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Abstract

Generating images from a single sample has attracted extensive attention recently. In
this paper, we formulate the problem as sampling from the conditional distribution of a
single image, and propose a hierarchical framework that simplifies the learning of the
intractable conditional distribution through the successive learning of the distributions
about structure, semantics, and texture, making the generative model more comprehen-
sible compared with previous works. On this basis, we design ExSinGAN composed of
three modular GANs for learning an explainable generative model from a given image,
where the modular GANs model the distributions about structure, semantics, and texture
successively. ExSinGAN is learned not only from the internal patches of the given image
as the previous works did, but also from the external prior obtained by the GAN inver-
sion technique. Benefiting from the appropriate combination of internal and external
information, ExSinGAN has a more powerful capability of generation and competitive
generalization ability for image manipulation tasks.

1 Introduction
Recently, single image generative models get more and more attention. The groundbreaking
work [31] by Shaham et al. proposed a pyramid of fully convolutional GANs [15] named
SinGAN to learn the internal distribution of patches within the single image. SinGAN is
an unconditional generative model that acquires noise inputs and produces diverse syntheses
but only needs the one-shot training image. Due to the impressive performance and ex-
tensible architecture, SinGAN has been the paradigm of single image generation, which is
improved [16, 18, 19, 25, 42] and applied to other fields like video synthesis [18], structure
analogy [4] and inpainting [7]. Although SinGAN has proved the feasibility of generating
diverse images from a natural single image, experiments show that it is still difficult to obtain
plausible syntheses when the given image is complex, e.g., image with large objects. This
drawback also exists in previous related works [8, 16, 18, 19, 36], which almost follow the
paradigm of SinGAN to build the pyramid networks for internal learning [33].
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Figure 1: Each row illustrates the outputs from 7-stage single image generative models com-
prising generators in legend (Sec. 3 for details), and the border color of each output implies
its source generator. All pictures have been upsampled to the same size as the original. Note
that Case 1 and Case 3 stand for SinGAN [31] and our ExSinGAN respectively.

In this paper, we focus on improving the generative capability of SinGAN on arbitrary
natural images, especially for those images including objects or complex scenes. Firstly, we
revisit the core idea of SinGAN, namely the progressive learning strategy of pyramid net-
works. The progressive learning strategy [11, 21] training the pyramid networks stage by
stage, has played an important role in stabilizing the performance of GANs. Specifically, for
the large-scale progressively training model, the generator at the bottom learns to synthesize
diverse but reasonable layouts of low resolution. In the subsequent stages, generators learn
to add more semantic and texture details to the layouts. However, it is hard to obtain effective
semantic and structural supervision from a single image. We observe that the bottom stage
of SinGAN [31] generally synthesizes disorder layouts (Case 1 in Fig. 1), and the details
replenished in the later stages are likely to be uncontrollable and meaningless. This phe-
nomenon illustrates the difference between SinGAN and the large-scale progressive training
model in nature, where each stage of SinGAN plays an unclear or even negative role in the
generation. The entire model is more like a magic black box we can never predict how it will
run and behave.

Our insight is that, both the reliability and generative capability of SinGAN can be im-
proved by introducing additional structural and semantic supervision. In this paper, we pro-
pose a hierarchical framework for the single image generation problem and construct an
explainable single image generative model called ExSinGAN. Specifically, ExSinGAN is
learned from both internal patches and external priors of the given image via three mod-
ular GANs. Firstly, the structural GAN is devoted to synthesizing coarse but reasonable
layout with the supervision of structural prior knowledge from GAN inversion [27]. Then,
the semantic GAN is dedicated to injecting semantic details into the coarse layout with the
supervision of a pre-trained classifier [20]. Finally, the texture GAN replenishes fine texture
details to the previous output. To our best knowledge, ExSinGAN is the first single image
generative model considering both internal information [31, 32] and external generative pri-
ors [27]. Through experiments (Sec. 4) we demonstrate that ExSinGAN can be adapted
to a variety of images including texture, objects and scenes. Moreover, ExSinGAN also
has competitive generalization capabilities on some image manipulation tasks like editing,
harmonization and paint-to-image.
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2 Related Work

Internal Learning Generative Model. Deep internal learning methods, which are trained
by the internal information of a single image, have taken off and caught popular attention
since ZSSR [32] and DIP [38]. InGAN [34] is the first internal learning generative model,
which requires the pre-defined geometric transformation inputs to generate diverse images.
SinGAN [31] is the first unconditional generative model, which comprises a pyramid of
fully convolutional GANs to learn the internal patch distribution of the given image. Sin-
GAN adopts the cascaded training strategy [11]: the bottom generator synthesizes the layout,
and the later generators learn residual details to enlarge the layout. When the current gen-
erator is being trained, all lower stages generator are kept fixed. Some works have modified
SinGAN from different perspectives. ConSinGAN [19] adopts the training strategy of PG-
GAN [21] to improve the generative quality of SinGAN, and reduce the stages of the model
to realize faster training. HP-VAEGAN [18] introduces patch-based VAE [23] to make the
generation more diverse. MOGAN, which [8] follows the multi-stage architecture of Sin-
GAN, firstly synthesizes the interesting region and the rest region of the image respectively,
then merges them into an integrated image. GPNN [16] borrows the idea from the classical
method PatchMatch [1], replacing each stage GAN with a non-training patch match mod-
ule to generate a new image quickly. One-Shot GAN [36] is a one-stage model containing
multiple discriminators to learn different features of the given image.
Generative Priors and Model Inversion. Different from the internal learning method,
model inversion utilizes the pre-trained deep learning models as the external generative pri-
ors to conduct image synthesis. The most used pre-trained models include the classifiers
[39] and GANs [41]. In this paper, we focus on the most popular way, GAN inversion.
GAN inversion aims at finding a code in the latent space of a pre-trained GAN that best
reconstructs the given image. Once the optimal latent code is found, new images can be
synthesized by manipulating the latent code. The methods of GAN inversion can be divided
into four categories. The first one based on gradient optimization minimizes the loss func-
tion directly [5, 9, 24, 28, 30, 43, 47]. The second one trains an encoder coupling with the
generator to find the latent code indirectly [13, 14]. The third one combining the above two
methods together [2, 26, 47], initializes the latent code via a coupled encoder, then optimizes
the latent code using gradient optimization method. The last one is joint optimization [3, 27],
which not only optimizes the latent code but also fine-tunes the parameters of the generator
simultaneously. The representative model DGP [27] of joint optimization fine-tunes the gen-
erator of BigGAN [6] pre-trained on ImageNet [10] in a progressive manner, giving rise to
more precise and faithful reconstruction for natural images.

3 Methodology

Preliminaries. Considering a single image x ∈ RH×W has size H×W , a single image gen-
erative model formulates the conditional distribution p(y|x), which we can sample from to
get the synthesis y ∈ RH×W . For convenience, we use xi ∈ RHi×Wi to denote the downsam-
pled version of x, where the size of xi increases with the stage i varying from 0 to N and
x = xN . Instead of learning the distribution p(y|x), the progressive training of SinGAN aims
at learning

p(y0,y1, . . . ,yN |x0,x1, . . . ,xN)≈ p(y0|x0)
N
Π

i=1
p(yi|xi,yi−1), (1)
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Figure 2: The architecture of ExSinGAN, which is composed of three modular GANs, the
structural GAN for generating the coarse layout, semantic GAN for constraining the seman-
tics of synthesis, the texture GAN for making the synthesis exquisite. Except for structural
GAN, both semantic GAN and texture GAN are multi-stage. The GAN inversion provides a
structural prior to train structural GAN.

where yi can be sampled successively to get the final synthesis yN . We make an assumption
that image x can be decomposed into {xstr,xsem,xtex} called the triplet representation, where
xstr,xsem and xtex represent the structure, semantics and texture of x respectively.

We firstly point that such representation exists and xstr,xsem,xtex can be well-defined
on specific manifolds. Firstly, Considering a large-scale pre-trained generator Gpre and z∗

subjected to x = Gpre(z∗), we formulate xstr := Gpre(z∗)
0. The superscript ‘0’ represents the

downsampling operator as defined in Eq. (1), which aims to compress the texture and keep
the layout of x effectively. Note that even though xstr and x0 are equal, xstr belongs to the
new manifold defined by Gpre(z),z ∈ latent space. Unlike that disturbance in pixel space
usually brings noise to image, the disturbance to latent code z∗ likely changes the structure
of x reasonably, where the neighbors of xstr have similar structure to xstr. Then, the semantic
feature xsem can be extracted using pre-trained convolutional networks φ such as VGG19
[35], i.e., xsem = φ(x). Finally, the texture feature xtex can be interpreted as the internal
patches of x. Thus, we have determined the form of the triplet.
Proposed Method. It is not difficult to find that SinGAN just constrains the distance between
ytex and xtex by patch discriminators, i.e., maximizing p(y0

tex|x0
tex)Π

N
i=1 p(yi

tex|xi
tex,y

i−1), hence
SinGAN hardly generates images with reasonable structure and semantics. According to
triplet representation, we hope to maximize Eq. (2) to make all structure, semantics and
texture reasonable. Therefore, we introduce the strengthening form of Eq. (1)

p(ystr|xstr)p(y0
tex|x0

tex)
n
Π

i=1
(p(yi

sem|xi
sem,y

i−1)p(yi
tex|xi

tex,y
i−1))

N
Π

i=n+1
p(yi

tex|xi
tex,y

i−1). (2)

Eq. (2) consists of three parts, the fist part p(ystr|xstr)p(y0
tex|x0

tex) makes the texture and struc-
ture of syntheses similar to the origin. The second part Π

n
i=1(p(yi

sem|xi
sem,y

i−1)p(yi
tex|xi

tex,y
i−1))

makes the texture and semantics of syntheses similar to the origin at the intermediate stages.
and the third part Π

N
i=n+1 p(yi

tex|xi
tex,y

i−1) only makes the texture of syntheses similar to the
origin in high resolution. Fig. 2 shows the overview of ExSinGAN, where the network
comprises three modular GANs, respectively structural GAN, semantic GAN, and texture
GAN aiming to model three parts in Eq.(2) successively. In the following section, we simply
denote each generator and discriminator of ExSinGAN as Gi and Di, i ∈ {0, . . . ,N}.
Structural GAN. The structural GAN implicitly learns p(y0

tex|x0
tex)p(ystr|xstr) from the im-

age x, where the generator G0 synthesizes images of reasonable layouts and high qual-
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ity of texture. We firstly adopt GAN inversion method DGP [27] to find z∗ in the la-
tent space of BigGAN [6], then disturb z∗ via Gaussian noise to generate dataset Data =
{Gpre(z∗+∆zi)

0|i = 1, . . . ,m}, where ∆zi is a random noise and m is the number of synthe-
ses. Moreover, because the texture and color of syntheses in Data differ greatly from the
original image, we insert some copies of x0 into Data to suppress these artifacts. D0 is de-
signed as a fully-connected discriminator to learn the texture and structure together, which
is different from that SinGAN [31] uses a patch discriminator. WGAN-gp loss [17]

min
G0

max
D0
Ladv(G0,D0) (3)

is used as the adversarial loss to keep training stable. Sinusoidal positional encoding is con-
catenated with the input noise [12] to enhance the spatial inductive bias of G0 [42]. Once the
structural GAN is trained, G0 can generate low-resolution layouts of higher quality compared
with SinGAN (stage 0 in Fig. 1).
Semantic GAN. According to Π

n
i=1(p(yi

sem|yi
sem)p(yi

tex|xi
tex,y

i−1)), semantic GAN amis at
adding more texture and semantic details to the layout from G0. For the semantic details, we
adopt the perceptual loss [20]

Lp(xi,Gi(yi−1↑)) = ‖φ (x)−φ(Gi(yi−1↑))‖ (4)

to enlarge x0 meaningfully, where "↑" means bicubic interpolation, and Gi is a fully convo-
lutional network. Here we do not use residual learning like SinGAN, because it will cause
serious artifacts in practice. Patch discriminator Di is used for patch adversarial learning, and
the reconstruction loss Lrec(Gi) = ‖Gi(xi−1↑)− xi‖2 aims to stabilize the training. Denoting
Lp(xi,Gi(yi−1↑)) as Lp(Gi), the total training loss is

min
Gi

max
Di
Ladv(Gi,Di)+α1Lrec(Gi)+λLp(Gi). (5)

For arbitrary y0 from G0, the output yn has similar layout to y0 and close semantics to x, and
without semantic generator the quality will be poor (Case 2 and Case 3 in Fig. 1). The reason
we design multi-stage semantic GANs is that, we observed that only one semantic GAN
layer cannot provide effective semantic supervision. However, existing research [29, 46]
also proves that the perceptual loss is helpful for better visual quality on image restoration
tasks, nevertheless produces artifacts into the structures and causes color distortion. Hence
a proper n is important and will be discussed it in Sec. 4. It is worth noting that semantic
constraint has been mentioned in recent work IMAGINE [39], where a semantic constraint
is used to guide the category information of syntheses. Whereas in our approach semantic
constraint aims to replenish specific semantic details on the layout.
Texture GAN. The last term Π

N
i=n+1 p(yi

tex|xi
tex,y

i−1) indicates that adding texture details to
yn based on the reference x. We follow SinGAN to adopt the the multi-stage architecture
with the residual block that is widely used in super-resolution models [22]

yi = Gi(yi−1↑)+ yi−1↑, i = n+1, . . . ,N. (6)
The training loss contains the adversarial loss and reconstruction loss,

min
Gi

max
Di
Ladv(Gi,Di)+α2Lrec(Gi). (7)

Implementation. To speed up the training, except that D0 comprises three convolutional
layers and one fully connected layer, all other Gi and Di are simply composed of five convo-
lutional layers. Supposed the height H of x is longer than the width W , the longer side HN
of xN is set to no more than 256 and the shorter side W0 of x0 is fixed to 32. The rescaling
method influences both quality of synthesis and training time. See Fig. 3, SinGAN [31] takes
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Figure 3: Comparison of different rescaling methods when N = 5 and 9, the horizontal and
vertical axes respectively represent stage and pixel.

the basic rescaling method Hs = HN × rN−s, where r is scalar factor, and s is current stage.
ConSinGAN [19] takes a complicated rescaling method to focus on the lower stage. How-
ever, we find that these rescaling methods are time-consuming and not robust (see Appendix
for details). Hence we design a new rescaling method by analogous Taylor approximation of
the basic rescaling method

Hs = H0× (1+ st +
s(s−1)(s−2)

k
t3), s = 0, . . . ,N. (8)

In above equation, t = 1
r − 1 and k is adjustable to control the curve shape. In this paper

we set k = 2, r is determined by N. Fig. 3 shows the slope of our rescaling method does
not vanish at original point, and becomes larger when s approaches to N, which makes the
model more concerned with the generation at intermediate stages and less time-consuming
at top stages.

For training structural GAN, we jitter the latent code by Gaussian noise with mean 0,
and standard deviations varying from 0.1 to 0.5 to get 500 training data in total. Additional
150 copies of the original images are also injected into training data. Existing works used
the convolutional layers of pre-trained VGG-19 [35] for computing perceptual loss. We
have tried the different convolutional layers of VGG-19 in advance and concluded that the
combination of layers from relu51 to relu53 is the best choice for our model. To take
trade of training time and performance, we set N = 6, n = 3, λ = 0.1, α1,α2 = 10. For
structural GAN, we set training epochs to 10k, learning rate to 10−4, batch size to 32 for
both G0 and D0. For the semantic and texture GAN, we set training epochs to 2k, learning
rate to 5×10−4 for Gi and Di, i = 1, . . . ,N.

4 Experimental Results
In this section, we qualitatively and quantitatively compare ExSinGAN with DGP [27], Sin-
GAN [31], ConSinGAN[19], HP-VAEGAN [18] in terms of image synthesis, editing, har-
monization and paint-to-image tasks, then conduct ablation study to demonstrate that each
module of ExSinGAN is significant.

4.1 Image Synthesis
Qualitative Evaluation. We conduct experiments on various types of images for compre-
hensive comparison (Fig. 4), including texture image with rich texture but the simple struc-
ture, semantic image containing a single complicated object, and structural image comprising
a complex scene with several objects.
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Figure 4: Comparison of DGP [27], SinGAN [31], ConSinGAN[19], HP-VAEGAN [18] and
ExSinGAN on image synthesis.

(a). Editing (b). Harmonization (c). Paint-to-image

Figure 5: Comparison of SinGAN [31], ConSinGAN[19], ExSinGAN on editing, harmo-
nization and paint-to-image. In (a) and (b), the five columns respectively are original, naive,
SinGAN, ConSinGAN, ExSinGAN. In (c), the four columns are original, painting, SinGAN,
ExSinGAN.

Firstly, the generation of texture images primarily tests the ability to synthesize texture.
Although syntheses of DGP have unpromising texture, ExSinGAN can obtain exquisite re-
sults rivaling SinGAN by revising these unsatisfactory images. Note that the syntheses of
ConSinGAN have artifacts and coarse texture, and this phenomenon persists when we in-
crease its stages. Secondly, free deformation of the structure and repetitive patches are no
longer permitted in semantic images, which further tests the generative ability of models.
We first illustrate the erratic generative ability of previous models with two flowers of sim-
ilar structure in semantic images of Fig. 4. For the first flower, SinGAN and ConSinGAN
are confused with the relation of petals and ignore the flower stalk, but the overall layouts of
syntheses are plausible. However, they are failed to synthesize the second flower, where the
syntheses are of unreasonable repetitive patches petals. In fact, through experiments we find
that SinGAN and ConSinGAN are sensitive to color change very much. Note that the color
of the first flower is distinct from the background color, hence they can perceive the existence
of the petals rather than the stalk. Similarly, they can perceive the existence of the stalk rather
than the petals for the second flower. ExSinGAN not only successfully synthesizes the petals
but also generates the stalk beneath the petals. For the dog image and fish image, except that
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Model Places50 LSUN50 ImageNet50
SIFID↓ SSIM↓ SIFID↓ SSIM↓ SIFID↓ SSIM↓ Training time

DGP[27] 0.64 0.18 0.75 0.13 1.65 0.17 2 min
SinGAN[31] 0.09 0.37 0.23 0.33 0.60 0.34 80 min
ConSinGAN[19] 0.06 0.25 0.11 0.26 0.56 0.23 25 min
HP-VAEGAN[18] 0.30 0.19 0.32 0.16 0.60 0.16 63 min
ExSinGAN 0.10 0.34 0.11 0.35 0.45 0.34 40 min
Te.7 0.24 0.19 0.53 0.14 0.51 0.19 -
St.1 Te.6 0.17 0.32 0.17 0.31 0.50 0.27 -
St.1 Se.1 Te.5 0.15 0.34 0.15 0.34 0.54 0.34 -
St.1 Se.3 Te.3 0.10 0.34 0.11 0.35 0.45 0.34 -
St.1 Se.6 0.11 0.35 0.11 0.35 0.50 0.34 -
Te.1 Se.3 Te.3 0.23 0.20 0.28 0.19 0.56 0.20 -

Table 1: Evaluations of SIFID, SSIM on Places50 [31], LSUN50 [19], and ImageNet50. St.,
Se. and Te. are the abbreviations of Structural, Semantic and Texture GAN. The numbers
behind them are their stages.

Model Places50 LSUN50 ImageNet50
Realism↑ Diversity↑ Realism↑ Diversity↑ Realism↑ Diversity ↑

SinGAN[31] 23.0% 47.8% 18.8% 39.9% 11.5% 35.3%
ExSinGAN 77.0% 52.2% 81.2% 60.1% 88.5% 64.7%

Table 2: User studies on Places50, LSUN50, and ImageNet50. Here the number represents
the percentage of votes that voted for corresponding method.

syntheses of DGP have obvious texture defects, the other three generative methods are com-
pletely failed in vision. This is similar to case 1 shown in Fig, 1. Due to the lack of structural
and semantic constraints, they can only generate repeated patches, while the syntheses of
ExSinGAN can also maintain reasonable structure and high-quality texture. Thirdly, for the
structural images, despite the fact DGP performs badly in texture, ExSinGAN just properly
utilizes its merit of generating plausible layouts, making reasonable variations in images. Vi-
sually, ExSinGAN has made satisfying structural changes rather than simply distorting the
image. For example, for the dancing image synthesized by ExSinGAN, although the tower
in the background disappears, the structure of the image is not polluted like the syntheses
of SinGAN. As can be seen from the boat and classroom images, ExSinGAN can produce
stronger changes in the layout, proving that ExSinGAN is not overfitting to the given image.
Quantitative Evaluation. Constructing valid quantitative metric for single image genera-
tive model is really an open and difficult problem. We adopt the SIFID proposed by Sin-
GAN [31] to compare the distribution of the original image with that of syntheses using the
features extracted by the pre-trained Inception network [37]. The classic SSIM [40] is used
for computing the diversity. Models are evaluated on three datasets, Places50 proposed by
SinGAN consisting of 50 images from the Places dataset [45], LSUN50 proposed by ConSin-
GAN consisting 50 images from the LSUN dataset [44], ImageNet50 containing 50 semantic
images from the validation set of ImageNet to test generation of semantic images. The quan-
titative evaluation in Table 1 shows that ExSinGAN achieves similar SSIM to SinGAN but
better performance on SIFID. In particular, on the most difficult dataset ImageNet50, ExSin-
GAN is ahead of other methods, proving that the hierarchical structure is highly effective
to learn a pretty generative model. As previous discussion, DGP performs badly in texture
(high SIFID) but generates good layouts (low SSIM). ExSinGAN takes both the strengths of
GAN inversion (better layout) and internal learning methods (better pixel-level generation),
performing outstandingly and stably all the time.
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User Studies. Moreover, we conduct user studies to compare the realism and diversity of
our syntheses with that of SinGAN via Amazon Mechanical Turk. We provide the orig-
inal image and syntheses from ExSinGAN and SinGAN of the three datasets to Turkers,
and Turkers will select the better image with regard to two criteria: realism (the more re-
alistic image) and diversity (the image more different from the given image). Specifically,
we recruited 50 Turkers for each dataset, and for each image we provide one synthesis of
SinGAN and ExSinGAN respectively. The Turkers will make decisions without the time
limitation. The result of user studies in Table 2 shows that our method can synthesize more
realistic and diverse images on all datasets. Although the SSIM of ExSinGAN is similar
to that of SinGAN, it can be attributed to that the syntheses of SinGAN contain artifacts
that are meaningless to human vision. Moreover, as the difficulty of datasets increases, the
gap between ExSinGAN and SinGAN also broadens, indicating that ExSinGAN has a better
generalization performance on various images.

4.2 Generalization Study
Editing. This task aims to produce a seamless composite in which image regions have been
copied and pasted in other locations. For ExSinGAN, we inject a subsampled version of
the naive image into stage one as xstr, then combine the synthesis with the original image at
the edited regions. Fig. 5(a) shows some examples of three methods. For the stone image,
ExSinGAN performs better on generating more realistic texture than the other two methods.
For the tree image, ExSinGAN can keep the structures of naive images well, which means
ExSinGAN is more controllable. ConSinGAN failed to merge the background in this task.
Harmonization. Image harmonization aims to realistically blend a pasted object with a
background image. For SinGAN and ExSinGAN, the harmonization process is identical
to the editing process. The results in Fig. 5(b) show that our work still gets better results
compared with SinGAN. ConSinGAN can get better results sometimes because it fine-tunes
the models by the naive image.
Paint-to-image. See Fig. 5(c), this task aims to transfer a paint into a photo-realistic image.
Because ConSinGAN does not support this task, we just compare ExSinGAN with SinGAN.
For SinGAN, this is done by subsampling the paint and feeding it into one of the coarse
scales. For ExSinGAN, we just feed the subsampled painting into stage one. From these
images, we know that ExSinGAN is sensitive to the structure of paint (the road under trees,
the grass near the mountains), and the texture and style are more realistic (the cows). For
the pyramids, the synthesis of ExSinGAN is more three-dimensional and context-based (the
clouds around pyramids). In conclusion, ExSinGAN can do this task better than SinGAN
with fewer stages and time consumption.

4.3 Ablation Study
In this subsection, we conduct both quantitative (Table 1) and qualitative (Fig. 6) ablation
study on ExSinGAN to verify that our improvements in SinGAN are effective. We start with
the baseline 7-stage SinGAN and check the effects of each modular GAN.
Structural GAN. Fig. 6 shows an awful synthesis of the baseline model. To prove the
significance of structural GAN, we just replace the first stage of baseline with structural
GAN, then the synthesis (the third image) has an overtly clearer appearance than before, and
the SIFID decreases overtly (St.1 Te.6 in Table 1).
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Figure 6: Examples for ablation study. From left to right, first row: original, SinGAN,
structural GAN with texture GAN, ExSinGAN, semantic GAN with texture GAN, using the
discriminator of BigGAN for computing the perceptual loss. Second row: original, ExSin-
GAN with increasing n from 1 to 5. Third row: original, and ExSinGAN with increasing N
from 5 to 9.

Semantic GAN. Now we combine the Structural GAN with Semantic GAN to show their
effects further. In the first row of Fig. 6, the fourth image (ExSinGAN) shows that the skin
of the wolf is smoother and tidier than the previous one. Then we withdraw the structural
GAN (Te.1 Se.3 Te.3). The fifth image shows that the result of generation becomes terrible
in vision. It means that the structural GAN is necessary for the successful generation, and
the semantic GAN is a helper to make the synthesis more realistic and meaningful. They
promote and affect each other. In Table 1, the quantitative results show that only Semantic
GAN has a negative effect on the baseline, but a positive effect on structural GAN. We also
try to use the discriminator of BigGAN to compute the perceptual loss, and the results show
that it plays a similar role with VGG-19, meaning it can extract useful semantic information.
Number of Stages. The number of stages greatly influences the results and the cost of time.
For ExSinGAN, there are two important hyper-parameters N and n that should be considered.
When we fix N = 6, the second row of Fig. 6 shows that the semantics of syntheses is closer
to the original image as n is increased from 1 to 5. However, since the high-level feature
maps also contain information for image restoration, once the size of the feature map is too
large, the perceptual loss is almost equivalent to per-pixel loss, which is inconsistent with the
purpose of semantic constraint and adds artifacts to the syntheses. The quantitative results
(St.1 Te.6, St.1 Se.1 Te.6, St.1 Se.3 Te.3, and St.1 Se.6) show that SIFID firstly decreases and
then increases, proving that n = 3 is the best choice. We do not conduct a quantitative study
about N because there has been similar research in [31] and [19]. Here we just support some
examples, the third row of Fig. 6 shows that higher-quality syntheses can be obtained with
N increased, but of smaller changes of structure and more time consuming (a double-time
when N = 9).

5 Conclusion
We introduced an explainable single image generative model named ExSinGAN based on
the triplet representation of image. ExSinGAN has three modular GANs, respectively struc-
ture GAN generating reasonable layouts, semantic GAN replenishing the semantic details,
and texture GAN adding the fine texture details. We demonstrated its superior abilities in
synthesis and image manipulation tasks compared with previous works. We believe that
the combination of external knowledge and internal learning is the key to solving the single
image generation task, which will be further explored in our future work.
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