 36, 43] use training datasets composed of a large number
of videos (e.g., hundreds) per class with exhaustive segment-level annotation. The annotation
is tedious and costly. Further, for some rare classes collecting sufficient video instances may
not even be feasible. These have severely limited the scalability and general usability of
existing TAL methods. Inspired by the success of few-shot image classification [5, 9, 22,
25, 27], few-shot learning (FSL) has been recently introduced to TAL [37, 38, 41]. A few-
shot learning model is designed to eliminate the annotation of large training data. This is
achieved by meta-learning which enables a model to adapt to any new class with as few as a
single video. One of the key challenges in FS-TAL is how to capture the intra-class variation
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using only a handful (e.g., 1-5) training instances of a new class. One of the key objectives
of meta-learning is to thus transfer such intra-class variation information from a large set of
seen training classes to the new class to compensate for lack of training data.

Nonetheless, existing few-shot TAL (FS-TAL) methods [37, 38, 41] all adopt a setting
under which trimmed videos are used to represent the new classes for model adaptation. This
setting seems to problematic: (1) As mentioned earlier, the TAL problem exists because most
action instances are first captured in untrimmed videos sandwiched by background segments.
An analogy is that objects always co-exist with background (e.g., tree/road/wall) in an image.
So to obtain the trimmed new class video, one needs to first manually annotate (trim) the
untrimmed videos. This begs the question: why not use the untrimmed video together with
the annotation for model adaptation? (2) Each new action class occurs in its own specific
context (background), which carries important cues on how to segment it. Using trimmed
videos means that a FS-TAL model is unable to exploit the contextual information for both
knowledge transfer from seen classes and new unseen class adaptation.

In this work, we first introduce a new and more practical few-shot TAL (FS-TAL) prob-
lem setting. During both the training (meta-learning) and inference (model adaptation)
stages, each class is represented by a support set comprising untrimmed videos with tem-
poral annotation. A segmentation model is then built using the support set and applied to
a query set containing untrimmed videos of the same class to locate the foreground action
instances. This change of setting means that instead of meta-learning a model to tempo-
rally align the support set instances with the foreground segments of the query video as in
[37, 38, 41], we aim to meta-learn a foreground/background classifier that can be quickly
adapted to new classes. To this end, we propose a novel FS-TAL model which meta-learns a
query adaptive Transformer (QAT) for fast adaption of foreground/background classifier to
a new class. In particular, this leverages the attention mechanism across the query video and
few-shot classifier in order to better capture the intra-class invariance. As shown in Figure
1, our model has two key components, a snippet classifier that labels each video snippet into
foreground or background, and a query adaptation module designed for query video adap-
tation. The former is a simple binary classifier constructed using the annotated untrimmed
support set videos. The latter is formulated as a Transformer that takes both the classifier
weight vector and query video features as input and outputs an updated classifier adapted to
each query video. This QAT module is meta-learned and fixed during inference; therefore
the whole model is inductive. Importantly, our model is flexible in that it can work in both
the new setting proposed in this paper and the existing setting with trimmed support set.
We make the following contributions: (1) We introduce a new and more practical FS-TAL
problem setting. (2) We propose a novel FS-TAL model with a query adaptive Transformer
for model adaptation to both a given new class and each query video. (3) Extensive experi-
ments show that the proposed method yields new state-of-the-art performance on two TAL
datasets (ActivityNet-v1.3 and Thumos’14). Under a more challenging and more realistic
cross-domain setting, the advantage of our method remains.

2 Related Works

Temporal Action Localization An intuitive approach to temporal action localization (TAL)
is based on sliding window – first generating multi-scale segments and then classifying them
[6]. A key limitation with this pipeline is that a large number (thousands) of possible seg-
ments are necessary for achieving reasonable accuracy, which is computationally expensive.
To overcome this issue, foreground/background modeling is introduced to generate action
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proposals [10, 19, 20, 24, 24, 43]. When proposal generation is poor, incorporating sliding
windows could be helpful [11]. For improving local segment-level feature representation,
[36, 39] exploit graph convolutional networks to capture long-range contextual information.
Nonetheless, assuming a pre-collected dataset of all action class during training, all these
methods have poor scalability to large number of classes, due to the high annotation cost.
Few-shot Learning For fast adaptation of a model to any given new class with few training
samples, few-shot learning (FSL) provides a solution [25, 27, 31]. It is often realized by
meta-learning which simulates the behaviour of new tasks with novel classes represented
by only a handful of labeled samples. This eliminates the requirement of labeling a large
dataset for a new class. Representative approaches include hallucination (data augmentation)
[12, 34], initialization optimization [9, 21, 22], metric learning [17, 27]. Beyond image
classification, FSL has also been introduced to object detection [7, 13, 15] and semantic
segmentation [23, 32, 40, 42]. In contrast to these image analysis problems, here we focus on
the more challenging TAL problem. Note that the model in [13], though developed for object
detection in images, can also work in the FS-TAL setting with trimmed support set. More
specifically, unlike our query adaptive Transformer for classifier adaptation at the sample
level, it leverages self-attention to contrast the regional features exhaustively across the query
and support samples. We will compare with [13] in our experiments (Table 1).
Few-shot Temporal Action Localization FSL has been introduced to temporal action lo-
cation recently [37, 38, 41]. Yang et al. [37] propose the first FS-TAL setting with trimmed
support set. It incorporates the sliding window idea in the matching network [31] to local-
ize action instances in untrimmed query videos. Later on, Zhang et al. [41] consider weak
video-level annotation of untrimmed training videos. Similar to our proposed setting, the lat-
est work [37] also focuses on a singe new class at one time. However, a common limitation
with these existing FS-TAL problem settings stems from the assumption of trimmed support
set. As explained earlier, trimmed videos do not exist naturally and need to be obtained with
the same amount of manual annotation as our setting. Importantly, the ignorance of back-
ground content in the original untrimmed video leads to the failure to exploit useful context
information. We will compare the two FS-TAL settings in our experiments (Table 1).

3 Proposed Methodology
Problem Formulation Given only a few videos from any unseen action class, we aim to
learn a TAL model for that class. For FS-TAL, we assume a base category set Cbase for
training, and a novel category set Cnovel for testing. For testing cross-class generalization,
we ensure that the two class sets are disjoint: Cbase

⋂
Cnovel =∅. Accordingly, the base and

novel datasets are denoted as Dbase = {(Vi,Yi) ,Yi ∈Cbase} and Dnovel = {(Vi,Yi) ,Yi ∈Cnovel}
respectively. Under the proposed new setting, each training video Vi is associated with
segment-level annotation Yi = {(st ,et ,c), t ∈ {1, ..,M},c ∈ C} including M segment labels
each with the start and end time locations and action class. In evaluation, for each task,
we randomly sample a class L ∼Cnovel from which K and one labeled videos are randomly
sampled to construct the support set S and the query set Q respectively. The labels of S are
accessible for model few-shot learning whilst that of Q are used for performance evaluation.

3.1 Model Architecture
Our FS-TAL model is illustrated in Figure 1. It consists of a task-generic video embedding
module (Sec. 3.2), and a task-specific snippet classification module (Sec. 3.3). We aim to
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Figure 1: Overview of the proposed FS-TAL deep learning architecture. There are two
main modules: (1) Video embedding for feature representation: It is pre-trained on the
whole training set, and shared by all different tasks for more effective knowledge transfer
from training classes to test classes. (2) Snippet classification for foreground prediction: It
is learned specifically for every individual task in two steps. Initialized with the average
of foreground snippet features, the first step learns the classifier on the support videos in
a supervised manner. The second step further adapts the classifier weights to every query
video with a query adaptive Transformer. The Transformer is meta-trained. The final lo-
calization result is obtained by thresholding snippet-level classification scores and temporal
non-maximum suppression.

achieve optimal video embedding and classification for any new task with only a few (1 or 5)
labeled support videos. To that end, we share video embedding component across all tasks,
and exploit the classification component for tackling the task specificity. With the output
of task adapted classification on every snippet of a test video, we apply a non-parametric
localization process to obtain the segment predictions (Sec. 3.4).

3.2 Task-Generic Video Embedding

To capture action location information of a video, we construct a video embedding module
with two components including feature backbone and snippet embedding.
Feature backbone In general, any video action models can be used such as C3D [29], I3D
[4] and TSM [18]. For fair comparison with [38], we adopt the same backbone C3D as
our default choice. It is characterized by conducting 3D convolution and pooling operations
in 2D spatial and 1D temporal dimensions simultaneously, capturing both appearance and
motion information. Given an input video V , we extract RGB Xr ∈ RT×d1 and optical flow
Xo ∈ RT×d1 features at the snippet level, where T denotes the number of snippets and d1
denotes the feature dimension. Each snippet is a short sequence of (e.g., 16 in our case)
consecutive frames. We denote the concatenated features as X = [Xr;Xo] ∈ RT×2d1 . As
in most TAL methods [20, 35, 36], the feature backbone is pre-trained on a large video
classification dataset (e.g., Kinetics [16]) and then frozen to serve as a feature extractor.
Snippet embedding Whilst C3D features have already encoded local motion information
due to using 3D convolution and optical flow, long-term structural information is lacking
but critical for action localization. To address this issue, we adopt an off-the-shelf tempo-
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ral proposal model called GTAD [36]. Other proposal models can be similarly integrated
[19, 20, 36]. In particular, GTAD exploits a temporal graph and a semantic graph for mod-
eling long-term temporal and contextual information concurrently. In our context, we utilize
GTAD as a means for refining the C3D snippet features in a way that they become more
sensitive to foreground (action content) and background. We use the output of some inter-
mediate layer of GTAD as the snippet embedding. The layer selection will be evaluated in
our experiments (Sec. 4).

Formally, taking C3D features X ∈ RT×2d1 of a video as input, GTAD can output the
snippet embedding as Xse ∈ RT×C where C is the embedding dimension. Support and query
videos share the same GTAD model. We denote X s

se and Xq
se as the embedding of the support

and query videos. Consider that snippet embedding would be largely shareable among dif-
ferent tasks, we train the GTAD model on the base dataset in a standard supervised learning
way. The objective function includes a classification loss and a localization loss with respect
to the ground-truth foreground mask [36]. The trained GTAD and C3D form the video em-
bedding module which provides generic video representations for the subsequent few-shot
learning stage.

3.3 Task-Specific Snippet Classification
In our architecture, few-shot learning is focused on the snippet classification component for
capturing each task’s specificity. We aim to build a binary classifier hφ (with φ the parame-
ters) that can distinguish foreground action from background content in a video. Formally,
the classifier model for predicting the foreground likelihood is a simple linear classifier as

p(t) = hφ (Xse(t)) = σ(τ · [cos(Xse(t),φ)]), (1)

where σ specifies the sigmoid function, τ is a temperature hyper-parameter, and cos is the
cosine similarity. The snippet is indexed by t ∈ {1, · · · ,T}.

To make a classifier discriminative for each specific task, we introduce a two-step learning-
and-adapting strategy. In the first step, we learn the classifier weights on the support set in a
supervised way. In the second step, we further adapt the support-set trained classifier weight
to every query video with a query adaptive Transformer model. This aims to solve the intra-
class variation problem.
New class adaptation As the support set is composed of untrimmed videos with segment-
level annotation, we can adapt the classifier to a new class with standard supervised learning.
Given the ground-truth annotation, we label each snippet with foreground or background. To
train the classifier, we use the cross entropy loss as the objective function:

Lce =−
1

2K

K

∑
k=1

[L f g (X s
k )+Lbg (X s

k )], (2)

L f g (X s
k ) =

l f g + lbg

ε + l f g
∑

t∈{1,··· ,T}
ŷs

k(t) log[ps
k(t)], (3)

Lbg (X s
k ) =

l f g + lbg

ε + lbg
∑

t∈{1,··· ,T}
(1− ŷs

k(t)) log[1− ps
k(t)], (4)

where ps
k(t) is the prediction of the t-th snippet X s

k (t) from the k-th support video. ε is
used to tackle extreme cases such as zero background/foreground. To balance the effect of
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foreground and background snippets in training, we introduce a balancing policy based on
their sizes (l f g and lbg). The idea is intuitive – less is more important.

The classifier can be trained by a small number of (e.g., 50∼100) iterations. We denote
φ ∗ as the support-set trained classifier’s weights. Given only a handful of labeled samples,
how to initialize the classifier weights becomes more critical. Instead of random initializa-
tion, we found that the mean of foreground snippet’s embedding serves as a stronger choice.

Query video adaptation Under the few-shot setting, a key challenge to overcome is the
insufficient training samples in the support set for capturing the intra-class invariance of
the new class. As a result, training the classifier only on the support videos often fails to
capture the discriminative informative generalizable to individual query videos. To address
this limitation, we propose a query adaptive Transformer model (with the parameters ψ)
which is based on self-attention [30].

Taking an input in a triplet of (query,key,value), our Transformer outputs an undated
query with attentive association the value. As our objective is to associate the classifier
weights φ ∗ with the query video Xq

se, we set (query,key,value) = (φ ∗,Xq
se,X

q
se). The attentive

learning is then formulated as

Ai(φ
∗) = φ

∗+ so f tmax(
φ ∗WQ(X

q
seWK)

T
√

d
)(Xq

seWV ), (5)

where WQ/WK/WV are learnable parameters (each is realized by a fully-connected layer) that
projects the respective input to a d-dimension latent space. In a multi-head attention (MA)
design, we combine a set of independent Ai to form a richer learning process:

φ
∗∗ = [A1(φ

∗)..Am(φ
∗)]︸ ︷︷ ︸

MA

+MLP(φ ∗) ∈ RL×256. (6)

The MLP block has one fully-connected layer with residual skip connection. Layer norm is
applied before both the MA and MLP block.

Learning objective After the classifier has been learned on both support and query
videos, it can be applied to the query video. We classify each snippet with Eq. (1) with
the foreground probability as:

p′(t) := hφ∗∗(Xq
se(t)). (7)

For training our Transformer (ψ), this prediction is then used to compute a cross-entropy
loss (Eq. (2)) as objective. In meta-training, we conduct loss gradient back-propagation only
once for each episode. We denote ψ∗ as the optimized Transformer’s parameters.

3.4 Model Inference
During testing, each time we are given a new task with one random unseen action class
sampled from the novel dataset Dnovel . With the frozen video embedding module, we need
to obtain a task-specific snippet classifier in two steps: supervised learning with K shots of
support videos (Eq. (2)) and classifier weight adaptation on a query video by applying the
meta-trained Transformer (note that our Transformer itself is frozen here). The classifier is
then applied to predict the foreground probability of every snippet of a query/test video.
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Action instance generation After we obtain the snippet-level classification results, we
threshold on their foreground probabilities and take those consecutive snippets as action
instance candidates. To indicate the prediction confidence of each candidate, we use the
highest snippet foreground probability. We then adjust the confidence scores using temporal
soft Non-Maximal Suppression (NMS) [1, 20]. Finally, we select top N candidates as the
localization result.

4 Experiments

Datasets We evaluate on two large-scale temporal action localization datasets. ActivityNet-
v1.3 [3] is a popular TAL benchmark. It contains 19,994 temporally annotated untrimmed
videos in 200 action categories. THUMOS’14 [14] is another widely used benchmark for
action recognition and localization. There are 413 untrimmed videos from 20 different cate-
gories. The 20 classes are a subset of the 101 classes in UCF101 [26].
Few-shot learning setting To facilitate performance comparison, we use the same class split
as introduced in [38]. For both datasets, we split the videos into single instance and multi-
instance according to the number of action instances per video. For the single instance case,
we divide the videos with multiple action instances into independent single-instance videos.
Every newly generated video is no longer than 768 frames. For each of the two cases, we
divide all the classes into three non-overlapping subsets for training (80%), validation (10%)
and testing (10%), respectively. The validation set is used for model parameter tuning and
best model selection. We consider 1-shot and 5-shot. In our setting we adopt untrimmed
support set, as opposed to [38] using trimmed videos. For each test, we use 5000 random
tasks and report their average result.
Implementation Details For each untrimmed video, we extract its RGB frames at 16 FPS
and at the resolution of 256 × 256. We averagely divide each video into 100 (256 for THU-
MOS) non-overlapping snippets and sample 8 frames for each snippet (i.e., T = 100). As
[38], we filter out videos having less than 768 frames. We consider single-instance and
multi-instance test videos, separately. The dimension of C3D feature is 500 (i.e., d1 = 500).
We take the penultimate layer’s output (Layer-5) of GTAD’s localization module as video
embedding (256-D). The latent feature dimension d (Eq. (5)) of our query adaptive Trans-
former is 256. Dropout is used in our Transformer to alleviate model overfitting. We set the
NMS threshold of 0.7/0.6 for ActivityNet/THUMOS. As the final TAL result, we take top
100/200 for ActivityNet/THUMOS. We adopt the Adam optimizer [28] with learning rate
0.004. We train the model for 50 epochs each with 200 episodes.

Single instance videos Multi-instance videos
ActivityNet-v1.3 THUMOS’14 ActivityNet-v1.3 THUMOS’14

map@ 0.5 0.6 0.7 0.8 0.9 mean 0.5 0.6 0.7 0.8 0.9 mean 0.5 0.6 0.7 0.8 0.9 mean 0.5 0.6 0.7 0.8 0.9 mean

1 Shot 1 shot

Hu et al. [13] 41.0 33.0 27.1 15.9 6.8 24.8 - - - - - - 29.6 23.2 12.7 7.4 3.1 15.2 - - - - - -
Feng et al. [8] 43.5 35.1 27.3 16.2 6.5 25.7 - - - - - - 31.4 25.5 16.1 8.9 3.2 17.0 - - - - - -

Yang et al. [38] 53.1 40.9 29.8 18.2 8.4 29.5 48.7 - - - - - 42.1 36.0 18.5 11.1 7.0 22.9 - - - - - -

Ours 55.1 45.2 35.5 25.3 13.2 32.5 49.2 36.9 24.3 16.5 10.1 27.2 44.1 37.8 29.5 21.4 11.5 25.8 7.3 4.2 3.1 2.0 1.5 3.7
Ours† 55.6 44.6 35.7 24.6 12.7 31.8 51.2 38.1 22.7 14.8 9.2 27.0 44.9 38.0 29.2 21.4 11.2 25.9 9.1 6.8 4.9 3.5 2.3 5.3

5 Shot 5 shot

Buch et al. [2] 39.7 33.6 27.0 14.0 4.6 23.3 35.7 29.4 20.8 11.7 3.4 20.2 30.4 25.1 19.6 12.9 6.6 18.9 2.7 1.9 1.4 0.9 0.4 1.5
Hu et al. [13] 45.4 35.0 29.9 17.6 5.2 27.0 42.2 32.6 20.3 13.7 5.2 22.8 38.9 27.2 18.3 12.7 7.3 20.9 6.8 3.1 2.2 1.8 1.3 3.1

Yang et al. [38] 56.5 47.0 37.4 21.5 11.9 34.9 51.9 42.7 24.4 17.7 10.1 29.3 43.9 37.4 20.2 13.4 7.7 24.5 8.6 5.6 3.8 2.5 1.7 4.4

Ours 63.0 54.5 44.2 30.9 15.8 38.4 54.3 43.6 35.8 24.5 12.2 31.6 48.2 39.1 29.7 22.5 12.8 28.2 10.4 7.1 5.7 4.8 2.9 5.4
Ours† 63.8 54.2 43.9 31.4 16.4 38.5 56.1 47.2 32.4 24.3 13.7 32.7 51.8 42.7 32.6 23.4 11.9 30.2 13.8 11.3 8.4 6.3 4.2 7.1

Table 1: FS-TAL results (%). †: Using untrimmed support set (i.e., the new setting).
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4.1 Comparison with state-of-the-art

Competitors For comparative evaluation, we consider a few-shot object detection model
[13], a one-shot video re-localization model [8], and the latest FS-TAL model [38]. Because
[8] cannot tackle multiple support videos, we compare with a modified version of tempo-
ral action proposal model SST [2] for 5-shot case. As in [38], a fusion layer is added on
top of SST’s GRU layer to incorporate the support video features, and the proposal with
the largest confidence score is taken as the prediction. All the methods use the same C3D
video feature backbone. For all the competitors, we use trimmed support set to keep their
original designs. We evaluate the proposed model under both the previous setting (trimmed
support set) and our new setting (untrimmed support set). This allows for absolute fair model
comparison as well as setting comparison. When feeding trimmed support videos into our
model, the background loss term Lbg in Eq. (2) will become zero; without any other formu-
lation change, our model can be applied to the old setting. The difference is that now the
Transformer is used to adapt a foreground template/prototype to each query video, instead
of a foreground/background classifier. Note that none of the existing methods can be easily
extended to operate under our new setting.
Results The results are compared in Table 1. It is evident that our method achieves the
best performance in all test settings when using the same trimmed support set. This suggests
the superiority of our model over all alternative designs, verifying the proposed few-shot
learning architecture. The margin is even larger in more strict metrics. Importantly, we
see that the margin further increases in 5-shot case, indicating the superior capability of our
method in leveraging multiple training videos. This is mainly due to the proposed query
adaptive Transformer that can amplify the benefit of larger support-set via attentive query
video adaptation, which is lacking in all existing methods. In the multi-instance setting on
THUMOS’14, all the methods do not work well due to longer videos and short action in-
stances. However, it is still encouraging that our model can double or triple the performance
of alternatives at mAP@0.6-0.9 in such challenging test.

We further examine the two FS-TAL problem settings with the proposed method. We
make the following observations. In the single-instance setting, the model performance is
marginally better in previous setting with trimmed videos in most cases. Our observation
suggests that this is potentially due to lack of background diversity. However, when it comes
to the more practical and challenging multi-instance setting, the opposite is true especially in
the 5-shot case. This indicates that background helps model learning with useful context cues
co-existing with action instances. Given these observations, we consider that the proposed
setting is not only more practical but also provides more information for better modeling, as
compared to the previous settings.

4.2 Effect of Query Video Adaptation

In Section 3.3 we introduce a query adaptive Transformer for fast adapting the support-set
trained classifier’s weights to each query video. This aims to solve intra-class variation with
FS-TAL as there is no sufficient training samples in support set to capture this variation.
There may exist big appearance difference between the support and query video action in-
stances (see Figure 2 in Supplementary). Query video adaptation is thus critical. From Table
2 we can see that without the proposed query video the performance will drop significantly
(3 ∼ 8%) in 1/5-shot settings of both datasets. This verifies the importance of learning the
intra-class invariance problem and the ability of our Transfer model in adapting the classi-
fier’s weight to each query video, i.e., video-specific adaptation. In Figure 2 we visually
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(a) Before Query Adaptation

Classifier Weight
Query Foreground

(b) After Query Adaptation

Classifier Weight
Query Foreground

Figure 2: The effect of Query Video Adaptation with t-SNE visualization. It is shown
that with the proposed query video adaptation, the classifier weight can be effectively pushed
to be aligned with the foreground content of the query video sample. This improves learning
the intra-class invariance of the new class.

show that our query adaptive transformer is effective in adapting the classifier’s weight to
capture the specificity of the query video’s foreground content.

Dataset ActivityNet Thumos

mAP 0.5 mean 0.5 mean

Without QVA

Ours @ 1-shot 37.3 21.7 3.6 2.3
Ours @ 5-shot 43.8 25.3 7.9 4.0

With QVA

Ours @ 1-shot 44.9 (↑ 7.6) 25.9 (↑ 4.2) 9.1 (↑ 5.5) 5.3 (↑ 3.0)
Ours @ 5-shot 51.8 (↑ 8.0) 30.2 (↑ 4.9) 13.8 (↑ 5.9) 7.1 (↑ 3.1)

Table 2: Effect of query video adaptation (QVA) in the multi-instance setting.

4.3 Cross-Domain Localization
Following the above single domain (dataset) FS-TAL evaluation, we further introduce a more
challenging and more realistic cross-domain setting. As THUMOS’14 and ActivityNet-v1.3
present large differences in action instance length and background characteristics, they are
suitable for cross-domain evaluation. We consider the single-instance setting. We compare
our method with the state-of-the-art model [38].
THUMOS→ ActivityNet In the first cross-domain experiment, we train a model on the
base classes of THUMOS’14 (source domain) and test the model on the novel classes of
ActivityNet-v1.3 (target domain). The results are reported in Table 3. It is shown that the
performance advantage of our method remains compared to the single-domain setting. For
example, the mAP@0.5 margin of our model over [38] is 4.8%/6.2% in the 1/5-shot cases.
Comparing the single-domain results in Table 1, we can see that domain shift indeed nega-
tively affects the performance of both models.
ActivityNet→THUMOS The second experiment considers the opposite transfer direction.
At large we have similar observations with our model again outperforming [38] in both 1/5-
shot setting. This suggests that our model can generalize to different transfer setups with
consistent performance advantages.
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Cross Domain Thumos→ ActivityNet ActivityNet→ Thumos

mAP 0.5 mean 0.5 mean

Yang et al. [38] @ 1-shot 41.1 25.2 36.2 21.4
Ours @ 1-shot 45.9 26.6 38.1 22.5

Yang et al. [38] @ 5-shot 48.2 27.8 37.5 23.6
Ours @ 5-shot 54.4 31.6 43.8 27.2

Table 3: Cross-domain FS-TAL.

4.4 Effect of Video Embedding Module

We evaluate the generality of our FS-TAL architecture in different video embedding designs.
In this test we select BMN [20]. Table 4 shows that BMN is slightly inferior to GTAD for
video embedding, which is consistent with the previous finding [36].

4.5 Inference Efficiency

In inference, our model runs a small number of iterations for learning the linear classifier’s
weights on the support set, which increases slightly the computational overhead. We con-
duct a quantitative cost analysis in 5-shot multi-instance setting on ActivityNet-v1.3. We
compared to the state-of-the-art model [38]. For both methods, we track the speed of 100
FS-TAL tasks on a machine with one RTX2080Ti GPU. Table 5 shows that our method has
very similar inference speed as [38], without efficiency disadvantage.

Dataset ActivityNet-v1.3

mAP 0.5 mean

BMN [20] 61.6 37.5
GTAD [36] 63.8 38.5

Table 4: Effect of video embedding
in the 5-shot multi-instance setting.

Dataset ActivityNet-v1.3

Metrics Speed (seconds / task)

Yang et al. [38] 0.81
Ours 0.83

Table 5: Inference efficiency test in the 5-shot
multi-instance setting with a RTX2080 GPU.

5 Conclusion

We have presented a new and more practical few-shot temporal action localization (FS-TAL)
problem. Unlike all existing settings, in our setting a new action class is represented by
untrimmed support set with useful background segments to provide contextual information.
We introduce a novel FS-TAL architecture that effectively transfers class-generic representa-
tion knowledge from training classes to any unseen test classes whilst adapting the model to
any new class. To solve the large intra-class variation problem, we introduce a query adap-
tive Transformer that further dynamically adapts the support-set trained classifier’s weights
to each query video. Experiments on two popular TAL datasets verify the superiority of our
method over existing alternatives in both the newly proposed setting with untrimmed labeled
support set and previous settings with trimmed counterpart. Moreover, our method remains
to be advantageous under a more realistic and challenging cross-domain setting.
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