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Abstract

Most existing multi-source domain adaptation (MSDA) methods minimize the dis-
tance between multiple source-target domain pairs via feature distribution alignment, an
approach borrowed from the single source setting. However, with diverse source do-
mains, aligning pairwise feature distributions is challenging and could even be counter-
productive for MSDA. In this paper, we introduce a novel approach: transferable attribute
learning. The motivation is simple: although different domains can have drastically dif-
ferent visual appearances, they contain the same set of classes characterized by the same
set of attributes; an MSDA model thus should focus on learning the most transferable
attributes for the target domain. Adopting this approach, we propose a domain attention
consistency network, dubbed DAC-Net. The key design is a feature channel attention
module, which aims to identify transferable features (attributes). Importantly, the atten-
tion module is supervised by a consistency loss, which is imposed on the distributions
of channel attention weights between source and target domains. Moreover, to facilitate
discriminative feature learning on the target data, we combine pseudo-labeling with a
class compactness loss to minimize the distance between the target features and the clas-
sifier’s weight vectors. Extensive experiments on three MSDA benchmarks show that
our DAC-Net achieves new state of the art performance on all of them.

1 Introduction
The domain shift problem has been one of the main obstacles for large-scale deployment of
machine learning systems in real-world applications [22, 43]. This is because in practice, we
often need to apply a trained model to a new target environment where the test data follow
a different distribution from the training data. As a result, the performance of the model
typically drops significantly. This problem has persisted in the deep learning era, even when
deep convolutional neural networks (CNNs) have demonstrated great successes in solving
many recognition tasks [26, 43]. As a key solution to overcome the domain shift problem,
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unsupervised domain adaptation (UDA) has been extensively studied [2, 6, 7, 13, 19, 27, 42].
UDA aims to transfer the knowledge learned from one or multiple labeled source domains
to a target domain in which only unlabeled data are given for model adaptation.

Early UDA work has been focused on the single-source setting [20, 27]. However, in real
world, the source training data can often be collected from multiple domains (see Figure 1).
This leads to a new UDA setting known as multi-source domain adaptation (MSDA), which
has received increasing attention in recent years [23, 32, 37, 42]. Most existing MSDA meth-
ods are based on aligning the feature distribution of the unlabeled target domain data with
those of the source domains. Feature alignment has been widely used for tackling domain
adaptation [4] and is adopted by most single-source UDA methods [7, 9, 30]. However, this
approach seems to be much less successful when applied to MSDA. This is not surprising:
from Figure 1, it is evident that objects of the same class can have drastically different ap-
pearances across different domains. Aligning the feature distribution of a target domain to
all the source domains requires a set of features that are completely domain-invariant. This is
extremely difficult to achieve; and forcing it can be counter-productive—it has been shown
that enforcing such an alignment across multiple source domains can lead to performance
inferior to that of using a single source domain [23].

Clipart Infograph Painting RealQuickdraw Sketch

Figure 1: Example images from the MSDA
benchmark DomainNet [23]. Each row con-
tains object images of the same class but from
different domains.

In this work, we introduce a new
approach based on transferable attribute
learning as an alternative to the existing
feature distribution alignment based ap-
proach to MSDA. The motivation is simple:
although different domains can have drasti-
cally different visual appearances, they con-
tain the same set of classes, which can be
explained using the same set of attributes.
For example, Figure 1 (mid-row) shows that
though a bicycle can be depicted in very dif-
ferent ways across the six domains (e.g., in
different image styles), it always consists of
wheels, frame, seat, handle bar, etc. Some
of these attributes are even shared across classes (e.g., cars also have wheels). Therefore, we
argue that an MSDA model should focus on learning from source domains the most trans-
ferable attributes for the target domain, which can be achieved by enforcing consistency on
attributes used by different domains.

To realize transferable attribute learning, we propose a novel domain attention consis-
tency network, dubbed DAC-Net. We follow the conventional model design adopted in most
papers [23, 38], which consists of a feature embedding network and a classifier (a softmax-
activated fully-connected layer) shared by both the source and target domains. However,
instead of aligning feature distributions via some distance metrics, we propose to enforce
domain attention consistency to identify transferable attributes, each represented by a CNN
feature channel. To that end, we first construct a feature channel attention module to encour-
age the DAC-Net to use a small set of features (latent attributes) to represent each image.
Then, to ensure these attributes to be transferable, a novel domain attention consistency loss
is introduced, which minimizes the distribution divergence of channel attention weights be-
tween each pair of source and target domains. To facilitate discriminate feature learning on
the target data, we further combine pseudo-labeling [15, 29] and a class compactness loss to
minimize the distance between the target features and the classifier’s weight vectors.
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Our contributions are summarized as follows: (1) We propose a new transferable at-
tribute learning based approach to tackle MSDA. The main idea is to learn, in each source
domain, the most transferable attributes/features for the target domain. (2) We propose a
novel domain attention consistency network (DAC-Net), which aims to align the distribu-
tions of channel-wise attention weights in each pair of source-target domains for learning
transferable latent attributes. (3) To facilitate discriminative feature learning, we combine
pseudo-labeling with a class compactness loss to pull together the target features and the
classifier’s weight vectors. (4) Extensive experiments on three MSDA datasets, including
DomainNet [23], Digit-Five [6, 14, 21] and PACS [16], show that DAC outperforms the state
of the art on all datasets, often by significant margins (e.g., 3.8% on the largest DomainNet).

2 Related Work
Single-source domain adaptation has been extensively researched. The main stream of
domain adaptation methods has been devoted to reducing the distribution mismatch between
source and target domains, mostly at the feature level [3, 7, 9, 18]. Direct distance met-
rics like maximum mean discrepancy (MMD) [9] and its kernelized version have been used
in [9, 18] for distribution divergence minimization. Inspired by generative adversarial net-
work (GAN) [8], adversarial learning has been used to align the feature distributions be-
tween source and target domains [7, 30]. Recent work has further taken into account the
class information, and focused on class-wise feature alignment across domains by using bi-
classifiers [20, 27] or aligning class centroids [12, 36].

More related to our work are attention alignment-based methods [11, 33]. In [11], the
spatial attentions summarized across channels between each source domain and the trans-
lated pseudo-target domain (via CycleGAN [44]) are aligned. In [33], transferable image re-
gions are identified based on adversarial networks. Different from these methods, our design
of DAC-Net aims to identify the most transferable attributes (feature channels) by aligning
the distributions of channel attentions between each pair of source and target domains.
Multi-source domain adaptation (MSDA) assumes access to multi-source data, compared
with the single-source setting. Most existing MSDA methods are still based on feature align-
ment. Xu et al. [37] developed deep cocktail network (DCTN), which extends the domain-
adversarial learning [7, 30] by learning a domain discriminator for each source-target pair. Li
et al. [17] chose a relevant subset of each domain to apply feature alignment. Zhu et al. [45]
proposed to align each source domain’s distributions with that of target domain in multi-
ple domain-specific feature spaces. Peng et al. [23] introduced M3SDA, which minimizes
moment-based distribution distances between each pair of source-target domains, as well as
between each source-source pair. To facilitate feature alignment, Peng et al. [24] measured
domain similarity by using a DOMAIN2VEC model to output vectorial representation for
each domain. Zhou et al. [42] leveraged complementary information from multiple domain-
specific classifiers to form an ensemble for the target domain. Pernes et al. [25] weighed the
importance of each source domain for feature alignment. Yang et al. [38] developed cur-
riculum manager for source selection (CMSS), which aims to learn which source domains
are more suitable to be aligned with the target domain. Wang et al. [32] investigated inter-
actions between different domains and developed a knowledge graph-based method called
LtC-MSDA to promote information propagation from source domains to the target one.

Our DAC-Net differs from the existing MSDA methods in that no feature distribution
alignment is attempted. Instead, we first introduce a channel feature attention module to
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encourage the learned features to capture a set of domain-transferable latent attributes. Then
we design a consistency loss to minimize the divergence between the distributions of channel
attention weights of each source-target domain pair. This is a much softer constraint than
feature distribution alignment, and it is also much more effective (see Table 1).
Attention mechanism was initially introduced to focus on specific words in one language
when translating a word in the other language [1]. In computer vision, attention has been
used for CNN architecture design. Hu et al. [10] investigated attention from the channel di-
mension instead of the spatial dimension. They designed a squeeze-and-excitation network
(SENet), which introduces a light-weight module that produces channel-wise attention val-
ues for a CNN layer. Woo et al. [35] further developed convolutional block attention mech-
anism (CBAM), which combines spatial attention [31] with channel attention [10]. In this
work, for the first time, we exploit attention for transferable attribute learning for domain
adaptation—a channel attention network is learned to attend to features that are transferable
between source domains and the target domain, supervised by a novel DAC loss.

3 Methodology

3.1 Problem Formulation
In multi-source domain adaptation (MSDA), we are provided with labeled source data from
K different domains, {S1, ...,SK}. The training data from the k-th source domain are denoted

by Sk = {(xSk
i ,ySk

i )}NSk
i=1 where x and y denote data (image) and label respectively. We also

have access to unlabeled data from the target domain, T = {xTi }
NT
i=1. In this paper, we focus

on image classification problems and assume a shared label space for the source and target
domains. The goal is to train a classification model leveraging {Sk}K

k=1 and T so that the
model can work well on an unseen test set in the target domain.

3.2 Domain Attention Consistency
To address MSDA, we propose a domain attention consistency network (DAC-Net). The
motivation behind DAC-Net is to learn to attend to features that are transferable between
multiple source domains and the target domain. Each feature (a CNN feature channel) rep-
resents a particular attribute. Therefore, in essence we aim to identify attributes that are
transferable to the target domain.

The architecture of our DAC-Net is illustrated in Figure 2. It adopts a common archi-
tecture design used by existing MSDA models [23, 38]. Concretely, the model consists of a
feature embedding CNN sub-network followed by a classification layer, both of which are
shared across the source and target domains. To encourage the feature embedding CNN to
learn a set of features that correspond to transferable latent attributes, we introduce a chan-
nel attention module inserted into different layers of the embedding network. With attention
modeling for each image, DAC-Net is encouraged to use a subset of the feature channels to
explain the image content, therefore facilitating the discovery of transferable latent attributes.

However, without proper supervision, simply inserting attention modules to a CNN net-
work would not help knowledge transfer from source domains to the target (see Table 2, #3
vs. #2). We therefore propose a novel domain attention consistency (DAC) loss, which min-
imizes the distance between the distributions of attention weights used by source domains
and the target domain. Below we detail the design of the attention module and the DAC loss.
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Figure 2: Overview of our DAC-Net, designed to attend to features that are transferable
from multiple source domains to the target domain. This is achieved by optimizing a domain
attention consistency loss that minimizes the `1 distance between the exponential moving
average (EMA) of attention weights of each source domain (mSk ) and that of the target
domain (mT ). In implementation, we apply the attention network to multiple layers in a
CNN. All the parameters are shared across domains.

Average-pool

Max-pool

MLP

MLP

�
Feature maps Attention weights

Sigmoid 
function

Figure 3: Architecture of our attention module

Attention module. Let F ∈ RC×H×W de-
note feature maps extracted by a CNN,
where C, H and W denote channel depth,
height and width, respectively. The atten-
tion network g(·) takes as input F and pro-
duces a vector of attention weights span-
ning the channel dimension, g(F) ∈RC. To
make g(·) light-weight, we follow the design of CBAM [35] when constructing g(·). The
architecture is detailed in Figure 3. The two branches share the same multi-layer perceptron
(MLP), which consists of two fully connected layers with the same dimension for input and
output. Notably, the hidden dimension in the MLP is reduced from C to C

r , where r is a
reduction ratio (fixed to 16), to reduce parameter overhead.
Domain attention consistency loss. As shown in Figure 2, we first extract feature maps
{FSk

i }B
i=1 and {FT

i }B
i=1 from the k-th source domain images {xSk

i }B
i=1 and the target domain

images {xTi }B
i=1, respectively. Here B denotes the batch size. The feature maps are then

forwarded to the attention module g(·). In this work, we simply use the attention weight
vector g(F) averaged in each domain to represent the domain-level attention distribution.
This average could be easily obtained at each mini-batch, but it will be an inaccurate measure
of the domain-wise attribute attention statistics. We thus use exponential moving average
(EMA) over mini-batches. Specifically, the EMA attention weights are computed as

mSk = αmSk +(1−α)
1
B

B

∑
i=1

g(FSk
i ), (1)

mT = αmT +(1−α)
1
B

B

∑
i=1

g(FT
i ), (2)

where α is fixed to 0.999. Using EMA results in a more accurate estimation of the mean
attention weights of the entire population (within each domain), while adding negligible
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computational overhead.
The domain attention consistency loss is computed as the `1 distance between mSk and

mT . This is done for each pair of source and target domains. Formally, the loss is defined as

Ld =
1
K

K

∑
k=1
|mSk −mT |. (3)

We have also tried alternative distance measures such as MMD but found that the EMA-
based `1 distance works better (see Table 2, #8 vs. #4).

3.3 Discriminative Feature Learning
The DAC loss in Eq. (3) is designed for learning transferable features from multiple source
domains. Here we turn to the discriminative feature learning part for classification tasks.
Supervised learning for labeled source data. We use the cross-entropy loss to exploit
labeled source data for learning discriminative features:

Ls =−
1

KB

K

∑
k=1

B

∑
i=1

log pSk

i,y
Sk
i

, (4)

where pSk

i,y
Sk
i

means the predicted probability on the ySk
i -th class (the ground truth) for xSk

i .

Pseudo-labeling for unlabeled target data. To overcome the absence of labels for the tar-
get data, we resort to pseudo-labeling—a widely used technique in semi-supervised learning
(SSL) [5, 15, 29]. Specifically, we follow the recently proposed FixMatch [29] but use the
pseudo labels for MSDA rather than SSL. Given a target image, its pseudo-label is obtained
by feeding the weakly augmented version of the image to the CNN model and picking the
predicted class ŷTi that has the maximum probability. A threshold τ = 0.95 is used to fil-
ter out low-confidence predictions. The cross-entropy loss is then imposed on the model’s
output for the strongly augmented version of the image, defined as

Lt =−
1
B

B

∑
i=1

1(q(ŷTi )≥ τ) log pTi,ŷTi
, (5)

where q(ŷTi ) is the predicted probability on pseudo-label ŷTi , and 1(·) the indicator function.
Enforcing class compactness on unlabeled target data. To further promote discriminative
feature learning on the target data, we design a class compactness loss to encourage the target
features to be close to the corresponding classification weight vectors, which can be seen as
class prototypes [28]. Let Wj be the weight vector for class j in the last fully-connected
layer, and f Ti the features of xTi , the class compactness loss is formulated as

Lc =
1
B

B

∑
i=1

1(q(ŷTi )≥ τ)|| f Ti −WŷTi
||22. (6)

3.4 Training
For training the classification CNN model, we combine the losses in Eqs. (3), (4), (5) and (6):

L = Ls +Lt +λcLc +λdLd , (7)

where λc and λd are hyper-parameters. The final CNN model trained with Eq. (7) is called
domain attention consistency network, or DAC-Net.
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Table 1: Results on three MSDA benchmark datasets where our DAC-Net achieves state-of-
the-art performance on all datasets, with a clear margin over other competitors.

(a) DomainNet.

Methods Clipart Infograph Painting Quickdraw Real Sketch Avg
Source-only [23] 47.6±0.52 13.0±0.41 38.1±0.45 13.3±0.39 51.9±0.85 33.7±0.54 32.9
DANN [7] 45.5±0.59 13.1±0.72 37.0±0.69 13.2±0.77 48.9±0.65 31.8±0.62 32.6
DCTN [37] 48.6±0.73 23.5±0.59 48.8±0.63 7.2±0.46 53.5±0.56 47.3±0.47 38.2
MCD [27] 54.3±0.64 22.1±0.70 45.7±0.63 7.6±0.49 58.4±0.65 43.5±0.57 38.5
M3SDA [23] 58.6±0.53 26.0±0.89 52.3±0.55 6.3±0.58 62.7±0.51 49.5±0.76 42.6
CMSS [38] 64.2±0.18 28.0±0.20 53.6±0.39 16.0±0.12 63.4±0.21 53.8±0.35 46.5
LtC-MSDA [32] 63.1±0.50 28.7±0.70 56.1±0.50 16.3±0.50 66.1±0.60 53.8±0.60 47.4
DAC-Net (ours) 72.5±0.04 27.6±0.10 57.8±0.06 23.0±0.14 66.7±0.10 59.5±0.12 51.2

(b) Digit-Five.

Methods MNIST USPS MNIST-M SVHN Synthetic Avg
Source-only [38] 92.3±0.91 90.7±0.54 63.7±0.83 71.5±0.75 83.4±0.79 80.3
DANN [7] 97.9±0.83 93.4±0.79 70.8±0.94 68.5±0.85 87.3±0.68 83.6
DCTN [37] 96.2±0.80 92.8±0.30 70.5±1.20 77.6±0.40 86.8±0.80 84.8
MCD [27] 96.2±0.81 95.3±0.74 72.5±0.67 78.8±0.78 87.4±0.65 86.1
M3SDA [23] 98.4±0.68 96.1±0.81 72.8±1.13 81.3±0.86 89.6±0.56 87.6
CMSS [38] 99.0±0.08 97.7±0.13 75.3±0.57 88.4±0.54 93.7±0.21 90.8
LtC-MSDA [32] 99.0±0.40 98.3±0.40 85.6±0.80 83.2±0.60 93.0±0.50 91.8
DAC-Net (ours) 99.2±0.03 98.7±0.11 86.0±0.44 91.6±0.16 97.1±0.18 94.5

(c) PACS.

Methods ArtPainting Cartoon Sketch Photo Avg
Source-only 81.22 78.54 72.54 95.45 81.94
MDAN [40] 83.54 82.34 72.42 92.91 82.80
DCTN [37] 84.67 86.72 71.84 95.60 84.71
M3SDA [23] 84.20 85.68 74.62 94.47 84.74
MDDA [41] 86.73 86.24 77.56 93.89 86.11
LtC-MSDA [32] 90.19 90.47 81.53 97.23 89.85
DAC-Net (ours) 91.39 91.39 84.97 97.93 91.42

4 Experiments

4.1 Experimental Setting

We apply the attention module to multiple layers in our DAC-Net: on Digit-Five, the atten-
tion module is applied after the 2nd and 3rd convolution layers; on PACS and DomainNet,
where the ResNet architecture is used, we apply the attention module after the conv4_x
and conv5_x blocks (i.e. last two residual blocks). We will evaluate this design choice
later. Throughout the experiments, λd is set to 0.3 and λc is 0.1 (unless otherwise specified).

More settings such as the datasets, protocols, and other training details can be found
in the Supplementary Material. The code will be available at https://github.com/
Zhongying-Deng/DAC-Net.
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4.2 Main Results
In this section, we compare our DAC-Net with the current state of the art on three MSDA
benchmark datasets, namely DomainNet, Digit-Five and PACS. The results are shown in
Table 1. Below we discuss the results in detail.
DomainNet is the most challenging dataset among the three due to its large scale. Among
the compared methods, the most related to ours are those based on the idea of domain align-
ment, including M3SDA and DCTN. In particular, M3SDA minimizes the moment distance
between each pair of source-target domains and each pair of source-source domains, while
DCTN applies adversarial learning (similar to that used by DANN) to align the feature dis-
tribution in each pair of source-target domains. DAC-Net significantly outperforms both
M3SDA and DCTN with a significant margin of more than 8.6%. This improvement demon-
strates that aligning attention weights for identifying transferable features is much more
useful than aligning feature distributions for MSDA. Compared with the latest methods,
i.e. CMSS and LtC-MSDA (pseudo-labeling [39] is also adopted in LtC-MSDA when esti-
mating class prototypes for the target domain), DAC-Net is also clearly better—with more
than 3.8% improvement over them. It is noteworthy that the biggest improvements over
CMSS and LtC-MSDA are obtained on Quickdraw and Sketch, which are drastically dif-
ferent from the other domains where images are mostly colorized with rich textures (see
Figure 1). This suggests that the learned transferable latent attributes are more robust against
large domain shift.

On Infograph domain, our method fails to beat some other methods [32, 38]. This can
explained by the existence of irrelevant content in Infograph’s images, as shown in Figure 1,
which may result in very noisy pseudo labels for discriminative feature learning. To improve
the quality of pseudo labels, some regularization methods [46] can be introduced.
Digit-Five and PACS. It is clear that DAC-Net achieves the best performance on all tar-
get domains on these two datasets, which further justifies our design of domain attention
consistency. The other conclusions drawn above also hold: significant gaps exist between
DAC-Net and the most related M3SDA and DCTN; the margins over CMSS and LtC-MSDA
are also clear, particularly on those challenging domains (over 3% improvement) like SVHN
in Digit-Five and Sketch in PACS.

4.3 Ablation Study

Table 2: Ablation study on PACS.A: attention net-
work. ∆: accuracy difference versus the source-
only baseline.
# Methods Avg ∆

1 Ls 81.94 -
2 + Lt 88.86 +6.92
3 + Lt + A 88.34 +6.40
4 + Lt + A + Ld 90.79 +8.85
5 + Lt + A + Ld + Lc (final model) 91.42 +9.48
6 + Lt + A + Ld + CenterLoss 87.52 +5.58
7 + Lt + A + Ld w/o EMA 88.61 +6.67
8 + Lt + A + MMD-based Ld 90.23 +8.29

In this section, we conduct ablation
studies on PACS to evaluate the main
components in our DAC-Net. Note
that all variants are trained using ex-
actly the same training parameters as
DAC-Net for fair comparison. The re-
sults are reported in Table 2. Overall,
our final model, DAC-Net, brings the
largest improvement of 9.48% over the
source-only baseline.
Significance of Ld . We first apply
the attention network to the pseudo-
labeling baseline (#2), and compare the
results to see whether the attention net-
work brings any improvement. From the comparison of #2 vs. #3, we observe that adding
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the attention network even brings an adverse effect—the accuracy drops from 88.86% to
88.34%. However, by incorporating our domain attention consistency (DAC) loss Ld in
model training, the performance is significantly improved from 88.34% to 90.79% (#3
vs. #4). The results confirm that the DAC is essential for learning transferable features.
Importance of the class compactness loss. Our class compactness loss in Eq. (6) essen-
tially pulls together the target features and the classifier’s weight vectors to facilitate dis-
criminative target feature learning. By comparing #5 with #4, we observe that the accuracy
is improved by 0.63% with the class compactness loss. We also compare with the center
loss [34], which enforces class compactness using parameterized class centers. Similar to
our class compactness loss, we discard low-confidence pseudo-labels when updating the pa-
rameterized centers for the center loss. By replacing our class compactness loss with the cen-
ter loss, i.e. #5 vs. #6, we observe a sharp decrease in accuracy (-3.9%). This result suggests
that parameterized class centers cannot be properly learned, possibly close to the decision
boundary due to the noisy target pseudo-label; as such, one should rely more on the classifi-
cation weight vectors to enforce class compactness—the weight vectors updated/dominated
by labeled source data can be less noisy and probably far away from the decision boundary.
More experimental results are provided in the Supplementary Material.
Effectiveness of EMA in Ld . We train a variant of DAC by removing the EMA part when
computing Ld so that the mean attention weights are computed based merely on the current
mini-batches, i.e. mD = 1

B ∑
B
i=1 g(FD

i ). As a result, the performance drops from 90.79% (#4)
to 88.61% (#7). This result justifies the use of EMA statistics for computing the DAC loss.
Alternative distance function for Ld . In Eq. (3), the distance is measured based on the
`1 distance between the EMA of domain attention weights. Here we try an alternative dis-
tance function based on maximum mean discrepancy (MMD) [9]. Comparing with the EMA
version (#4), we observe a decrease in performance for the MMD version (#8).
Sensitivity of λd and λc. Recall that λd and λc control the weights on Ld (domain attention
consistency loss) and Lc (class compactness loss) in Eq. (7), respectively. To evaluate how
sensitive the performance is to λd and λc, we first set λc to 0 and linearly increase λd from
0.1 to 1, which covers a wide value range. The results are shown in Figure 4. It can be seen
that the accuracy is generally stable with different values for λd (blue solid line), with the
best performance achieved at λd = 0.3. Then we fix λd to 0.3 and adjust λc. The results
(red dashed line) indicate that increasing λc seems to result in a (smooth) downward trend in
performance, with λc = 0.1 being the best choice.
Where to apply the DAC loss? We evaluate four variants of DAC in the first four rows of
Table 3 where domain attention consistency loss is applied after different numbers of residual
block at different places. The findings are summarized as follows. 1) Applying the loss after
the last two residual blocks gives the best performance. 2) Applying the loss to lower layers
worsens the performance. This is expected: we aim to discover transferable latent attributes
which are semantic/abstract concepts that only emerge in the top layers of a CNN.
Attention alignment vs. feature alignment. We compare our DAC based approach with the
most popular feature distribution alignment (FDA) method in Table 3 (see the last row). With
everything else identical including the attention network, for the FDA method, we apply the
same domain consistency loss Ld on the final features (the features used by the classifier for
classification) to directly align feature distributions. It is clear that FDA results in inferior
performance to corresponding DAC variants (see Supplementary Material for more experi-
mental results). This observation supports the main claim of the paper: instead of aligning
feature distributions, aligning attribute attention weights is more effective for MSDA.
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Sketch

Photo

Cartoon

ArtPainting

Input images Top1 Top2 Top3

Figure 5: Attended feature maps of DAC-Net and their masked input images. We show the
feature maps corresponding to the top-3 attention weights across a random testing subset
of PACS, and project the feature maps to the input images. These feature maps or masked
images are from the same class of dog but different domains.
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Figure 4: Sensitivity of λd and λc in
Eq. (7).

Table 3: Ablation study on where to apply the
DAC loss Ld on PACS. FDA: Feature distribu-
tion alignment.

Methods Apply Ld after Avg

DAC

Last residual block 90.48
Last two residual blocks 90.79
Last three residual blocks 88.46
All four residual blocks 88.06

FDA Only final features 89.27

4.4 Visualization
In this section, we provide visualization of attended feature maps to help understand why
our DAC-Net works. We visualize examples of the top-3 attended feature maps and their
corresponding masked images in Figure 5. We can see that the feature maps with high
attentions focus on some semantic attributes, e.g. the head or leg of a dog, even though
their appearance varies greatly across domains. These semantic attributes are discriminative
features for classification, and more importantly are transferable across domains. The ability
to discovering them thus underpins the good performance of our DAC-Net.

Visualizations on feature distributions can be found in the Supplementary Material.

5 Conclusion
In this paper, we introduced a novel DAC-Net to learn transferable latent attributes for
MSDA. It incorporates an attention module and a domain attention consistency loss applied
on the exponential moving average (EMA) of the attention weights of each source domain
and that of the target domain. We also proposed a class compactness loss to pull together
the target features and the classification weight vectors (class prototypes). Extensive exper-
iments on three MSDA benchmark datasets demonstrated that our DAC-Net significantly
outperforms the current state-of-the-art competitors.
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