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Abstract

In this paper, we investigate the cause of the high false positive rate in Visual Re-
lationship Detection (VRD). We observe that during training, the relationship proposal
distribution is highly imbalanced: most of the negative relationship proposals are easy
to identify, e.g., the inaccurate object detection, which leads to the under-fitting of low-
frequency difficult proposals. This paper presents Spatially-Aware Balanced negative
pRoposal sAmpling (SABRA), a robust VRD framework as a proof of concept that allevi-
ates the influence of false positives. To effectively optimize the model under imbalanced
distribution, SABRA adopts Balanced Negative Proposal Sampling (BNPS) strategy for
mini-batch sampling. BNPS divides proposals into 5 well-defined sub-classes and gen-
erates a balanced training distribution. To further resolve the low-frequency challenging
false positive proposals with high spatial ambiguity, we adopt a spatial learning module
that implicitly imposes the object-centric spatial configuration with a spatial mask de-
coder, using the global spatial features extracted with Graph Neural Networks. SABRA
is conceptually simple and outperforms SOTA methods by a large margin on two human-
object interaction (HOI) datasets and one general VRD dataset.

1 Introduction
Visual Relationship Detection (VRD) is an important visual task that bridges the gap between
middle-level visual perception, e.g., object detection, and high-level visual understanding,
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(a) Imbalanced negative proposal distribution (b) Influence of ambiguous context
Figure 1: (a) VRD normally gives an extremely imbalanced negative proposal distribution,
where S1:5

neg denotes 5 different types of negative proposals. Detailed definition of S1:5
neg is given

by Sec. 3.1. (b) Contextual objects introduce ambiguous information to the relationship
classification, e.g., the model thinks the woman on the left is cutting the cake by mistake.

e.g., image captioning [7, 38], and visual question answering [28]. General VRD aims to
understand the interaction between two arbitrary objects in the scene. Human-Object Inter-
action (HOI), as a specific case of VRD, focuses on understanding the interaction between
humans and objects, e.g., woman-cut-cake.

Existing VRD methods focus on building powerful feature extractors for each [subject,
object] pair, predicting the predicate between the subject and the object, and outputting
[subject, predicate, object] triplet predictions. Some prior works model subject and object
relationship independently [6, 32], which loses the global context and is susceptible to inac-
curate detections. Some recent works incorporate the union bounding boxes of the [subject,
object] as additional features to provide additional spatial information [31, 39] or use the
graph neural networks (GNNs) to better extract global object relationships [16, 30, 48]. For
all methods, they train the model with a dataset consists of both positive and negative [sub-
ject, object] proposal pairs. However, such a scheme often leads to a high false positive
prediction rate, i.e., many negative proposals are classified as positive (Fig. 1.b).

In this work, we aim to demystify the cause of the high false positive rate in VRD. We
observe that the negative [subject, object] proposals form an imbalanced distribution which
leads to a difficult optimization landscape [33]. This is because most of the negative samples
are caused by simple yet prevalent inaccurate object detections, but the challenging incor-
rect [subject, object] associations, caused by ambiguous contexts, only contribute to a small
portion of the negative proposals. As a result, the imbalance negative proposal distribution
makes learning accurate predictions for the hard but rare negative proposals difficult.

We present Spatially-Aware Balanced negative pRoposal sAmpling (SABRA), a robust
and general VRD framework as a proof of concept that alleviates the influence of false posi-
tives for both HOI and general VRD tasks. According to the two sources of negative propos-
als, i.e., inaccurate detections, and incorrect associations, we introduce a division of negative
proposals into 5 sub-classes S1:5

neg. For each single object detection, we consider (1) if it is
an accurate detection, and (2) if it is in any relationship with a different object. Specifically,
in Fig. 1.a, S1:2

neg cover the inaccurate detections, and S3:5
neg discuss the incorrect associations.

From S1
neg to S5

neg, the sample size decreases, and the classification difficulty increases, be-
cause detecting the false positives according to the accuracy of detection is no longer suf-
ficient, and careful understanding of object relationships becomes necessary for the task.
As visualized in Fig. 1.a, the sample sizes of 5 negative proposal sub-classes give a highly
imbalanced distribution, which degrades the performance of data-driven VRD algorithms.

Inspired by the learning under imbalanced distribution literature [3, 43], we alleviate the
optimization difficulty by Balanced Negative Proposal Sampling scheme. BNPS computes
the statistics of each class and performs a simple yet effective Class Balanced Sampling [34]
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for balanced data distribution. Balanced negative proposal sampling significantly reduces the
number of false positive occurrences. For low-frequency difficult classes S3:5

neg, e.g., Fig. 1.b,
we further improve the spatial modeling of SABRA on two aspects. For the global context
understanding, SABRA extends the existing GNN-based methods [30, 46] with a heteroge-
neous message passing scheme that effectively addresses the distribution divergence between
different features. For local spatial configuration, SABRA learns a position-aware embed-
ding vector by predicting the locations in each [subject, object] pair.

We evaluate SABRA on both HOI (V-COCO and HICO-DET) and general visual rela-
tionship detection (VRD). We show that SABRA significantly outperforms SOTA methods.
We also visualize the results and show that SABRA effectively reduces the false positives in
VRD and misclassification in terms of spatial ambiguity.

2 Related Works
Visual Relationship Detection. VRD is an important middle-level task bridging low-level
visual recognition with high-level visual understanding. With the advances of deep learn-
ing, data-driven approaches are widely adopted for VRD. Specifically, Convolutional Neural
Networks (CNNs) are used for automatic feature extraction and information fusion, which
achieved great improvement in VRD [39, 42, 45]. Graph Neural Networks (GNNs) further
improve the feature extraction process by explicitly modeling the instance-wise interactions
between objects [30, 46]. Due to the nature of VRD tasks, additional information has been
introduced as auxiliary training signals, such as language priors [26], prior interactiveness
knowledge of objects [22], and action co-occurrence knowledge [20]. In comparison with
the existing methods, SABRA is the first to identify the importance of false positives in VRD
tasks and has significantly outperformed SOTA methods in our experiments.
Learning under Imbalanced Distribution. Real-world data is imbalanced by nature: a
few high-frequency classes contribute to most of the samples, while a large number of low-
frequency classes are under-represented in data. Standard imbalanced learning techniques
include data re-balancing [1, 2, 3], loss function engineering [4, 14] and meta-learning [18].
VRD, as a common computer vision task, also suffers from the imbalanced problem [20, 25].
[20] considers the imbalance of relationship imbalance, i.e., the imbalance of positive sam-
ples, and uses action co-occurrence to provide additional labels. However, none of the ex-
isting methods consider the imbalance of the negative [subject, object] proposals, which
commonly exists in VRD settings. By re-balancing the proposals, SABRA significantly im-
proves the overall performance of VRD algorithms.
Spatial Information. Spatial information is key to understanding the relationship between
objects. Prior methods fuse spatial information with positional embedding, which normalizes
the absolute or relative coordinates of the subject, object, and union bounding boxes [52].
However, simple positional embedding implicitly captures spatial information with position
coordinates as inputs to networks, which is unable to capture the explicit spatial configura-
tion in the feature space. [11] introduces binary masks which explicitly specify the subject
and object positions, implicitly specifying the spatial configuration by concatenating with
union features. With the recent advances in graph neural networks, the relevant positional
information can be captured by message passing between instances [54]. The implicit mes-
sage passing, nevertheless, loses the contextual grounding of the [subject, object] pair. In
contrast, the spatial mask decoder learns to predict the positional information of the [subject,
object] , while capturing the relevant features by end-to-end learning.
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Figure 2: SABRA classifies the negative [subject, object] proposals into 5 sub-categories
S1:5

neg and use Balanced Sampling to re-balance the categorical distribution Cat(Spos,S1:5
neg). To

reduce the false positive relationship predictions caused by spatial ambiguity, SABRA first
uses MH-GAT to capture the global context and then learns to predict the spatial mask of
[subject, object] in the ROI pooled feature space with a spatial mask decoder.

3 SABRA

We observe that there are two major causes to the hard false positive predictions. Firstly, the
relationship classifier is trained under an extremely imbalanced distribution, which contains
few hard negative samples but numerous easy negative samples. As a result, it gives less
training signal to hard examples and hinders the final performance. Besides, these samples
are often caused by spatial ambiguity, which requires us to embed spatial relations into the
proposed classifier. To this end, we propose a balanced negative proposal sampling strategy
and spatially-aware embedding modules to enhance visual feature learning.

The pipeline of SABRA is shown in Fig. 2. The input image is fed into an object detector
to predict all bounding boxes, which are exhaustively paired to generate all relationship
proposals. In the proposal sampling stage, given the imbalanced relationship proposals,
SABRA constructs a balanced pair mini-batch by the proposed BNPS that samples data
point i proportionally to its inverse-frequency. The features of subjects, objects, and union
bounding boxes are fed into a graph neural network to extract spatial object interactions.
The mask decoder discovers the spatial configuration of [subject, object] pairs in the learned
embeddings. SABRA is robust to the imbalanced negative proposal distribution and also
reduces the number of false positive predictions caused by spatial ambiguity.

3.1 Balanced Negative Proposal Sampling

Negative Relationship Proposals. Despite abundant researches in improving feature ex-
traction for positive [subject, predicate, object] triplets in VRD, effective learning under a
large number of negative proposals is rarely explored. Previous works [24] only consider
the imbalance between positive and negative proposals but ignore the inner imbalance of
negative proposals, which has a great impact on the performance of the VRD task.

Suppose we have two sets of bounding boxes Bsubject,Bobject, where Bsubject contains all
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the bounding boxes for subjects, and Bobject is for objects. A relationship proposal is defined
as a tuple (b1,b2). We define the set of proposals S as S = {(b1,b2) | b1 ∈ Bsubject,b2 ∈
Bobject}. S can be divided into two disjoint subsets Spos and Sneg. Spos denotes the set of pos-
itive proposals that correspond to the ground truth, and Sneg stands for the wrong proposals.

In VRD task, negative proposals are caused mainly by two reasons: inaccurate detec-
tions and incorrect associations. Inaccurate detections lead to negative proposals generated
by inaccurate bounding boxes. This type of negative proposals can be easily identified by
the visual appearance feature of single object detections alone, but contribute a large portion
of S as Fig.1.a shows, due to the exhaustively pairing. On the other hand, incorrect asso-
ciations cause negative proposals in a more complicated way. For detections with at least
one positive relationship, Drel = {b | ∃b′,(b,b′) ∈ Spos∨ (b′,b) ∈ Spos}, empirically we have
|Drel|/|Dpos|< 0.2, where Dpos stands for accurate detections. Moreover, consider a proposal
(b1,b2) where b1 ∈Drel, i.e., ∃b′2,(b1,b′2) ∈ Spos. The relationship prediction of (b1,b2) will
be influenced by the positive proposal (b1,b′2), which introduces extra confusion. Thus, the
proposals with bounding boxes from Drel are not only under-represented but more confus-
ing. In summary, an imbalanced proposal distribution, where the difficulty of each proposal
is negatively correlated with its population size, commonly exists in VRD tasks and would
degrade the overall performance of VRD algorithms.
Balanced Negative Proposal Sampling. Our solution is motivated by learning with data
imbalance [1, 2]. We propose a balanced negative proposal sampling strategy considering 1
positive class and 5 negative classes.

We first define two helper functions, fbox and frel:

fbox(b) =

{
1, if ∃g ∈ GTbox, IoU(b,g)≥ 0.5,
0, otherwise.

(1)

frel(b) =

{
1, if ∃(g1,g2) ∈ GTrel,maxIoU(b,(g1,g2))≥ 0.5,
0, otherwise,

(2)

where GTbox denotes the set of ground truth bounding boxes, GTrel denotes the set of
ground truth relationships, and maxIoU(b,(g1,g2)) = max(IoU(b,g1), IoU(b,g2)). Intu-
itively, fbox(b) indicates if a bounding box b is a positive bounding box, and frel(b) denotes
if bounding box b belongs to a positive relationship.

Next, we divide Sneg following these two principles: (1) simple proposals are caused
by inaccurate bounding boxes; (2) difficult proposals are introduced by incorrect [subject,
object] associations. For clarity, we formulate the 5 sub-classes:

S1
neg ={(b1,b2)|¬ fbox(b1)∧¬ fbox(b2)},

S2
neg ={(b1,b2)|(¬ fbox(b1)∧ fbox(b2))∨ ( fbox(b1)∧¬ fbox(b2))},

S3
neg ={(b1,b2)| fbox(b1)∧¬ frel(b1)∧ fbox(b2)∧¬ frel(b2)},

S4
neg ={(b1,b2)|( frel(b1)∧ fbox(b2)∧¬ frel(b2))∨ ( fbox(b1)∧¬ frel(b1)∧ frel(b2))},

S5
neg ={(b1,b2)| frel(b1)∧ frel(b2)∧ (b1,b2) /∈ Spos}. (3)

This divides the negative proposals into 5 sub-classes: (1) S1
neg, both detections are incor-

rect; (2) S2
neg, one detection is incorrect; (3) S3

neg, both detections are correct, but they belong
to no [subject, predicate, object] triplet; (4) S4

neg, both detections are correct, but only one of
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them appears in [subject, predicate, object] triplets; (5) S5
neg, both detections are correct, but

they appear in two disjoint sets of [subject, predicate, object] triplets, which is the minority
of the negative proposals but is the most difficult to learn. Together with the Spos, we divide

S into 6 classes, S =
5⋃

i=1
Si

neg∪Spos.

We adopt the most standard Balanced Sampling scheme [34] in learning with imbalance
literature to address the imbalance of negative proposals Sneg, and we introduce Balanced
Negative Proposal Sampling (BNPS). During training time, for each image, we find the top-
K object detections, construct K×K relationship proposals, and count the number of samples
for each class. For each proposal si, we assign a weight wi:

wi =

{
0.25/|Spos|, if si ∈ Spos,

0.15/|S j
neg|, if si ∈ S j

neg, j = 1, . . . ,5
(4)

where we keep the weight, 0.25, of positive proposals to retain the ratio of Spos as [24],
while re-balancing the weight of negative proposals, which improves the prediction of low-
frequency difficult classes.

3.2 Spatially-Aware Embedding Learning

SABRA adopts a GNN-based paradigm for spatial modeling. Nevertheless, existing meth-
ods [22, 46] make no clear separation between the subject, object, and the union box features.
Global Spatial Modeling. SABRA addresses the divergence in the feature distributions us-
ing a simple yet effective method, heterogeneous message passing in GNNs. We construct
a heterogeneous graph by explicitly separating the subject nodes xi and object nodes x j, and
connect them by edges with features ei j extracted from their union bounding box. We process
each feature type with different embedding functions, such that a single embedding function
fits for only a specific type of feature distribution. Specifically, we build upon the Graph
Attention Networks [37], and introduce the heterogeneous message passing as follows:

x′i = xi +∑
j

αi j fm([xi,x j,ei j]),αi j =
exp(gi j)

∑
k

exp(gik)
,gi j = [ fs(xi), ft(x j), fe(ei j)], (5)

where αi j is the attention weight for edge (i, j), fm, fs, ft and fe are functions for message
embedding, source node feature embedding, target node feature embedding, and edge fea-
ture embedding respectively. k represents all the neighbors of node i. Specifically, in our
method, every pair of nodes are connected, no matter which categories are them. Besides,
each node is connected to itself. We can extend such a formulation with the multi-head
attention mechanism from Transformer Networks [36]. For simplicity, we denote the used
multi-head heterogeneous GNN as MH-GAT.

Local Spatial Modeling. To learn the local spatial configuration, we present Spatial
Mask Decoder (SMD) which predicts the locations of [subject, object] . SMD predicts a
2× lp× lp mask using the VRD feature vectors, where lp represents the pooling size and the
two channels represent the spatial location of subjects and objects in the pooled feature map.

The detailed architecture of Spatial Mask Decoder (SMD) is shown in Fig. 3. The re-
lationship feature is originally used for classification. To ensure that the learned features
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contain sufficient spatial information during the entire forward pass, we fuse and concate-
nate two intermediate features from the classifier. This 2048-d feature will be passed to
an extra fully connect layer to predict the object mask and subject mask, which describe
the position of corresponding bounding boxes related to the union bounding box. Specifi-
cally, the subject mask is a matrix Msubject ∈ {0,1}lp×lp . In Msubject, the value of an entry is
equal to 1 if and only if at least half of this rectangular area belongs to the subject bounding
box. The object mask Mobject ∈ {0,1}lp×lp uses a similar definition as the subject mask.

Relationship 
feature

Subject mask

Object mask

Classification

1024 1024

2048

class number

7 * 7 * 2

FC

Concatenate

Reshape

1024

Figure 3: Structure of Spatial Mask Decoder.

This guarantees that the local spatial
configuration is tightly embedded in the
feature vector for relationship prediction.
We scale the absolute coordinates of the
[subject, object] pair to get the relative po-
sition in the pooled feature map. Com-
pared to reconstruction in the image space,
the ROI feature space preserves the local-
ity of the union bounding box but requires
fewer parameters. Different from the stan-
dard positional embedding [52] which im-
plicitly utilizes the spatial information with
the absolute positions as an input, SMD explicitly learns a structured embedding. Compared
to [11] which concatenates binary mask as position feature, SMD explicitly imposes the
spatial structure in the embedding vector and gives better spatially-aware embeddings.

4 Experiments
We evaluate SABRA on three commonly used datasets: V-COCO [13], HICO-DET [5], and
VRD [27], covering both human-object interaction (V-COCO and HICO-DET) and visual
relationship detection (VRD). We compared SABRA with over 20 SOTA methods. Specif-
ically, we trained SABRA with different backbones and perform a comprehensive and fair
comparison with existing methods. We incrementally add our proposed components to a
baseline model. The baseline directly concatenates appearance features of subjects, objects,
and their union features, which are fed into a 3-layer Multi-Layer Perceptron (MLP) for
classification. We repeated all experiments more than 3 times, and the standard deviation is
smaller than 0.3 for all datasets.

As a brief conclusion, we show that: 1) SABRA generally outperforms other methods by
a large margin; 2) the balanced negative proposal sampling strategy can reduce the number
of false positive predictions; 3) spatial mask decoder successfully reduces the number of
false positives caused by spatial ambiguity.

4.1 Datasets and Evaluation Metrics
V-COCO is based on the 80-class object detection annotations of COCO [23]. It has 10,346
images (2,533 for training, 2,867 for validating and 4,946 for testing). HICO-DET has a total
of 47,774 images, covering 600 categories of human-object interactions over 117 common
actions on 80 common objects. VRD dataset contains 4,000 images in the train split and
1,000 in the test split. It has 100 different types of objects and 70 types of relationships.
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V-COCO HICO-DET
Default Known Objects

Method Backbone AProle Full Rare Non-Rare Full Rare Non-Rare

iCAN [8] ResNet50 45.30 14.84 10.45 16.15 16.26 11.33 17.73
Contextual Attention [41] ResNet50 47.30 16.24 11.16 17.75 17.73 12.78 19.21

In-GraphNet [47] ResNet50 48.90 17.72 12.93 13.91 - - -
VCL [15] ResNet50 48.30 19.43 16.55 20.29 22.00 19.09 22.87

PD-Net [53] ResNet50 52.30 20.76 15.68 22.28 25.58 19.93 27.28
SABRA(Ours) ResNet50 53.57 23.48 16.39 25.59 28.79 22.75 30.54

InteractNet [12] ResNet50-FPN 40.00 9.94 7.16 10.77 - - -
PMFNet [39] ResNet50-FPN 52.00 17.46 15.65 18.00 20.34 17.47 21.20

DRG [9] ResNet50-FPN 51.00 19.26 17.74 19.71 23.40 21.75 23.89
IP-Net [42] ResNet50-FPN 51.00 19.56 12.79 21.58 22.05 15.77 23.92

Contextual HGNN [40] ResNet50-FPN 52.70 17.57 16.85 17.78 21.00 20.74 21.08
SABRA(Ours) ResNet50-FPN 54.69 24.12 15.91 26.57 29.65 22.92 31.65

VSGNet [35] ResNet152 51.76 19.80 16.05 20.91 - - -
PD-Net [53] ResNet152 52.20 22.37 17.61 23.79 26.89 21.70 28.44

ACP [19] ResNet152 52.98 20.59 15.92 21.98 - - -
SABRA(Ours) ResNet152 56.62 26.09 16.29 29.02 31.08 23.44 33.37

Table 1: Results on V-COCO and HICO-DET datasets

Rel. Phr.

Method Backbone R@50 R@100 R@50 R@100

VRD [27] VGG16 17.03 16.17 14.70 13.86
KL distillation [50] VGG16 19.17 21.34 23.14 24.03

Zoom-Net [49] VGG16 18.92 21.41 24.82 28.09
CAI + SCA-M [49] VGG16 19.54 22.39 25.21 28.89

Hose-Net [44] VGG16 20.46 23.57 27.04 31.71
RelDN [52] VGG16 18.92 22.96 26.37 31.42
AVR [29] VGG16 22.83 25.41 29.33 33.27

SABRA(Ours) VGG16 24.47 29.16 30.57 36.80

GPS-Net [24] VGG16(C) 21.50 24.30 28.90 34.00
MCN [51] VGG16(C) 24.50 28.00 31.80 37.10

SABRA(Ours) VGG16(C) 26.29 31.08 32.01 38.48

UVTransE [17] VGG16(V) 25.66 29.71 30.01 36.18
SABRA(Ours) VGG16(V) 27.87 32.48 33.56 39.62

ATR-Net [10] ResNet101 - - 31.96 36.54
SABRA(Ours) ResNet101 26.73 31.11 32.81 38.68

Table 2: Results on the VRD dataset

Sampling Spatial Learning GNN AProle

1 - - - 50.20
2 BNPS - - 52.24
3 - SMD - 50.84
4 - - MH-GAT 51.65

5 - SMD MH-GAT 52.82
6 BNPS-2cls SMD MH-GAT 53.74
7 BNPS-3cls SMD MH-GAT 53.93

8 BNPS - MH-GAT 53.67
9 BNPS Binary [11] MH-GAT 53.90
10 BNPS PE [52] MH-GAT 54.29

11 BNPS SMD - 52.53
12 BNPS SMD M-GAT 51.65
13 BNPS SMD MH-GAT(NE) 53.80

14 BNPS SMD MH-GAT 54.69

Table 3: Ablation Study on V-COCO

As for evaluation metrics, we followed the convention in prior literature[27, 50]: mean
average precision (mAP) is used to estimate the performance of V-COCO and HICO-DET;
Recall@K is used for VRD, where K denotes the number of top K predictions.

4.2 Quantitative Results

We present our results in Table 1 for HOI datasets (V-COCO and HICO-DET) and Table 2
for the VRD dataset. For HOI, we cluster our results according to the backbones, including
ResNet50, ResNet50-FPN, and ResNet152, with increasing feature extraction ability. For
VRD datasets, VGG-16 and ResNet101 pretrained on ImageNet are used. To align with the
setup of some prior works [17, 24, 51], we use MS COCO [23] and Visual Genome [21] as
additional datasets for VGG16, denoted by VGG (C) and VGG (V) respectively.

We observe that SABRA generally improves the SOTA methods significantly on all
datasets for both HOI and VRD. For example, on V-COCO with ResNet152 backbone,
SABRA achieves 56.62 mAP while the SOTA model ACP [20], gives an mAP of 52.98.
Specifically, we want to highlight the performance gain of SABRA on the V-COCO dataset.

Citation
Citation
{Gao, Zou, and Huang} 2018

Citation
Citation
{Wang, Anwer, Khan, Khan, Pang, Shao, and Laaksonen} 2019

Citation
Citation
{Yang and Zou} 2020

Citation
Citation
{Hou, Peng, Qiao, and Tao} 2020

Citation
Citation
{Zhong, Ding, Qu, and Tao} 2020

Citation
Citation
{Gkioxari, Girshick, Doll{á}r, and He} 2018

Citation
Citation
{Wan, Zhou, Liu, Li, and He} 2019

Citation
Citation
{Gao, Xu, Zou, and Huang} 2020

Citation
Citation
{Wang, Yang, Danelljan, Khan, Zhang, and Sun} 2020{}

Citation
Citation
{Wang, Zheng, and Ling} 2020{}

Citation
Citation
{Ulutan, Iftekhar, and Manjunath} 2020

Citation
Citation
{Zhong, Ding, Qu, and Tao} 2020

Citation
Citation
{Kim, Sun, Choi, Lin, and Kweon} 2020{}

Citation
Citation
{Lu, Krishna, Bernstein, and Li} 2016{}

Citation
Citation
{Yu, Li, Morariu, and Davis} 2017

Citation
Citation
{Yin, Sheng, Liu, Yu, Wang, Shao, and Loy} 2018

Citation
Citation
{Yin, Sheng, Liu, Yu, Wang, Shao, and Loy} 2018

Citation
Citation
{Wei, Yuan, Yue, and Zhong} 2020

Citation
Citation
{Zhang, Shih, Elgammal, Tao, and Catanzaro} 2019

Citation
Citation
{Lv, Xiao, and Zhong} 2020

Citation
Citation
{Lin, Ding, Zeng, and Tao} 2020{}

Citation
Citation
{Zhan, Yu, Yu, and Tao} 2020

Citation
Citation
{Hung, Mallya, and Lazebnik} 2020

Citation
Citation
{Gkanatsios, Pitsikalis, Koutras, and Maragos} 2019{}

Citation
Citation
{Gkanatsios, Pitsikalis, Koutras, Zlatintsi, and Maragos} 2019{}

Citation
Citation
{Zhang, Shih, Elgammal, Tao, and Catanzaro} 2019

Citation
Citation
{Lu, Krishna, Bernstein, and Li} 2016{}

Citation
Citation
{Yu, Li, Morariu, and Davis} 2017

Citation
Citation
{Hung, Mallya, and Lazebnik} 2020

Citation
Citation
{Lin, Ding, Zeng, and Tao} 2020{}

Citation
Citation
{Zhan, Yu, Yu, and Tao} 2020

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Krishna, Zhu, Groth, Johnson, Hata, Kravitz, Chen, Kalantidis, Li, Shamma, Bernstein, and Fei{-}Fei} 2017

Citation
Citation
{Kim, Sun, Choi, Lin, and Kweon} 2020{}



JIN ET AL.: TOWARDS OVERCOMING FALSE POSITIVES IN VRD 9

S1
neg S2

neg S3
neg S4

neg S5
neg

0

500

1000

1500

2000

2500

3000

3500

#
F

al
se

P
os

it
iv

es

Baseline

SABRA w/o BNPS

SABRA w/o Spatial

SABRA

person-cut-cake(0.92    0.13) person-read-book(0.91    0.14)

(a) False positive comparison (b) False positive reduction examples of SABRA
Figure 4: Qualitative analysis of SABRA on V-COCO dataset. (a) The number of false posi-
tive predictions under each class by Baseline model, SABRA w/o BNPS, SABRA w/o spatial
module (MH-GAT + SMD), and SABRA. BNPS and spatial module significantly reduce the
number of false positive predictions. (b) Predictions of SABRA. In sub-predicate-obj(v1,v2),
v1 denotes the prediction confidence of the baseline model and v2 denotes the confidence of
SABRA. SABRA successfully reduced the low-frequency difficult false positives.

V-COCO uses the object annotations of the COCO dataset, which are accurate and include
all objects, regardless of the relationships. This gives a more imbalanced distribution than
HICO-DET, where only the objects in relationships are considered. Furthermore, accurate
annotations also give rise to better object detection, which amplifies the significance of spa-
tial information for a good performance. Specifically, we noticed that for PD-Net [53], using
a more powerful backbone (ResNet152) gives no performance gain than the smaller one
(ResNet50). SABRA, on the contrary, can fully exploit the power of ResNet152 and give a
large performance improvement compared with ResNet50 (56.62 V.S. 53.57).

4.3 Ablation Studies

We conduct a comprehensive ablation study on the V-COCO dataset to understand each
proposed component: Balanced Negative Proposal Sampling (BNPS), Multi-head Heteroge-
neous Graph Attention (MH-GAT), and Spatial Mask Decoder (SMD). We present the results
in Table 3, where row 1 denotes the baseline and row 14 denotes the complete SABRA.
Each proposed component improves the baseline. We perform incremental analysis in
rows 1-4. Specifically, we observe that by simply improving the optimization process with
BNPS, baseline + BNPS (row 2) gains 2.04 improvement on AProle. This suggests that
imbalanced proposal distribution significantly hinders the model performance, and BNPS
addresses this issue effectively.
Balancing negative proposal distribution generally improves the VRD performance. In
rows 5-7 and row 14, we compare BNPS with 3 other alternatives. (1) BNPS-3cls (row 7):
balanced sampling over {S1

neg,S
2
neg,S

3
neg ∪ S4

neg ∪ S5
neg}, i.e., ignoring the difference between

negative proposals when detections are correct; (2) BNPS-2cls (row 6): balanced sampling
over {S1

neg ∪ S2
neg,S

3
neg ∪ S4

neg ∪ S5
neg}, i.e., further ignoring the differences of negative pro-

posals when detections are incorrect; (3) None (row 5): we remove the BNPS. We fix the
positive sample rate to be 25% and balance the rest 75% samples over the given distributions.
Comparing BNPS with BNPS-2cls and BNPS-3cls, we conclude BNPS improves prediction
accuracy for both inaccurate detections and incorrect associations.
Understanding spatial information is crucial to VRD. In rows 8-10 and row 14, we com-
pare the proposed Spatial Mask Decoder (SMD) with 3 alternatives. (1) Binary (row 9) [11]:
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a binary mask over the union feature to specify the position of [subject, object] ; (2) PE (row
10) [52]: naive positional embedding; (3) None (row 8): no spatial learning module. We con-
clude that: (1) adding spatial information learning generally improves the performance; (2)
implicitly imposing spatial information with PE or binary masks gives worse performance
than SMD which enforces an explicit constraint over the feature space.
MH-GAT is more effective in heterogeneous VRD graphs. In rows 11-13 and row 14,
we compare MH-GAT with other 4 alternatives: (1) Multi-head GAT [37] (row 12), stan-
dard homogeneous message passing scheme which has the same number of heads and edge
features used in MH-GAT, (2) MH-GAT without edge feature (row 13), and (3) None (row
11). We observe that: (1) GNNs generally improve the VRD performance; (2) by separating
the parameters for objects, subjects, and union features, the heterogeneous message passing
scheme in MH-GAT improves the M-GAT; (3) edge feature is important to MH-GAT.

4.4 Qualitative Analysis
Qualitatively, we provide extra statistics and visualizations on the V-COCO dataset to better
understand the performance improvement of SABRA in Fig. 4.

To verify the ability of SABRA on reducing the number of false positives, we compute
the per-image false positive predictions for S1:5

neg by thresholding the prediction confidence at
0.5 in Fig. 4. Compared with the baseline, SABRA w/o BNPS, SABRA w/o Spatial, and
SABRA have reduced the total number of low-frequency difficult S3:5

neg by 14.7%, 58.5%, and
71.1%. BNPS gave a sharp decrease on S3:5

neg, which suggests the necessity of learning from a
balanced proposal distribution. The spatial module successfully filtered the irrelevant objects
in S3

neg and significantly reduced the number of false positives in total. Combining both of
them, SABRA gives the best performance among all alternatives. However, we also noticed
that on S4:5

neg and S1:2
neg, the spatial module has no clear improvement, because the spatial

module potentially overexploited the correct detection of the positive [subject, predicate,
object] triplet. Auxiliary constraints on the relationship assignment could be considered to
address this issue. We leave it for future study.

We visualize two examples of SABRA successfully reducing the low-frequency difficult
false positives where both detections are correct in Fig. 4.b. Without the spatial module, the
VRD algorithm assigns high confidence (0.92) to the [subject, object] pair that the woman is
cutting the cake. This confidence was reduced to 0.13 by SABRA.

5 Conclusion
We present SABRA for alleviating false positives in VRD. We divided the negative [subject,
object] proposals into 5 sub-classes with imbalanced data distribution, and addressed the
data imbalance by Balanced Negative Proposal Sampling. SABRA incorporates the global
contextual information with MH-GAT and local spatial configuration by SMD. SABRA sig-
nificantly outperforms the SOTA methods on V-COCO, HICO-DET, and VRD datasets.

As the first paper to consider the data imbalance in the negative proposal distribution,
SABRA used a relatively simple strategy, balanced sampling. More advanced techniques
could be considered to further improve the performance in future studies.
Acknowledgments: We thank the anonymous reviewers for their invaluable comments
and suggestions. This work is partially supported by Sensetime, Grant Nos.U1636211,
61672081, 61370126, and Grant No.SKLSDE2019ZX-17.
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