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Abstract

Most feedforward convolutional neural networks spend roughly the same efforts for
each pixel. Yet human visual recognition is an interaction between eye movements and
spatial attention, which we will have several glimpses of an object in different regions.
Inspired by this observation, we propose an end-to-end trainable Multi-Glimpse Network
(MGNet) which aims to tackle the challenges of high computation and the lack of ro-
bustness based on recurrent downsampled attention mechanism. Specifically, MGNet
sequentially selects task-relevant regions of an image to focus on and then adaptively
combines all collected information for the final prediction. MGNet expresses higher
resistance against adversarial attacks and common corruptions with less computation.
Also, MGNet is inherently more interpretable as it explicitly informs us where it fo-
cuses during each iteration. Our experiments on ImageNet100 demonstrate the po-
tential of recurrent downsampled attention mechanisms to improve a single feedfor-
ward manner. For example, MGNet improves 4.76% accuracy on average in com-
mon corruptions with only 36.9% computational cost. Moreover, while the baseline
incurs an accuracy drop to 7.6%, MGNet manages to maintain 44.2% accuracy in the
same PGD attack strength with ResNet-50 backbone. Our code is available at https:
//github.com/siahuat0727/MGNet.

1 Introduction
Convolutional Neural Networks (CNNs) have achieved promising performance on many vi-
sual tasks, such as object detection [12, 49, 50], image segmentation [3, 38] and image cap-
tioning [7, 24, 61]. Especially in image classification [27, 31, 66], CNNs can even surpass
human performance [17, 19].

However, CNNs are facing various challenges: 1) CNNs are computationally expensive
and memory intensive. This increases the difficulty for CNNs to be widely deployed on
scenarios like edge-computing; 2) CNNs are vulnerable to adversarial example [13, 44, 57],
which is usually an image formed by making a subtle perturbation that leads a trained model
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to produce an incorrect prediction. This raises major concerns about deploying neural net-
works in the high-security-demanding systems; 3) CNNs will be confused by many forms
of common corruptions [20], such as bad weather, noise, and blur. The lack of robustness is
hindering some processes like autonomous vehicle development [32].
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Figure 1: Illustration of the recurrent down-
sampled attention mechanism. From top to
down, the Glimpse Generator sequentially
generates glimpses by sampling from the
given glimpse-regions in a recurrent manner.

Inspiration from the human visual sys-
tem is a potential hint to solve both the ex-
pensive computation and robustness prob-
lem. A particularly striking difference be-
tween the human visual system and current
feedforward convolutional neural networks
(FF-Nets) is that the FF-Nets spend enor-
mous and roughly the same amount of com-
putational energy on every single pixel, no
matter whether it is essential to the task.
Additionally, most FF-Nets process the en-
tire scene just once. The human visual sys-
tem, by contrast, is not merely feedforward
but has various feedback and recurrent con-
nections in the visual cortex [46]. In addi-
tion, human beings don’t treat an image as
a static scene. Instead, cognitive processing
is an interaction between attention and eye
movements [37]. Specifically, the fovea in
the human’s eye samples distinct regions of
the scene at varying spatial resolutions [59].
The series of fixation on different location
and resolution are then collected and integrated to build up an internal representation of the
scene [51].

Inspired by the the sequential and variable resolution sampling mechanisms in the hu-
man visual system, we propose Recurrent Downsampled Attention (RDA) mechanism and
present a novel Multi-Glimpse Network (MGNet) to explore the benefits of deploying RDA
in CNNs. Instead of sweeping the entire scene at once, our model sequentially select to fo-
cus on some task-relevant regions (illustrated in Figure 1). During each iteration, our model
will first apply variable resolution sampling to a various size regions of the original image
to produce a much lower dimensionality fixation, which we will refer to as glimpse [33].
Every glimpse will be integrated over time to build up a global internal representation. Since
our model only mainly computes on these low dimensionality glimpses, the model can save
computational cost. Unlike other model acceleration methods, such as network pruning [15],
knowledge distillation [23], quantization [15, 28], and model compacting [53], we break the
current paradigm that sweeps the image just once and predicts. By sequentially processing
multiple glimpses, we further show that our model is fundamentally more robust against the
adversarial attacks and common corruptions.

Our main contributions can be summarized as follows:

• We propose Multi-Glimpse Network, which is end-to-end trainable in one-stage while
not requiring any supervised spatial guidance or hand-crafted pre-training method.

• With the same amount of computational cost, we demonstrate that MGNet outper-
forms FF-Nets with various backbones. Additionally, as the network is shared over
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iterations, it can decide to early-exit on-the-fly without adding any overhead.

• We show that MGNet is intrinsically more robust against adversarial attacks and com-
mon corruptions. For example, accuracy is improved by 4.76% in common corruptions
with 36.9% computational requirement in average.

2 Related Work
Robustness. Szegedy et al. [57] first show that a carefully perturbed image can fool a trained
model entirely in high confidence. Goodfellow et al. [13] propose FGSM to generate adver-
sarial examples. Madry et al. [41] study the adversarial robustness of neural networks and
propose a robust minimax optimization called PGD adversarial training. The research di-
rection in studying adversarial attack and defense method is in the progress [43, 47, 65].
Besides, Hendrycks and Dietterich [20] consider common real-world corruptions and pro-
pose a benchmark to measure general robustness. Recently, various data augmentation tech-
niques [11, 21, 22] are introduced to improve the general robustness.
Computational Efficiency. Many research work have been proposed to reduce the com-
putational cost of deep neural networks. As there are considerable redundant parameters in
neural networks, some focus on pruning the non-essential connections to reduce computa-
tional cost [15, 55, 58]. Another approach is quantization, which focuses on compressing the
bit-width of weights for floating-point operations and memory usage reduction [4, 48]. Hin-
ton et al. [23] propose knowledge distillation where the student learns to mimic the teacher’s
prediction results. This technique has been widely used to transfer the knowledge from
larger models into compact models [39, 52]. Recent works further reduce computation by
designing efficient network architectures [25, 26, 40].
Recurrent Attention Model. Recurrent attention mechanism has been explored in many
fields, such as reinforcement learning [16, 45], machine translation [1, 2, 10], image classi-
fication [30, 42, 68] and generative models [8, 36, 67]. In the vision task, Mnih et al. [42]
first propose a recurrent visual attention model to control the amount of computation on the
augmented MNIST dataset [35]. While the model is not differentiable, it is trained using
reinforcement learning. Gregor et al. [14] propose differentiable attention mechanisms to
generate images sequentially. Jaderberg et al. [29] show that meaningful object parts can
be discovered automatically with only image labels. Fu et al. [9] propose a recurrent at-
tention model to learn region-based feature representation at multiple scales in fine-grained
image classification. Zoran et al. [68] show that an adversarially trained sequential attention
network is significantly more robust than a feedforward model.

Since each recurrent attention-related work has a different focus, most of them are de-
signed experimentally using multiple model capacity or computational cost or both. In this
work, with the proposed RDA and MGNet, we aim to answer a question: given the same
model capacity and computational cost, is it beneficial to introduce recurrent mechanism in
CNNs? Our experiments further show that MGNet is intrinsically more robust against ad-
versarial attacks, and a low-dimensionality glimpse is crucial to improve general robustness.

3 Approach
In this section, we present an overview of our proposed MGNet, as illustrated in Figure 2.
Instead of blindly carrying out a large amount of computation for every single pixel of an
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Figure 2: Details of our method: (a) The framework of MGNet. Glimpses are generated by
sequentially sampling the image from the glimpse-region. The Glimpse Classifier guides to
make every glimpse count and will be dropped after training. Multi glimpse features are in-
tegrated by Feature Fusion Module into a global feature. The global feature will be decoded
to predict the label and the next glimpse-region. Note that we share all the parameters during
the iterations. (b) Illustration of the downsampled attention. Best viewed in color.

image, our model will sequentially generate T glimpses to be processed and fuse all the
glimpses for the final prediction.

Given an image x ∈ RH×W , H and W respectively denote the height and width of the
image. For the t-th iteration, the Glimpse Generator g will apply affine transformation to
the input image and perform sampling to produce a glimpse xg

t = g(x,At ;M), where xg
t ∈

R H
M×

W
M , M is a downsampling factor and At is the t-th affine transformation matrix. The

downsampling factor M is fixed and greater than 1 to reduce the amount of computation. At
is generated by the Localization Network, except for the initial matrix A1 which we set as an
identity transformation matrix. Therefore, the first glimpse will be a low-resolution version
of the original image. We will introduce the Glimpse Generator in Section 3.1.

The glimpse xg
t is first encoded by a CNN backbone (including global average pooling)

to produce a glimpse feature ht . Each glimpse feature will be decoded by a glimpse classifier
fp(·;θp) into class logits to make every glimpse count. The affine transformation matrix At
will be flattened as Ãt and appended to the glimpse feature ht . We stop the gradient on Ãt
as it is a positional encoding that can help the model understands where the feature comes
from. Then all glimpse features will be integrated by a Feature Fusion Module to produce
global internal representation Ft of the image during the t-th iteration. This module will be
introduced in Section 3.2.

With a fully-connected layer fg(·;θg) as the global classifier, we decode Ft into class
logits iteratively to produce T classification results. Note that the decoded result of FT will
be the final prediction. Ft will also be fed into the Localization Network to generate the next
glimpse-region (if needed), and more details can be found in Section 3.3.
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3.1 Glimpse Generator

This module aims to generate low-dimensionality glimpses. The non-differentiability of
cropping and resizing makes it difficult to learn where to look, which can be addressed with
reinforcement methods such as policy gradient [42]. We will briefly introduce a differen-
tiable affine transformation operation proposed by Jaderberg et al. [29], making it possible
to be trained end-to-end with SGD.

We first generate a 2D flow field (we call it glimpse-region) by applying a parameterized
sampling grid with an affine transformation matrix A. Since we only consider cropping,
translation, and isotropic scaling transformations, A is more constrained and requires only 3
parameters,

A =

[
as 0 ax

0 as ay

]
, (1)

where as, ax, and ay are the output of the Localization Network (details in Section 3.3).
To generate a glimpse xg, we first perform a pointwise transformation

(
xtx
xty

)
= A

xg
tx

xg
ty
1

 , (2)

where (xtx , xty ) are the coordinates of the regular grid in the input image x, and (xg
tx , xg

ty )
are the coordinates that define the sample points. Then we apply a bilinear sampling to
generate a glimpse xg ∈ R H

M×
W
M . Especially, for the first glimpse, we let as equal to 1 and

ax, ay equal to 0, which denote an identity transformation. Since the downsampling factor
M is greater than 1, the first glimpse represents a low-resolution version of the input image.
The differentiability of this affine transformation allows our model to learn the task-relevant
regions with backpropagation.

3.2 Feature Fusion Module

It is crucial to integrate the information of every glimpse to make the final prediction. In this
section, we introduce our Feature Fusion Module, using attention mechanism [60] with a
single attention head, to integrate all the glimpse features h1,h2, · · · ,ht into a global internal
feature Ft . Specifically, for the t-th iteration,

Ht = concatenate([h1
′,h2

′, · · · ,ht
′]),

Et = softmax(
(HtWq)(HtWk)T√

d
)(HtWv)Wo,

Ft = ReLU(LayerNorm(Et)[t]),

(3)

where ht
′ ∈Rd is the glimpse feature ht concatenated with the positional encoding, Wq,Wk,

Wv,Wo ∈ Rd×d are the learnable parameters, Ft ∈ Rd is the global internal representation
integrated during the t-th iterations, and the notation X[t] represents the t-th row of the matrix
X. Note that for an experiment setting with T iterations, FT represents the final feature and
will be decoded by the global classifier fg(·;θg) to predict the label.
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3.3 Localization Network
We propose Localization Network to predict an affine transformation matrix A for the glimpse
generation. More intuitively, A can represent a target region of the input image, where the
parameter as is the ratio of the size of the glimpse-region to the input image, ax and ay

denote the translation of the region origin. In MGNet, we let as ∈ [as
min,a

s
max] so that the

glimpse-region size is adaptive, where as
min = 0.2 and as

max = 0.5. Since we prevent the
Glimpse Generator from sampling beyond the image range, the range of ax and ay should be
within [as− 1,1− as]. In detail, given a t-th global internal representation Ft , we produce
the parameter of matrix At+1 by

[as
t+1
′,ax

t+1
′,ay

t+1
′
] = Φ(σ( fl(Ft ;θl));s),

as
t+1 = as

t+1
′ · (as

max−as
min)+as

min,

[ax
t+1,a

y
t+1] = (2 · [ax

t+1
′,ay

t+1
′
]−1) · (1−as

t+1),

(4)

where σ is sigmoid function, fl(·;θl) is a fully-connected layer, Φ is a gradient re-scaling
operation and s is a gradient re-scaling factor. The gradient re-scaling operation

Φ(x;s) = x; ∇xΦ(x;s) = s (5)

is applied to tackle the gradient issue as we empirically find an exploding gradient problem
in the Localization Network. The value of s is possibly around 0.01 to 0.02 in our setting.
We show the hyper-parameter tuning in Supplementary Material Section 1.

3.4 Joint Classifiers Learning
Given dataset D = {x(i),y(i)}N

i=1 where x(i) denotes the i-th input image and y(i) is the cor-
responding label, MGNet jointly learns the glimpse feature together with the global internal
feature in an end-to-end fashion. To realistically demonstrate the model’s potential, we train
our model on pure Cross-Entropy (CE) loss and hence the total loss L can be given as

L= αLglimpse +(1−α)Lglobal , (6)

where Lglimpse is the glimpse classifier loss, Lglobal is the global classifier loss, and α is a
hyper-parameter that balances the weighting between the losses.

As shown in Figure 2, the glimpse classifier can be regarded as an auxiliary loss and will
be dropped after training, so neither extra memory nor computation power is required during
inference. We show the effect of glimpse classifier in Supplementary Material Section 1.

Global Classifier. During the t-th iteration, the global classifier takes Ft as input to
make a global prediction, and it is trained by averaging all t-th prediction loss Lglobal−t :

Lglobal−t = Ex,y∼D[H(y, fg(Ft ;θg))], Lglobal =
1
T

T

∑
t=1
Lglobal−t , (7)

whereH denotes the CE loss and T is the number of glimpses.
Glimpse Classifier. Similarly, the glimpse classifier takes ht as input and jointly learns

by averaging all t-th glimpse loss Lglimpse−t :

Lglimpse−t = Ex,y∼D[H(y, fp(ht ;θp))], Lglimpse =
1
T

T

∑
t=1
Lglimpse−t . (8)
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4 Experimental Results

4.1 ImageNet100

128×128 Input 160×160 Input 192×192 Input 224×224 Input96×96 Input FF-Nets with different input size

96×96 Input, 2 glimpses 96×96 Input, 3 glimpses 96×96 Input, 4 glimpses MGNet with different glimpses

Figure 3: Top-1 accuracy (%) comparison between FF-Nets and MGNet in terms of com-
putational cost on ImageNet100. MGNet is trained once and exit on the different number of
glimpses to show the accuracy of early-exit. FF-Nets with different input sizes are trained
separately to explore the trade-off between the accuracy and computation of one-pass strat-
egy. The results show that given the same model capacity, MGNet consistently outperforms
FF-Nets among various backbones while having fewer computation.

Network GFLOPs Latency (ms) Accuracy (%)

ResNet-18
FF-Net 1.815 87.7 80.24

MGNet 1.343 59.4 81.46

ResNet-50
FF-Net 4.104 240.1 82.56

MGNet 3.172 167.6 84.22

ResNeXt-50
FF-Net 4.246 313.1 82.68

MGNet 3.276 198.3 83.16

WRN-50
FF-Net 11.413 486.6 83.10

MGNet 8.542 369.0 83.84

Table 1: GFLOPs and inference latency on Ima-
geNet100.

In this section, we evaluate
MGNet on ImageNet100, which
is the first 100 classes of Ima-
geNet [6]. We demonstrate some
experiments on toy datasets in
Supplementary Material Section 2
to better understand how the RDA
mechanism works.

We implement FF-Net as a
special case of MGNet with
the number of glimpses T = 1
and downsampling factor M = 1,
which means the Glimpse Gener-
ator performs identity transformation without downsampling. As our comparison does not
depend on backbone architecture, we evaluate it with ResNet-18 [18], ResNet-50 [18],
ResNeXt-50 [64], and WRN-50 [66] backbones. To ensure the models’ convergence to
sufficiently demonstrate their capability, we train both FF-Nets and MGNet in 400 epochs
with SGD. The peak learning rate is set to be 0.1 using a one-cycle scheduler [54]. For
data augmentation, we train models with Auto Augmentation [5]. For MGNet, we set total
glimpses T = 4 and downsampling factor M = 7/3, which still requires less computation
than baseline. The hyper-parameter α is set to be 0.6, s is 0.02 for ResNet-18, and 0.01
otherwise.

We present a fair comparison in terms of the number of parameters, backbone architec-
ture, training settings, and computational cost. The following experiments show the potential
of MGNet to simultaneously reduce computation, improve adversarial robustness, enhance
general robustness and be more interpretable in real-world datasets. Visualization of success
and failure cases are shown in Supplementary Material Section 3.
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Noise Blur Weather Digital

Network GFLOPs Average Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG

ResNet-18

FF-Nets 1.8146 46.21 36 37 32 28 35 42 41 41 47 62 71 52 60 59 52

MGNet

1-glimpse 0.3342 50.56 44 41 39 38 48 48 43 37 47 50 69 56 66 70 63

2-glimpse 0.6695 52.77 45 43 40 38 48 49 47 41 51 57 73 58 68 71 63

3-glimpse 1.0058 53.23 45 43 40 38 47 49 49 43 51 59 74 58 69 71 62

ResNet-50

FF-Nets 4.1042 53.24 46 46 42 37 43 49 49 47 54 64 76 60 64 64 59

MGNet
1-glimpse 0.7677 55.03 50 46 46 43 53 50 47 42 53 53 73 60 70 73 66

2-glimpse 1.5523 57.36 51 48 47 43 53 52 54 47 56 60 77 61 72 73 67

ResNeXt-50

FF-Nets 4.2455 53.01 47 47 42 37 42 47 47 48 54 63 76 59 64 62 58

MGNet
1-glimpse 0.7937 55.57 51 49 47 43 52 50 46 45 56 54 74 59 70 73 65

2-glimpse 1.6042 57.13 51 50 49 42 52 51 52 48 58 59 76 59 71 73 65

WRN-50

FF-Nets 11.413 54.75 48 49 45 39 46 49 49 49 55 64 77 61 65 66 60

MGNet
1-glimpse 2.1101 56.76 53 50 49 45 55 51 48 44 55 56 74 60 70 74 67

2-glimpse 4.2372 59.02 54 51 50 46 55 52 55 49 58 62 77 62 73 75 68

Table 2: Top-1 accuracy (%) evaluation of MGNet and FF-Nets on ImageNet100-C.

4.1.1 Early-Exit

Early-exit allows a model to be trained once and specialized for efficient deployment, ad-
dressing the challenge of efficient inference across resource-constrained devices such as
edge-devices [62]. MGNet is designed to process multi-glimpse sequentially; hence it can
naturally early-exit without adding any overhead.

Table 1 shows that given the same model capacity, MGNet with four 96 × 96 glimpses
always outperforms FF-Nets with standard 224 × 224 inputs while holding less computa-
tion. For the latency in the practical usage, we are testing on Intel Xeon E5-2650 without
GPU. Additionally, since the input is smaller for each forward pass, MGNet requires no-
ticeably less memory (e.g., reduce by 26.4% in ResNet-18). Therefore, the acceleration is
more prominent when the memory resources are limited. We further demonstrate the early
exits’ accuracy of the same MGNet and train FF-Nets individually with various input sizes
to explore the trade-off between these two manners’ computational cost and performance.
We observe that RDA mechanisms can consistently outperform the one-pass manner among
various backbones. As shown in Figure 3, with the same backbone ResNet-50, MGNet with
four 96 × 96 glimpses outperforms FF-Net with a full 224 × 224 input by 1.66% accuracy,
while the computation is only about 77.28% of the latter. For ResNeXt-50, MGNet with two
96 × 96 glimpses matches the performance of FF-Net with 192 × 192 input while requiring
only 51.36% computation. This experiment shows that an image classifier can be more
efficient and effective by including RDA mechanisms.

4.1.2 Common Corruptions

The models we train on clean data are directly evaluated on the common corruptions bench-
mark [20] (reduced to 100 classes) ImageNet100-C, which consists of 15 different corruption
types generated algorithmically from noise, blur, weather, and digital categories. Each cor-
ruption type has five severity levels, so the total number of corruption types is 75.

Table 2 shows that MGNet yields a substantial improvement in general robustness com-
pared to FF-Nets. For example, MGNet with ResNet-18 backbone with three glimpses in-
creases the average accuracy by 6.56% compared to FF-Nets, while the computational cost
is merely 55% of the latter. On average, MGNet with two glimpses outperforms FF-Nets by
4.76% with only 36.9% computational cost. The progress of MGNet perceiving from a
rough overview to detailed parts makes it more robust, even with a single glimpse.
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4.1.3 Adversarial Robustness

Recent work show that deep neural networks can be simply fooled by adversarial exam-
ples [13, 57]. In this section, we compare the adversarial robustness between FF-Nets and
MGNet without adversarial training [41].

FGSM [13] is one of the most popular methods to generate adversarial examples during
a single iteration,

x+ ε · sgn(∇xL(θ ,x,y)), (9)

where x is an input image, y is the label, θ denotes the parameters, L is the loss function, sgn
returns the sign, and ε is the attack step size. PGD [41] is an iterative variant of FGSM,

xk+1 = Πx+S xk + ε · sgn(∇xL(θ ,x,y)), (10)

Figure 4: The top-1 accuracy per-
formance comparison over different
number of PGD attack without ad-
versarial training on ImageNet100.

where k is the iteration index and S denotes the set of
perturbations that formalizes the manipulative power
of the adversary. In the following experiments, we
consider the PGD attacks with 4/255 `∞-bounded
and step size ε = 1/255 on different numbers of
steps.

As shown in Figure 4, with the same strength
of the PGD attacks, the adversarial robustness of
MGNet significantly outperforms FF-Nets. For ex-
ample, with four attack steps, the top-1 accuracy of
FF-Net with ResNet-50 drastically drops to 7.6%,
while MGNet still maintains 44.2%. Even with 300
attack steps, the accuracy of MGNet still maintains
10.86% while FF-Nets drops to 0.96% with only 20
attack steps. The result is consistent across various
backbones. We infer that the increment of robust-
ness may come from the ensemble, but MGNet even
requires less computational cost than a single pass of
FF-Nets. Note that we intend to show the intrinsic
feature of MGNet against adversarial attacks rather
than propose a defense method. Besides, the one-
stage end-to-end trainable property allows MGNet to
be combined with various adversarial defense meth-
ods to achieve higher adversarial robustness.

4.2 Tiny ImageNet
We evaluate MGNet on Tiny ImageNet [34] to ex-
plore the performance on images with lower resolu-
tion. Tiny ImageNet is a subset of ImageNet. It in-
cludes 200 distinct categories, and each contains 500
training images, 50 validation images, and 50 test im-
ages. All the images are resized to 64 × 64 pixels,
where the original size is 224 × 224 pixels on ImageNet.
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Network GFLOPs Accuracy (%)

ResNet-18
[56] 0.1497 52.40
Ours 0.1497 53.97

ResNet-18
† FF-Net 0.5657 57.14

MGNet 0.4301 57.72

ResNet-34
[56] 0.3009 53.20
Ours 0.3009 55.08

ResNet-34
† FF-Net 1.1705 58.71

MGNet 0.8837 58.38

† No max-pooling layer followed by the first
convolutional layer.

Table 3: GFLOPs and accuracy (%) evalua-
tion on Tiny ImageNet.

We select downsampling factor M = 2
and total glimpses T = 3 for MGNet to make
an appropriate comparison with FF-Nets. In
this setting, MGNet will receive three 32 ×
32 pixels glimpses while FF-Nets, as usual,
will receive a 64 × 64 pixels image. We
first compare our baseline implementation
with [56]. Next, same as [63], we remove the
max-pooling layer followed by the first con-
volutional layer as we will reduce the input
image size further to 32 × 32 pixels. Note
that these networks are initially designed for
224 × 224 pixels images. We use the nota-
tion † to mark modified networks that we se-
lect as the backbones to compare FF-Nets and
MGNet.

As shown in Table 3, the feedforward baselines of our implementation are slightly higher
than [56] baselines. It can benefit from our learning-rate scheduler choice and the larger
training epochs that ensure the models are fully converged. In these experiments, we show
the potential of RDA mechanism to reduce computation while maintaining accuracy in
smaller image scales. For example, using ResNet-18† as the backbone, FF-Net and MGNet
achieve a comparable accuracy while the latter requires only 76% FLOPs. This improve-
ment may not be so significant at larger image scales. Nevertheless, we claim these results
are reasonable because the smaller the image is, the less redundant computing is spent on
unimportant regions.

5 Conclusion
In this paper, we explore the capability of a recurrent downsampled attention mechanism
based model for image classification. MGNet achieves comparable predictive performance
on ImageNet100 while holding several benefits: 1) requires less computation amount; 2) can
early-exit on-the-fly; 3) is intrinsically more robust against adversarial attacks and common
corruptions; and 4) explicitly informs more spatial information. Furthermore, we can directly
train MGNet in an end-to-end manner from scratch.

Although we intuitively propose to train MGNet by gradient re-scaling, it harms the
convergence speed, and such that we cannot afford to explore MGNet on ImageNet dataset.
Future work can focus on tackling this problem or improving MGNet submodules.

Beyond that, there is no apparent limitation for MGNet to be combined with recent work
such as pruning, quantization, knowledge distillation, and adversarial defense methods to
achieve more promising performance. We hope that this work will spur the related research
direction that focuses on the exploration of recurrent downsampled attention mechanism to
improve vision models further.
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