
HUANG ET AL.: ESAD: END-TO-END SEMI-SUPERVISED ANOMALY DETECTION 1

ESAD: End-to-end Semi-supervised
Anomaly Detection

Chaoqin Huang12

huangchaoqin@sjtu.edu.cn

Fei Ye1

yf3310@sjtu.edu.cn

Peisen Zhao13

pszhao@sjtu.edu.cn

Ya Zhang B12

ya_zhang@sjtu.edu.cn

Yanfeng Wang12

wangyanfeng@sjtu.edu.cn

Qi Tian3

tian.qi1@huawei.com

1 Cooperative Medianet Innovation
Center,
Shanghai Jiao Tong University

2 Shanghai AI Laboratory
3 Huawei Cloud & AI

Abstract

This paper explores semi-supervised anomaly detection, a more practical setting for
anomaly detection where a small additional set of labeled samples are provided. We
propose a new KL-divergence based objective function for semi-supervised anomaly de-
tection, and show that two factors: the mutual information between the data and latent
representations, and the entropy of latent representations, constitute an integral objective
function for anomaly detection. To resolve the contradiction in simultaneously optimiz-
ing the two factors, we propose a novel encoder-decoder-encoder structure, with the first
encoder focusing on optimizing the mutual information and the second encoder focus-
ing on optimizing the entropy. The two encoders are enforced to share similar encoding
with a consistent constraint on their latent representations. Extensive experiments have
revealed that the proposed method significantly outperforms several state-of-the-arts on
multiple benchmark datasets, including medical diagnosis and several classic anomaly
detection benchmarks.

1 Introduction
Anomaly detection (AD), with broad application in medical diagnosis [45], credit card fraud
detection [32], and autonomous driving [11], has received significant attention among the
machine learning community. The main challenge in AD is that, it is prohibitive, even if
not impossible, to collect a representative set of anomalous samples due to its remarkable
scarcity in the population. To bypass the challenge, many approaches [31, 39, 54] have
resorted to unsupervised learning so that only normal samples are needed for model training.
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two components of the loss functions. The magnitude of this
loss is much smaller. In this situation, modifying �2 has very
little impact on model training. Therefore, in our experiment,
we set �2 to 1, without making any changes.

However, �1 has a certain impact on the performance of
semi-supervised anomaly detection. �1 is used both in the
model training and the anomaly score measurement. �1 is
related to the balance of mutual information and entropy in
Eq. 5 during the optimization. The larger �1 means more
attention is paid to the optimization of entropy, while the
smaller �1 pays more attention to the mutual information.
Figure 2 shows the performance of anomaly detection on
MNIST, Fashion-MNIST and CIFAR-10 with different �1

using our ESAD. The results show that the best AUC can be
obtained when we set �1 to 1 in all the three datasets. When
�1 is relatively too small or too large, relatively poor anomaly
detection performance will be achieved. Fortunately, the rel-
ative relationship between AUCs and the �1 presents the
same pattern in all datasets, which means that when changing
datasets, we may not need to spend too many resources on
the adjustment of �1.

We further show that our major changes from Deep SAD
are important. If we replace the Lnorm�semi back to the
SVDD loss, the whole architecture of our ESAD is broken
since SVDD loss cannot achieve end-to-end training. In this
case, its performance collapse to Deep SAD directly. It shows
the importance of the end-to-end training. If we replace our
Lrec�semi back to the reconstruction loss in Deep SAD, the
AUC on CIFAR-10 is significantly reducing from 97.8% to
92.3% (�l = 0.1, �p = 0.1), while the AUC for Deep SAD
is 91.2%. This shows the importance of the optimization for
the term related to the mutual information using the labeled
outlier samples.

5 Conclusion
In this paper, we propose a novel technique for the end-to-end
semi-supervised anomaly detection (ESAD). We prove that
the performance of anomaly detection is tightly related to two
equally important factors: the mutual information between
the data and the latent representations and the entropy of
latent representations. We propose a learning strategy that
optimizing these two factors with opposite directions for the
normal and the labeled outlier samples and further design a
novel model architecture to achieve end-to-end training. In
the test phase, we design a novel anomaly score that considers
both the mutual information and the entropy. We experiment
on both image datasets and several classic anomaly detection
benchmarks and show that our method can outperform state-
of-the-art methods.

Lnorm�semi
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Table 7: Average area under the ROC curve (AUROC) in %
of anomaly detection methods on CIFAR10-C with different
noises.

1 2 3 4 5 avg

Gauss 81.6 78.7 75.7 74.2 72.3 76.5
Noise Shot 83.0 81.6 77.8 76.1 73.3 78.4

Impulse 81.6 78.6 76.3 73.0 69.5 75.8
Speckle 82.9 80.4 79.0 75.8 72.3 78.1

Gauss 85.3 83.8 81.6 79.0 73.4 80.6
Defocus 85.3 85.1 83.8 81.4 75.8 82.3

Blur Glass 72.7 73.0 74.1 69.3 70.5 71.9
Zoom 83.5 83.2 82.1 81.0 79.3 81.8

Motion 83.7 81.5 79.3 79.2 77.1 80.1

Snow 83.1 81.3 82.0 81.8 80.2 81.7
Frost 83.5 81.2 77.6 77.5 74.0 78.8

Weather Fog 85.4 85.5 85.4 84.4 79.9 84.1
Spatter 83.9 82.2 81.2 80.0 75.8 80.6
Bright 84.9 84.4 83.7 82.8 79.5 83.1

Saturate 85.8 85.2 82.8 79.3 76.2 81.9

Contrast 84.9 81.5 79.3 79.2 77.1 80.1
Digital Elastic 83.0 83.3 82.4 80.7 78.4 81.6

Pixelate 84.5 83.3 82.5 80.6 77.2 81.6
JPEG 83.2 81.9 81.4 80.7 79.9 81.4

age results over the resulting 100 experiments per number kl.
For each seed, the kl classes are drawn uniformly at random
from the nine respective anomaly classes. The corresponding
results are shown in Table 3. The results show that with the
increase of the diversity of known outlier data, our ESAD
has shown better and better anomaly detection performance,
and is always better than other state-of-the-art methods.

4.4 Experiments on Classic Anomaly Detection
Benchmark Datasets

In this section, we examine the detection performance of the
various methods on some well-established AD benchmark
datasets (Rayana 2016). We run these experiments to eval-
uate the deep versus the shallow approaches on non-image
datasets that are rarely considered in deep AD literature. Here
we observe that the shallow kernel methods seem to have a
slight edge on the relatively small, low-dimensional bench-
marks. Nonetheless, Deep SAD proves competitive and the
small differences observed might be explained by the advan-
tage we grant the shallow methods in their hyperparameter
selection. We give the full details and results in Appendix B.

Our results and other recent works (Ruff et al. 2018;
Golan and El-Yaniv 2018; Hendrycks, Mazeika, and Diet-
terich 2019) overall demonstrate that deep methods are espe-
cially superior on complex data with hierarchical structure.
Unlike other deep approaches (Ergen, Mirza, and Kozat 2017;
Kiran, Thomas, and Parakkal 2018; Min et al. 2018; Deecke
et al. 2018b; Golan and El-Yaniv 2018), however, our Deep
ESAD method is not domain or data-type specific. Due to
its good performance using both deep and shallow networks
we expect Deep SAD to extend well to other data types. The
corresponding results are shown in Table 7.

Figure 1: ESAD sensitivity analysis w.r.t. �1. We report avg.
AUC with st. dev. over 90 experiments for various values of
hyperparameter �1.

4.5 Sensitivity Analysis

In this part, we study the respective contribution of the major
components of ITAE independently. Table ?? shows experi-
mental results of ablation study on CIFAR-10. It shows that
both graying and random rotation operations improve the
performance significantly, especially the random rotation
operation. Table ?? shows the ablation study about restora-
tion loss. It proves that using `2 loss as training loss and
using `1 loss to calculate restoration error performs the best.
Through the ablation study, we conclude that our selected
image transformation, network architecture design and loss
functions improve the model performance on various datasets
for anomaly detection tasks.

5 Conclusion and Future Work

In this paper, we propose a novel technique named Inverse-
Transform AutoEncoder (ITAE) for anomaly detection. Sim-
ple transformations are employed to project the data to a new
manifold. The ITAE learns the inverse transform to restore
the original data. The restoration error is expected to be a
good indicator for anomalous data. We experiment with two
simple transformations: graying and random rotation, and
show that our method not only outperforms state-of-the-art
methods but also achieve high stability. Notably, there are
still more transformations to explore. These transformations,
when added to the ITAE, are likely to further improve the
performance for anomaly detection. We look forward to the
addition of more transformations and the exploration of a
more intelligent transformation selection strategy. In addition,
this way of feature embedding can also be applied to more
fields, opening avenues for future research.
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to the addition of more transformations and the exploration
of a more intelligent transformation selection strategy. In
addition, this way of feature embedding can also be applied
to more fields, opening avenues for future research.

Restoration Loss
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Table 7: Average area under the ROC curve (AUROC) in %
of anomaly detection methods on CIFAR10-C with different
noises.

1 2 3 4 5 avg

Gauss 81.6 78.7 75.7 74.2 72.3 76.5
Noise Shot 83.0 81.6 77.8 76.1 73.3 78.4

Impulse 81.6 78.6 76.3 73.0 69.5 75.8
Speckle 82.9 80.4 79.0 75.8 72.3 78.1

Gauss 85.3 83.8 81.6 79.0 73.4 80.6
Defocus 85.3 85.1 83.8 81.4 75.8 82.3

Blur Glass 72.7 73.0 74.1 69.3 70.5 71.9
Zoom 83.5 83.2 82.1 81.0 79.3 81.8

Motion 83.7 81.5 79.3 79.2 77.1 80.1

Snow 83.1 81.3 82.0 81.8 80.2 81.7
Frost 83.5 81.2 77.6 77.5 74.0 78.8

Weather Fog 85.4 85.5 85.4 84.4 79.9 84.1
Spatter 83.9 82.2 81.2 80.0 75.8 80.6
Bright 84.9 84.4 83.7 82.8 79.5 83.1

Saturate 85.8 85.2 82.8 79.3 76.2 81.9

Contrast 84.9 81.5 79.3 79.2 77.1 80.1
Digital Elastic 83.0 83.3 82.4 80.7 78.4 81.6

Pixelate 84.5 83.3 82.5 80.6 77.2 81.6
JPEG 83.2 81.9 81.4 80.7 79.9 81.4

age results over the resulting 100 experiments per number kl.
For each seed, the kl classes are drawn uniformly at random
from the nine respective anomaly classes. The corresponding
results are shown in Table 3. The results show that with the
increase of the diversity of known outlier data, our ESAD
has shown better and better anomaly detection performance,
and is always better than other state-of-the-art methods.

4.4 Experiments on Classic Anomaly Detection
Benchmark Datasets

In this section, we examine the detection performance of the
various methods on some well-established AD benchmark
datasets (Rayana 2016). We run these experiments to eval-
uate the deep versus the shallow approaches on non-image
datasets that are rarely considered in deep AD literature. Here
we observe that the shallow kernel methods seem to have a
slight edge on the relatively small, low-dimensional bench-
marks. Nonetheless, Deep SAD proves competitive and the
small differences observed might be explained by the advan-
tage we grant the shallow methods in their hyperparameter
selection. We give the full details and results in Appendix B.

Our results and other recent works (Ruff et al. 2018;
Golan and El-Yaniv 2018; Hendrycks, Mazeika, and Diet-
terich 2019) overall demonstrate that deep methods are espe-
cially superior on complex data with hierarchical structure.
Unlike other deep approaches (Ergen, Mirza, and Kozat 2017;
Kiran, Thomas, and Parakkal 2018; Min et al. 2018; Deecke
et al. 2018b; Golan and El-Yaniv 2018), however, our Deep
ESAD method is not domain or data-type specific. Due to
its good performance using both deep and shallow networks
we expect Deep SAD to extend well to other data types. The
corresponding results are shown in Table 7.

Figure 1: ESAD sensitivity analysis w.r.t. �1. We report avg.
AUC with st. dev. over 90 experiments for various values of
hyperparameter �1.

4.5 Sensitivity Analysis

In this part, we study the respective contribution of the major
components of ITAE independently. Table ?? shows experi-
mental results of ablation study on CIFAR-10. It shows that
both graying and random rotation operations improve the
performance significantly, especially the random rotation
operation. Table ?? shows the ablation study about restora-
tion loss. It proves that using `2 loss as training loss and
using `1 loss to calculate restoration error performs the best.
Through the ablation study, we conclude that our selected
image transformation, network architecture design and loss
functions improve the model performance on various datasets
for anomaly detection tasks.

5 Conclusion and Future Work

In this paper, we propose a novel technique named Inverse-
Transform AutoEncoder (ITAE) for anomaly detection. Sim-
ple transformations are employed to project the data to a new
manifold. The ITAE learns the inverse transform to restore
the original data. The restoration error is expected to be a
good indicator for anomalous data. We experiment with two
simple transformations: graying and random rotation, and
show that our method not only outperforms state-of-the-art
methods but also achieve high stability. Notably, there are
still more transformations to explore. These transformations,
when added to the ITAE, are likely to further improve the
performance for anomaly detection. We look forward to the
addition of more transformations and the exploration of a
more intelligent transformation selection strategy. In addition,
this way of feature embedding can also be applied to more
fields, opening avenues for future research.
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Figure 1: The training processes of ESAD for semi-supervised anomaly detection. (a) ESAD
leverages an encoder-decoder-encoder structure, where the two encoders are enforced to
share similar encoding with a consistent constraint on their latent representations, with the
first encoder targeting to optimize the mutual information and the second encoder focusing
on the entropy. (b) shows the T-SNE [23] visualization results for the latent representations.

Semi-supervised anomaly detection, where a small set of labeled data are provided for
training in addition to a large amount of unlabeled data, represents a more practical setting
of anomaly detection. In the real-world scenario, it is feasible to obtain a small set of ‘bi-
ased’ anomalous data. Earlier semi-supervised AD methods follow the unsupervised learn-
ing paradigm and employ such a labeled anomalous set through a certain form of regular-
ization [16, 26]. More recently, Deep SAD [37], the first deep semi-supervised AD method,
builds upon the Infomax principle [4, 17, 22] that maximizes the mutual information between
the data and the latent representations and enforces an additional regularization on the latent
representations. Due to the contradiction between the mutual information-based objective
and entropy-based regularization, named model collapse in [36, 37], Deep SAD adopts a
two-stage process: (i) autoencoder pre-training for mutual information maximization; and
(ii) encoder fine-tuning for entropy regularization. This sequential learning process cannot
guarantee the two objectives are simultaneously optimized and cannot well resolve the con-
tradiction between the mutual information and entropy during the optimization. The model
tends to collapse when the entropy is minimized to zero at the second stage, and the model
inevitably leads to low mutual information as all data are mapped into a constant [36, 37].

In this paper, we introduce ESAD, an end-to-end method for semi-supervised anomaly
detection. We start with exploring an alternative optimization target for AD by maximizing
the KL-divergence between the normal and the anomalous class. Considering the challenge
in estimating the anomalous distribution which results in the infeasibility of direct optimiza-
tion, the KL-divergence based objective function is relaxed and further decomposed into two
factors: (i) mutual information between the data and the latent representations and (ii) en-
tropy of latent representations. While the two factors in the final objective function seem
to be the same as those of Deep SAD, the difference lies in that, here mutual information
and entropy are considered an integral part of the single objective function and need to be
optimized simultaneously in an end-to-end training fashion.

In addition, to resolve the contradiction between the mutual information and entropy
during optimization, we extend the autoencoder structure widely adopted for deep anomaly
detection into an encoder-decoder-encoder structure illustrated in Figure 1 (a), where two
separate but closely resembled encoders are employed to emphasize different factors in the
optimization so that the model can be trained end-to-end. Specifically, although the two
encoders are enforced to share similar encoding via a consistent constraint on the outputs, the
first encoder focuses on mutual information through targeting on good representations only
for the normal data but not for the labeled anomalous data, while the second encoder focuses
on entropy by enforcing the compacted representations for the normal data and scattered
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representations for the anomalous data. With the encoder-decoder-encoder structure, we
achieve end-to-end training for semi-supervised anomaly detection. Figure 1 (b) shows that
the two encoders actually result in quite different embeddings, confirming the difficulty in
finding a common embedding that simultaneously optimizing both mutual information and
entropy. However, embeddings from both encoders show a better separation between the
normal and anomalous classes than that of Deep SAD.

To validate the effectiveness of ESAD, we experiment with two medical image datasets [3,
48], three natural image benchmarks [20, 21, 50], and several classic AD benchmarks [35].
Extensive results and analysis have shown that ESAD outperforms state-of-the-art methods
on almost all datasets. Ablation studies are conducted to show the effectiveness of the pro-
posed objectives and the encoder-decoder-encoder architecture for ESAD.

Our main contribution is summarized as follows:
• We introduce a KL-divergence based objective for semi-supervised anomaly detection and

show that it can be relaxed and decomposed into mutual information and entropy related
objectives, which formulates the AD objective with information-theoretical terms.

• To achieve end-to-end training, we propose an encoder-decoder-encoder architecture to
simultaneously optimize the two contradictory factors, mutual information and entropy.

• The proposed method outperforms state-of-the-arts on multiple AD benchmarks.

2 Related Works
Unsupervised Anomaly Detection. The vital challenge of unsupervised AD is that the
training dataset contains only normal data. One-class classification based approaches tended
to depict normal data directly with statistical approaches [10, 33, 36, 42, 51]. Self-supervised
based approaches remedied the lack of supervision by introducing different self-supervisions,
where the model was trained to optimize a self-supervised task, and then normal data can be
separated with the assumption that anomalous data will perform differently. In this domain,
reconstruction [1, 2, 8, 14, 27, 39, 40, 41, 49, 56] is the most popular self-supervision. Some
approaches introduced other self-supervisions, e.g., [13] applied dozens of image geometric
transforms for transformation classification, and [52] proposed a restoration framework to
further improve the feature learning.
Semi-supervised Anomaly Detection. Since classical semi-supervised approaches [7, 18,
28, 29, 34] are inappropriate and hardly detect new and unknown anomalies due to the clus-
ter assumption [5], many semi-supervised approaches are still grounded on the unsuper-
vised learning paradigm [16]. Along this line, Deep SSAD [16] has been studied recently
in specific contexts such as videos [19], network intrusion detection [25], or specific neural
network architectures [9]. Deep SAD [37], a general method based on deep SVDD [36],
built upon the Infomax principle, where the training processes are consist of two stages.
TLSAD [12] further consolidated the model’s discriminative power with a transfer learning
framework, which relied on an additional large-scale reference dataset for the model training.
Anomaly Detection on Medical Images is an important application but rarely considered in
deep anomaly detection literature. [55] proposed P-Net for anomaly detection in retinal im-
ages by leveraging the specific relation between the image texture and the regular structure
of retinal images, which is hard to generalize to other medical data. [45] relied on the clas-
sical autoencoder approach with a re-designed training pipeline to handle high-resolution,
complex images. [53] proposed a confidence-aware anomaly detection model for detecting
viral pneumonia with in-house data. In this paper, we conduct experiments on some well-
organized and open-source medical image datasets [3, 48].
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3 End-to-end Semi-supervised Anomaly Detection
Given the input space X consisting of normal data XN and anomalous data XA, where X =
XN ∪XA. For semi-supervised anomaly detection (AD), we are given n unlabeled samples
xu

1, · · · ,xu
n ∈X and m labeled samples (xl

1,y1), · · · ,(xl
m,ym)∈X ×Y withY = {−1,1}where

y = 1 denotes normal samples and y =−1 denotes anomalous samples. We assume m� n.
Suppose the output space is Z , the goal of AD is to find fθ : X → Z , parameterized by θ ,
that leads to the maximum distance between normal and anomalous data.

Targeting semi-supervised anomaly detection, we attempt to explore an objective func-
tion based on Kullback–Leibler (KL) divergence. Let X and Z be variables sampled from X
and Z , respectively. Denote the joint distribution of data and latent representations for nor-
mal and anomalous data as pN(X ,Z) and pA(X ,Z), respectively, and the objective function
for semi-supervised AD is then formulated as: max

θ

KL [pN(X ,Z)‖pA(X ,Z)] . Here pN(X ,Z)

can be approximately estimated using the labeled normal samples and the large numbers of
unlabeled data, with the widely adopted assumption for AD that almost all unlabeled data
are normal [16, 31, 36, 37, 39, 54]. On the contrary, it is impossible to estimate pA(X ,Z) due
to the extremely limited labeled instances. We here introduce another distribution, pÃ(X ,Z),
and reformulated the objective function as follows:

max
θ

KL [pN(X ,Z)‖pA(X ,Z)]−KL
[
pÃ(X ,Z)‖pA(X ,Z)

]
, (1)

where pÃ(X ,Z) can be estimated by the limited labeled anomalous data. With this objective
function, we attempt to simultaneously (i) maximize KL divergence between the normal
class and the anomalous class and (ii) minimize the KL divergence between the labeled
anomalous class and the real anomalous class. Considering that it is impossible to estimate
pA, we decompose the KL term KL [pN(X ,Z)‖pA(X ,Z)] as follows:

KL [pN(X ,Z)||pA(X ,Z)] = EpN(X ,Z)

[
log

pN(X ,Z)
pA(X ,Z)

]
= EpN(X ,Z)

[
log(

pN(Z|X)

pN(Z)
· pN(Z) ·

1
pA(Z|X)

· pN(X)

pA(X)
)

]
= I(XN ,ZN)−H(ZN)+EpN(X) [H(pN(Z|X), pA(Z|X))]+KL [pN(X)||pA(X)] ,

(2)

where I(·, ·) is the mutual information, H(·) is the entropy, and H(·, ·) is the cross entropy.
With the non-negativity of the third and fourth terms (see the supplementary material for the
proof), we get a lower bound to Eq. (2): KL [pN(X ,Z)||pA(X ,Z)]≥ I(XN ,ZN)−H(ZN). Sim-
ilarly, KL [pÃ(X ,Z) ‖pA(X ,Z)] is approximated with I(XÃ,ZÃ)−H(ZÃ). The final objective
function is thus formulated as:

max
θ
{[I(XN ,ZN)− I(XÃ,ZÃ)]− [H(ZN)−H(ZÃ)]}. (3)

Note that this objective function is coincidentally similar to that of Deep SAD [37], by
optimizing on both the mutual information and entropy. However, the objective function here
differs from [37] in that: (i) we start with a KL based formulation and derive equal weights
for the mutual information and entropy, while for Deep SAD, the entropy is introduced
as regularization with a coefficient β ; (2) the mutual information for our paper involves
different directions of optimizations for normal and anomalous data, while Deep SAD treats
the normal and anomalous data the same in maximizing the mutual information. In our
formulation, the optimizations of mutual information and entropy are integral parts of the
single anomaly detection objective function and hence need to be optimized simultaneously.
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Architecture. We follow [37] and employ an autoencoder to optimize the mutual infor-
mation I(X ,Z). To resolve the contradiction between mutual information and entropy and
achieve end-to-end training, different from the straightforward solution by directly intro-
ducing two independent encoders [12], we propose to append an additional encoder to the
autoencoder and introduce an encoder-decoder-encoder architecture, where the first encoder
Enc1(·) emphasizes mutual information optimization and the second encoder Enc2(·) fo-
cuses on entropy optimization, and in the meanwhile, the two encoders are enforced to share
similar encoding via a consistent constraint on their latent representations. The encoder-
decoder-encoder architecture can be expressed as:

z = Enc1(x), x̂ = Dec(z), ẑ = Enc2(x̂), (4)
where x̂ is the output of the decoder, and z and ẑ are the latent representations from the first
and second encoders, respectively. The wights for the two encoders are are not shared.
Losses. To optimize the two factors, i.e., mutual information and entropy, in Eq. (3), we
propose the corresponding losses as follows.

The optimization of mutual information is achieved with reconstruction or restoration [47].
With unlabeled samples xu

1, · · · ,xu
n and labeled samples xl

1, · · · ,xl
m, we want the autoencoder

to well reconstruct the normal data but erroneously reconstruct the labeled anomalous data,
thus the reconstruction likelihood is maximized for the normal data and minimized for the
labeled anomalous data. A straight-forward loss definition for the anomalous data is the
negative squared norm loss. However, due to its unbounded nature, it is expected to result
in an ill-posed optimization problem and caused optimization to diverge [37]. We therefore
introduce a transformation function φ(·) on the input, forcing the network to reconstruct the
anomalous data x to its transformation φ(x), where φ(x) 6= x,∀x ∈ XA. The transformation
makes the network unable to correctly reconstruct the anomalous samples. The reconstruc-
tion loss is defined as follows:

Lrec−semi =
1
n

n

∑
i=1
‖x̂u

i −xu
i ‖2 +

1
m

m

∑
j=1
‖x̂l

j−Φ(xl
j)‖2, (5)

where Φ(xl
j) =

{
xl

j, if y j = 1,
φ(xl

j), if y j =−1.
For the data which is functioned as a vector, φ(xl

j)

can be a version adding Gaussian noise or a random permutation between various dimen-
sions; for the image data, it can be a noised and rotated version of the original images.
Besides the proposed transformation function, we also try another strategy, which enforces
the model to reconstruct the labeled anomalous data to the normal data [31]. But this task
is too strict and difficult, especially for two types of samples that are quite different, which
makes the model hard to converge.

For the entropy H(Z), assuming Z follows an isotropic Gaussian [6], Z ∼ N(µ,σ2I)
with σ > 0, the entropy of Z is proportional to its log-variance, i.e., H(Z) ∝ logσ2 (see the
supplementary material for the proof). In this case, for z∼ p(Z), an L2 norm can be used for
the optimization of the entropy, since it minimizes the empirical variance and thus minimizes
the entropy of a latent Gaussian.

Lnorm−semi =
1
n

n

∑
i=1
‖ẑu

i ‖2 +
1
m

m

∑
j=1

(‖ẑl
j‖2)

y j , (6)

where y j=−1 for the labeled anomalous data while y j= 1 for the labeled normal data. This
loss enforces the compacted representation for the normal data and scattered representation
for the labeled anomalous data. Note that the inverse squared norm loss used for labeled
anomalous data here is bounded from below and smooth, which are crucial properties for
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losses used in deep learning [15]. Compared with the SVDD loss in [37] where a pre-
training process is necessary for initializing an additional hypersphere center, Lnorm−semi
does not need the pre-training, which indicates that the end-to-end training can be achieved.

To define the consistency between the two encoders, similar to the assistant loss [1], we
resort to a consistent constraint between their corresponding latent representations:

Lass =
1

n+m

n+m

∑
i=1
‖ẑi− zi‖2. (7)

Finally, we define our training loss as follow:
Lsemi = Lrec−semi +λ1Lnorm−semi +λ2Lass, (8)

where λ1 and λ2 are two hyperparameters. We will further discuss the impacts of these two
hyperparameters in the experiment section. To this end, we achieve end-to-end training for
semi-supervised anomaly detection.
Anomaly Score Measurement. We discuss how we calculate the anomaly score in the test
phase. Since both the mutual information and the entropy are related to the performance of
anomaly detection, we use both Lrec−semi and Lnorm−semi to measure the anomaly score for
the given samples, which are related to the mutual information and the entropy, respectively.
We calculate the reconstruction error of each input sample x and the value of L2 norm for its
representation ẑ for anomaly detection. The anomaly score is formulated as:

Stest = ‖x̂−x‖2 +λ1‖ẑ‖2, (9)
where λ1 is the same as the setting in the training process. We will further discuss the impact
of λ1 in Section 4.5. To the best of our knowledge, it is the first time considering both the
terms of the mutual information and the entropy for the anomaly score measurement. On
the contrary, most one-class classification based methods, e.g., OC-SVM [42], only consider
the term of the entropy. Similarly, Deep SVDD [36], Deep SAD [37] and TLSAD [12] also
consider only the term of the entropy, since they only use the SVDD loss as the final anomaly
score. Most reconstruction based methods or restoration based methods, including the vanilla
AE [24] and ARNet [52], only consider the term of mutual information, since they only use
the reconstruction or restoration loss as the anomaly score. Results show that considering
both of the two terms significantly improves the performance of anomaly detection.

4 Experiments
In this section, we conduct substantial experiments to validate our method. The ESAD is
first evaluated on multiple AD benchmark datasets, comparing with several state-of-the-arts.
Then we present the respective effects of different designs through ablation study. Finally,
we visualize the latent representations of ESAD through T-SNE.

4.1 Experimental Setups
Datasets. We conduct semi-supervised anomaly detection experiments on three popular nat-
ural image datasets MNIST [21], Fashion-MNIST [50] and CIFAR-10 [20], together with six
non-image classic AD datasets [35], all following the settings in [37]. To validate our method
on real-world AD scenarios, i.e., with higher resolution and with more complex anomalies,
we additionally conduct experiments on two medical image datasets Camelyon16 [3] and
the NIH dataset [48]. For all datasets, the training and testing partitions remain as default.
More details are shown in the supplementary material.
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Table 1: Results of anomaly detection on natural image datasets, where we increase the ratio
of labeled anomalies γl in the training set. We report the avg. AUC in % with st. dev.
computed over 90 experiments at various γl . Results of SSAD Hybrid, SS-DGM and Deep
SAD are borrowed from [37]. Results of TLSAD are borrowed from [12].

Data γl
SSAD Hybrid

[16]
SS-DGM

[18]
Deep SAD

[37]
TLSAD

[12]
ESAD
(ours)

.00 96.3 ± 2.5 - 92.8 ± 4.9 - 98.5 ± 1.3

.01 96.8 ± 2.3 89.9 ± 9.2 96.4 ± 2.7 94.1 99.2 ± 0.7
MNIST .05 97.4 ± 2.0 92.2 ± 5.6 96.7 ± 2.4 96.9 99.4 ± 0.3

.10 97.6 ± 1.7 91.6 ± 5.5 96.9 ± 2.3 97.7 99.5 ± 0.4

.20 97.8 ± 1.5 91.2 ± 5.6 96.9 ± 2.4 98.3 99.6 ± 0.3

.00 91.2 ± 4.7 89.2 ± 6.2 - 94.0 ± 4.5

.01 89.4 ± 6.0 65.1 ± 16.3 90.0 ± 6.4 88.4 95.3 ± 4.2
F-MNIST .05 90.5 ± 5.9 71.4 ± 12.7 90.5 ± 6.5 91.4 95.6 ± 4.1

.10 91.0 ± 5.6 72.9 ± 12.2 91.3 ± 6.0 92.0 95.8 ± 4.0

.20 89.7 ± 6.6 74.7 ± 13.5 91.0 ± 5.5 93.2 95.9 ± 4.0

.00 63.8 ± 9.0 60.9 ± 9.4 - 78.8 ± 6.5

.01 70.5 ± 8.3 49.7 ± 1.7 72.6 ± 7.4 74.4 83.7 ± 6.4
CIFAR-10 .05 73.3 ± 8.4 50.8 ± 4.7 77.9 ± 7.2 80.0 86.9 ± 6.8

.10 74.0 ± 8.1 52.0 ± 5.5 79.8 ± 7.1 84.8 87.8 ± 6.7

.20 74.5 ± 8.0 53.2 ± 6.7 81.9 ± 7.0 86.3 88.5 ± 6.9

Evaluation Protocol. We quantify the model performance using the area under the Receiver
Operating Characteristic (ROC) curve metric (AUC). It is commonly adopted as performance
measurement in anomaly detection (AD) tasks.
Model Configuration. For ESAD, the architecture of the autoencoder and the data prepro-
cessing for the image dataset is aligned with [52]. Different from Deep SAD, which uses
different networks for each dataset, ESAD uses the same autoencoder network since it is
robust enough. For non-image classic AD datasets, we use the autoencoder network aligned
with [37]. The hyperparameter λ1 and λ2 are set to 1 as default. We give the full details in
the supplementary material.

4.2 Experiments on Natural Images
Competing Methods. We consider several semi-supervised anomaly detection state-of-the-
arts, including SSAD [16], SS-DGM [18], Deep SAD [37] and TLSAD [12] as baselines.
Following [37], as [16] is sensitive to hyperparameters, SSAD Hybrid here uses a subset
(10%) of the test set for hyperparameter selection to establish a strong baseline. More details
for these baseline methods are shown in the supplementary material.
Experiment Settings. For a dataset with C classes, we conduct a batch of C experiments
respectively with each of the C classes set as the normal class once. We then evaluate perfor-
mance on an independent test set, which contains samples from all classes, including normal
and anomalous data.
Comparison with State-of-the-art Methods. The effectiveness of adding labeled anoma-
lies during training is investigated. By adding labeled anomalous samples x1, . . . ,xm to the
training set, we increase the ratio of labeled training data γl = m/(n+m). The number of
anomaly classes included in the labeled training data is set as 1, i.e., there are still eight
unseen classes at testing time. We iterate this training set generation process and report the
average results over the ten kinds of normal classes × nine labeled anomalous classes, i.e.,
over 90 experiments per labeled ratio γl . The corresponding results are shown in Table 1. On
all involved datasets, results present that the average AUCs of ESAD outperform all other
methods, including TLSAD which utilizes a large-scale additional dataset (ImageNet [38])
as the reference data for the model training. Results when γl > 0 are much better than the
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Table 2: Performance of anomaly detection methods on medical image datasets. We report
the avg. AUC in % with st. dev. computed over 3 runs.

Method Cam.16 NIH (a sub.) NIH (PA) NIH (AP)

DAOL [43] - 80.5 ± 2.1 - -
DGEO [13] 45.9 ± 2.1 85.3 ± 1.0 63.6 ± 0.6 54.4 ± 0.6
PIAD [44] 89.5 ± 0.6 87.3 ± 0.9 68.7 ± 0.5 58.6 ± 0.3
DIF [30] 90.6 ± 0.3 85.3 ± 0.4 47.2 ± 0.4 56.1 ± 0.2

Deep SAD [37] 92.1 ± 0.4 90.9 ± 0.2 51.9 ± 0.8 59.8 ± 0.1
DPA [45] 93.4 ± 0.3 92.6 ± 0.2 70.8 ± 0.1 58.5 ± 0.0

ESAD (ours) 96.8 ± 0.4 94.6 ± 0.4 68.9 ± 0.2 60.1 ± 0.2

Table 3: Results on classic anomaly detection benchmark datasets with a ratio of labeled
anomalies of γl = 0.01. We report the avg. AUC in % with st. dev. computed over 10 seeds.

Data
Deep

SVDD [36]
SSAD

Hybrid [16]
SS-DGM

[18]
Deep

SAD [37]
ESAD
(ours)

arrhythmia 74.6 ± 9.0 78.3 ± 5.1 50.3 ± 9.8 75.9 ± 8.7 85.2 ± 2.9
cardio 84.8 ± 3.6 86.3 ± 5.8 66.2 ± 14.3 95.0 ± 1.6 98.8 ± 0.5

satellite 79.8 ± 4.1 86.9 ± 2.8 57.4 ± 6.4 91.5 ± 1.1 92.5 ± 0.7
satimage-2 98.3 ± 1.4 96.8 ± 2.1 99.2 ± 0.6 99.9 ± 0.1 99.9 ± 0.1

shuttle 86.3 ± 7.5 97.7 ± 1.0 97.9 ± 0.3 98.4 ± 0.9 99.1 ± 1.1
thyroid 72.0 ± 9.7 95.3 ± 3.1 72.7 ± 12.0 98.6 ± 0.9 99.6 ± 0.2

results when γl = 0, showing the effectiveness of the semi-supervised training scheme.

4.3 Experiments on Medical Images
Medical images, such as H&E stained images, X-ray, etc., have extremely high resolution
compared to natural images. In addition, the patient’s lesions may only occupy a small part
of the entire image, which brings great challenges to AD. To validate the AD performance
of ESAD on real-world AD scenarios, we examined two challenging medical problems with
different image characteristics and abnormality appearance, i.e., Camelyon16 [3] and chest
X-rays in NIH [48]. We consider several state-of-the-arts, including DAOL [43], DGEO
[13], PIAD [44], DIF [30] Deep SAD [37], and DPA [45]. Note that for [13, 30, 44], anoma-
lous samples in the training set are used for the validation. We re-train Deep SAD [37] with
the same encoder and decoder network as ESAD to obtain a better baseline.
Anomaly Detection on Chest X-Rays. NIH images without any disease marker were con-
sidered normal. Pulmonary and cardiac abnormalities in this dataset are all considered
anomalous. Following [43, 45], we split the dataset into two sub-datasets having only pos-
teroanterior (PA) or anteroposterior (AP) projections. The labeled anomalous samples con-
tain only the most frequent disease (‘Infiltration’) out of fourteen possibilities and there are
still thirteen unseen possibilities of anomalies in the test set. We also experiment on a sub-
set containing clearer normal/anomalous cases [43]. Default preprocessing of chest X-rays
involved a 768×768 central crop and resize to 64×64. As shown in Table 2, the anomaly
detection performance of ESAD outperforms all state-of-the-arts on the clearer subset [43]
and AP subset. DPA [45] performs better than ESAD on the subset of PA. Note that DPA
uses a higher resolution version of the images (256×256) for validation, so it has a greater
advantage compared with other methods.
Metastases Detection in Digital Pathology. For the Camelyon16 Challenge [3], we sample
the Vahadane-normalized [46] 64×64 tiles from the fully normal slides with magnification
of 10×, and treat these as normal. Tiles with metastases are treated as anomalous. It contains
7612 normal and 200 anomalous training images, and 4000 (normal) + 817 (anomalous)
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Table 4: Ablation study on different designs of architecture and loss functions for ESAD on
two different datasets. We report the avg. AUC in % with st. dev. computed over 10 seeds.

Architecture Loss Functions Dataset

Lass
Lrec−semi

Encoder-decoder-encoder Gaussian Permutation satellite cardio

7 7 7 7 87.9 ± 1.7 96.5 ± 1.1
X 7 7 7 90.0 ± 1.2 97.2 ± 0.9
X X 7 7 90.4 ± 1.1 97.9 ± 1.0
X X X 7 92.0 ± 1.1 98.2 ± 0.6
X X 7 X 92.5 ± 1.0 98.6 ± 0.6
X X X X 92.5 ± 0.7 98.8 ± 0.5

Table 5: Ablation study on shallow and deep networks, for both the encoder and the decoder.
‘Shallow’ is a LeNet-type network utilized in [37]. ‘Deep’ is the network utilized in ESAD.
We report the avg. AUC in % with st. dev. computed over 90 experiments at various γl on
F-MNIST. Results with * are lower than expected because of the model collapse problem for
Deep SAD under the small labeled anomalies ratio.

Network Method γl = 0.0 γl = 0.01 γl = 0.05 γl = 0.1 γl = 0.2

Shallow Deep SAD [37] 89.2 ± 6.2 90.0 ± 6.4 90.5 ± 6.5 91.3 ± 6.0 91.0 ± 5.5
ESAD (ours) 93.6 ± 4.5 94.9 ± 4.2 95.3 ± 4.2 95.4 ± 4.1 95.5 ± 4.1

Deep Deep SAD [37] 72.5 ± 7.0* 87.0 ± 8.7* 90.3 ± 6.4 91.8 ± 7.7 92.0 ± 7.0
ESAD (ours) 94.0 ± 4.5 95.3 ± 4.2 95.6 ± 4.1 95.8 ± 4.0 95.9 ± 4.0

images for the test. As shown in Table 2, the anomaly detection performance of ESAD
outperforms all state-of-the-art methods.

4.4 Experiments on Classic Anomaly Detection Benchmark Datasets
We examine the performance of the various methods on well-established classic AD bench-
mark datasets [35] with γl = 0.01. Networks of both the encoder and the decoder are aligned
with [37]. The corresponding results are shown in Table 3. Comparing with other state-
of-the-arts, ESAD shows the highest AUCs and stability. It shows that unlike other deep
approaches [8, 9, 13, 19, 25], ESAD is not domain or data-type specific.

4.5 Ablation Study
The model architecture and different losses for ESAD are discussed in Table 4 through abla-
tion studies. Experiments are conducted on two datasets, i.e., cardio and satellite. Firstly, for
the model architecture, results show that without the encoder-decoder-encoder architecture,
ESAD with vanilla autoencoder shows relatively low and unstable AUCs (the entropy loss
is conducted on the first encoder in this case). Secondly, ablation studies on two proposed
losses, i.e., Lass and Lrec−semi, show impressive results. Comparing with vanilla reconstruc-
tion loss, Lrec−semi utilizes two transformations for changing the supervisions of labeled
anomalous data. Without these transformations, it degrades to the vanilla reconstruction
loss where the original data are used as the reconstruction supervisions, leading to relatively
lower AUCs. Note that the entropy loss should always be utilized in all experiments since
it is highly relative to the anomaly score measurement, but its importance can be shown
towards the following discussions for the hyperparameters.

Then we analyze the influence of the network choices. For the natural image datasets,
Deep SAD [37] uses different LeNet-type networks for each dataset. ESAD does not fol-
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information and entropy in Eq. (4) during the optimization.
The larger �1 means more attention is paid to the optimiza-
tion of entropy, while the smaller �1 pays more attention to
the mutual information. Figure 2 shows the performance of
anomaly detection on MNIST, Fashion-MNIST and CIFAR-
10 with different �1 using ESAD. The results show that the
best AUC can be obtained when we set �1 to 1 in all the three
datasets. When �1 is relatively too small or too large, rela-
tively poor anomaly detection performance will be achieved.
Fortunately, the relative relationship between AUCs and the
�1 presents the same pattern in all datasets, which means
that when changing datasets, we may not need to spend too
many resources on the adjustment of �1.

We further explain that the major changes discussed in
Section 3.5 are important. If we replace the Lnorm�semi

back to the SVDD loss, the architecture of ESAD is broken
since it is hard to achieve end-to-end training with the SVDD
loss. In this case, its performance collapses to Deep SAD di-
rectly. If we replace Lrec�semi back to the original recon-
struction loss in Deep SAD, the AUC on MNIST signifi-
cantly reduces from 97.8% to 92.3% (�l = 0.1, �p = 0.1),
while the original AUC for Deep SAD is 91.2%. This shows
the importance of the optimization for the term related to the
mutual information using the labeled outlier samples.

5 Conclusion
In this paper, we propose a theoretic framework for semi-
supervised anomaly detection and a novel technique to
achieve end-to-end training. We provide feasible optimiza-
tion strategies for both normal and labeled outlier samples.
We look forward to more optimization strategies under this
framework, especially for the labeled outlier samples. In ad-
dition, the proposed theoretic framework can also be applied
to more semi-supervised tasks, opening avenues for future
research.

(a) z in Deep SAD
(b) z in ESAD
without opposite optimization
(c) z in ESAD
(d) ẑ in ESAD
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supervised anomaly detection and a novel technique to
achieve end-to-end training. We provide feasible optimiza-
tion strategies for both normal and labeled outlier samples.
We look forward to more optimization strategies under this
framework, especially for the labeled outlier samples. In ad-
dition, the proposed theoretic framework can also be applied
to more semi-supervised tasks, opening avenues for future
research.
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Masci, J.; Meier, U.; Cireşan, D.; and Schmidhuber, J. 2011.
Stacked convolutional auto-encoders for hierarchical feature
extraction. In ICANN.

Min, E.; Long, J.; et al. 2018. Su-ids: A semi-supervised and
unsupervised framework for network intrusion detection. In
International Conference on Cloud Computing and Security.
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tion strategies for both normal and labeled outlier samples.
We look forward to more optimization strategies under this
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supervised anomaly detection and a novel technique to
achieve end-to-end training. We provide feasible optimiza-
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framework, especially for the labeled outlier samples. In ad-
dition, the proposed theoretic framework can also be applied
to more semi-supervised tasks, opening avenues for future
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In this paper, we propose a theoretic framework for semi-
supervised anomaly detection and a novel technique to
achieve end-to-end training. We provide feasible optimiza-
tion strategies for both normal and labeled outlier samples.
We look forward to more optimization strategies under this
framework, especially for the labeled outlier samples. In ad-
dition, the proposed theoretic framework can also be applied
to more semi-supervised tasks, opening avenues for future
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In this paper, we propose a theoretic framework for semi-
supervised anomaly detection and a novel technique to
achieve end-to-end training. We provide feasible optimiza-
tion strategies for both normal and labeled outlier samples.
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framework, especially for the labeled outlier samples. In ad-
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In this paper, we propose a theoretic framework for semi-
supervised anomaly detection and a novel technique to
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(d) ẑ in ESAD

References
Akcay, S.; Atapour-Abarghouei, A.; and Breckon, T. P.
2018. GANomaly: Semi-Supervised Anomaly Detection via
Adversarial Training. In ACCV.
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Figure 3: T-SNE visualization of latent representations on
MNIST (top) and CIFAR-10 (bottom). Class “0” is set as
the normal class, class “1” is set as the labeled outlier class,
while other classes are set as anomalous.

4.6 Visualization

We further show that the latent representations extracted by
ESAD can better be used to distinguish samples of differ-
ent categories through T-SNE (Maaten and Hinton 2008)
analysis. We conduct experiments on MNIST and CIFAR-
10. Figure 3 (a) and (b) are two baselines, which show the
results using latent representations extracted by Deep SAD
and ESAD (without optimizing the labeled outlier samples
with opposite directions), respectively. Figure 3 (c) and (d)
visualize different latent representations, i.e., z and ẑ, ex-
tracted by ESAD, which are more discriminative than the
baselines. In Figure 3 (d), ẑ shows a more specific structure.
The labeled outlier samples are better and evenly distributed
in the anomalous samples. It shows that ESAD can make
good use of the labeled outlier samples to well represent the
anomalous data.

5 Conclusion
In this paper, we propose a theoretic framework for semi-
supervised anomaly detection and a novel technique to
achieve end-to-end training. We provide feasible optimiza-
tion strategies for both normal and labeled outlier samples.
We look forward to more optimization strategies under this
framework, especially for the labeled outlier samples. In ad-
dition, the proposed theoretic framework can also be applied
to more semi-supervised tasks, opening avenues for future
research.

(b) z in ESAD-w
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Figure 3: T-SNE visualization of latent rep-
resentations on MNIST (top), CIFAR-10
(middle) and NIH (bottom).

low [37] and uses the same network for all datasets. To show the influence of network
choices, as shown in Table 5, we experiment with different networks and show that: i) ESAD
is robust to different networks, with a performance gap of 0.3% - 0.4% between using the
shallow or deep network on F-MNIST, while Deep SAD encounters model collapse with
certain networks. ii) ESAD outperforms Deep SAD for both shallow and deep networks.
Results on more datasets are shown in the supplemental material.

We further analyze the sensitivity of the hyperparameters of ESAD. According to Eq. (8),
λ1 has a certain impact on the performance of semi-supervised AD. The larger λ1 means
more attention is paid to the entropy, while the smaller λ1 pays more attention to the mutual
information. Figure 2 shows the ESAD performance with different λ1. The results show
that the best AUC can be obtained when λ1 is set as 1 in all datasets. When λ1 is relatively
too small or too large, relatively poor AD performance will be achieved. Fortunately, the
relationship between AUCs and the λ1 presents the same pattern in all datasets, which means
that when changing datasets, we may not need to spend too many resources on the adjustment
of λ1. For λ2, we found through experiments that modifying λ2 has a relatively small impact.
We thus always set λ2 as 1. More details are shown in the supplementary material.

4.6 Visualization Analysis

We show that the latent representations extracted by ESAD can better be used to distinguish
samples of different categories through T-SNE [23] analysis. We conduct experiments on
MNIST, CIFAR-10 and the medical image dataset NIH. Figure 3 (a) shows the results using
latent representations extracted by Deep SAD. Figure 3 (b) and (c) visualize different latent
representations, i.e., z and ẑ, extracted by ESAD, which are more discriminative than the
baseline. In Figure 3 (c), ẑ shows a more specific structure. It shows that the two latent
representations have learned different information.

5 Conclusion
In this paper, we show that factors of mutual information and entropy constitute an integral
objective function for anomaly detection. We achieve end-to-end training by proposing a
novel model architecture. The proposed information theoretic framework can also be applied
to more semi-supervised tasks, opening avenues for future research.
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