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Abstract
Upsampling videos of human activity is an interesting yet challenging task with

many potential applications ranging from gaming to entertainment and sports broad-
casting. The main difficulty in synthesizing video frames in this setting stems from
the highly complex and non-linear nature of human motion and the complex appear-
ance and texture of the body. We propose to address these issues in a motion-guided
frame-upsampling framework that is capable of producing realistic human motion and
appearance. A novel motion model is trained to inference the non-linear skeletal mo-
tion between frames by leveraging a large-scale motion-capture dataset (AMASS). The
high-frame-rate pose predictions are then used by a neural rendering pipeline to pro-
duce the full-frame output, taking the pose and background consistency into consid-
eration. Our pipeline only requires low-frame-rate videos and unpaired human mo-
tion data but does not require high-frame-rate videos for training. Furthermore, we
contribute the first evaluation dataset that consists of high-quality and high-frame-rate
videos of human activities for this task. Compared with state-of-the-art video interpo-
lation techniques, our method produces in-between frames with better quality and ac-
curacy, which is evident by state-of-the-art results on pixel-level, distributional metrics
and comparative user evaluations. Our code and the collected dataset are available at
https://git.io/Render-In-Between.

1 Introduction
High-frame-rate videos of human activity have many applications. For example in sports or
multimedia production, but also in user input sensing [32, 75] and as a source of training data
for discriminative tasks such as activity recognition. However, most existing video material
is captured at low frame rates, typically at 24 or 30 frames per second (FPS), and captur-
ing higher FPS video requires special equipment, good lighting conditions, and increases
storage/bandwidth needs. In this paper, we propose a novel architecture for the temporal
upsampling of low FPS videos that are capable of generating videos of high visual fidelity
by explicitly reasoning about human motion to guide a neural renderer.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Kowdle, Rhemann, Fanello, Tagliasacchi, Taylor, Davidson, Dou, Guo, Keskin, Khamis, etprotect unhbox voidb@x protect penalty @M  {}al.} 2018

Citation
Citation
{Xu, Xu, Golyanik, Habermann, Fang, and Theobalt} 2020

https://git.io/Render-In-Between


2 HO ET AL.: MOTION GUIDED VIDEO SYNTHESIS FOR ACTION INTERPOLATION

Low FPS Keyframes Synthesized High FPS VideoLow FPS Motion High FPS Motion Inbewteening

Figure 1: Motion guided video synthesis. Given a low-frame-rate video of human activity,
our method produces a high-frame-rate video by explicitly modeling human motion, guiding
a neural renderer. We first extract 2D pose sequences from the video, then non-linearly up-
sample the pose sequence via a learned human motion model, and finally synthesize images
that correspond to the high-frame-rate pose sequence.

Recently, some attempts have been made to synthesize smooth slowmotion clips from
videos recorded at standard frame rates. Video frame interpolation techniques aim at gener-
ating intermediate frame(s) to produce a video sequence at higher frame rates. Convention-
ally this is solved by estimating optical flow [4, 6, 30], which depicts the per-pixel motion
between consecutive frames, and by warping input frames accordingly. Powered by recent
advances in deep learning, a newly emerging line of work attempts to generate intermediate
frames directly from input frames. Such methods bypass the explicit optical flow estimation
but infer and utilize the motion implicitly via a learned convolution kernel [51, 52] or feature
shuffling [12].

However, in the presence of the complicated nature of human motion, both approaches
face severe challenges. Since optical flow assumes small local motion, methods based on
optical flow struggle to generate video frames containing fast motion and large displace-
ments. CNN based methods typically struggle in representing motion with displacements
that exceed their receptive field. Furthermore, both of the above approaches either implicitly
or explicitly assume linear motion and hence have difficulties with the non-linear dynamics
and complex articulation patterns of human motion. As a result, artifacts such as ghosting
limbs and blurry bodies are frequent artifacts in temporal upsampling of videos depicting
human activities (See Fig. 5).

To address the challenges caused by the inherent properties of human motion, we pro-
pose a new pipeline to tackle this problem. At the heart of our approach lies the concept of
leveraging an explicit model of human motion to better capture the dynamics of the fore-
ground motion. The proposed motion model is trained to predict plausible human motion at
a high frame rate. These joint predictions are then used to guide a neural rendering model
to generate the corresponding human images. Compared to end-to-end video interpolation
models, our learning-based motion model can better capture non-linear motion details than
optical flow, and the neural rendering model can benefit from this conditional image genera-
tion scheme to synthesize realistic human bodies and cloth textures [70].

Furthermore, we contribute a new dataset of high-frame-rate and high-quality human
activity videos for quantitative and qualitative evaluation purposes. The experimental re-
sults indicate that such videos are indeed challenging for the existing video interpolation
techniques and that our method yields better results evident by the pixel-level, distributional
metrics and user studies. In further ablations, we verify the effectiveness of our design
choices in both modules. In summary, we make the following contributions:

• A novel video frame-upsampling framework for human activities by combining
– a non-linear motion model that is robust to occlusion and incomplete input,
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– a human image generation scheme that handles complex human geometry and
dynamic background scenes.

• A new dataset of high-quality and high-speed human activities for evaluation.

2 Related Works

Video Frame Interpolation. Conventional approaches [4, 27, 74] to video interpolation
often utilize optical flow. Pixels in the input frames are warped along the optical flow direc-
tion to produce the intermediate frames. Deep learning techniques have also been integrated
recently to predict a 3D optical flow over space and time for warping input frames [40], or to
fuse warped frames [6, 10, 11, 30, 50, 53, 76]. Powered by recent advances in deep learning,
a newly emerging line of work [12, 39, 51, 52] attempts to generate intermediate frames
directly from input frames. For instance, Long et al. [41] leverage a CNN to predict the in-
termediate frame between two consecutive frames. Niklaus et al. [51, 52] learn to predict a
kernel to fuse input frames by convolution. Choi et al. [12] shuffle the features of two images
with PixelShuffle [60] and then fuse them with an attention-based image generator. As noted
above, these general-purpose methods would produce artifacts under fast non-linear human
body motion. This is why a specialized framework (as ours) is practically preferable, with
the goal of producing more realistic body motion and less artifacts at high frame rate.

Human Image Generation. The computer graphics literature has dedicated much atten-
tion to this problem, including skinning and articulating 3D meshes, simulation of physically
accurate clothing deformation, and the associated rendering problems [9, 19, 21, 33, 49, 55].
Despite much progress, generating photo-realistic renderings remains difficult and is com-
putationally expensive.

With the advances of deep image generation networks, methods have been proposed
to generate human images with diverse appearances, clothing, and poses by learning from
data [5, 8, 13, 14, 16, 20, 23, 24, 34, 36, 37, 42, 43, 44, 48, 56, 57, 59, 61, 63, 65, 68,
71, 73, 79, 80, 82]. The problem has been typically addressed by leveraging conditional
image generation techniques [70] to map human body representations, such as 2D skeleton
or a projection of 3D human body meshes, to realistic human images. Among these works,
human reposing approaches are especially related to this paper. Given an image or a video
of a person, such approaches aim to generate images of the person in desired poses. The
person’s identity is preserved via image or feature warping operations [5, 37, 59, 61], few-
shot adaption [71], or person-specific networks [7, 8, 16, 36, 65, 69, 78]. While this human
reposing task assumes natural body pose as input, the task of video interpolation further
requires generating realistic body poses, which we address in this paper.

Human Motion Modelling. Modelling 3D human motion is an important task in computer
graphics and vision. Given an input motion sequence, which is typically represented by
the positions and orientations of body joints, methods have been proposed to predict future
motion [2, 3, 18, 22, 28, 29, 35, 35, 46, 47, 83], change the style of the motion [1, 67, 79]
or infill intermediate motion [25, 26, 31]. These methods all assume clean 3D body poses
as inputs. In our case, however, only 2D poses can be extracted from the video and possible
detection error may occur. Thus the setting becomes more complicated since we not only
need to handle a variety of scales and translations caused by the perspective projection but
also need to reduce erroneous pose detections for motion modelling.
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Figure 2: Method overview. Our cascade pipeline consists of 2D pose detector, learned
human motion model, and 2D neural rendering model. Details are explained in Section 3.1.

3 Method
Given a low-frame-rate (low FPS) video Vlow={I0, I1, ..., IT} of human activities consisting
of T+1 frames, our goal is to generate a high FPS video V̂high={Î0, Î1/s, Î2/s, ..., Î1, ..., ÎT}
consisting of sT+1 frames.

The focus of this paper is to tackle the challenging case of human activities. Our key
idea is to explicitly model human motion to guide the generation of intermediate frames in
order to capture the non-linear dynamics and complex articulation patterns of human motion.
Following this idea, we propose a two-stage pipeline, as illustrated in Fig. 2, combining
learning-based human motion modeling and pose-guided neural rendering.

3.1 Overview

The input to our pipeline is a low FPS video. For each frame It in the given low FPS video,
we first use an off-the-shelf 2D pose estimation model [15] to extract 2D human skeletons
p̄t ∈ R2×J , which is represented by 2D positions of J = 19 body joints. With the low FPS
pose sequence P̄low = {p̄0, p̄1, ..., p̄T}, we then determine the pose p̂τ at intermediate time
steps τ ∈ [0,T ] using a learned human motion model to form the high FPS sequence P̂high =
{p̂0, p̂1/s, p̂2/s, ..., p̂1, ...p̂T}. Details on network architecture and training scheme in Sec. 3.2.

Subsequently, we train a pose-guided neural rendering model specifically for the given
video using the low FPS frames Vlow and the corresponding poses P̄low. The trained model
can map body poses p to human images I. We feed each high FPS pose sample p̂τ obtained
from the previous stage to generate the desired high FPS video V̂high. For details of neural
rendering please see Sec. 3.3.

3.2 Human Motion Modelling

The goal of the motion modelling stage, as illustrated in Fig. 3, is to generate a high FPS
realistic human motion sequence P̂high from a noisy low FPS pose sequence P̄low.

Motion Denoising Network. A major challenge to apply learning-based human motion
modelling to our case is that our input motion sequences are often noisy and even incomplete,
due to the limited accuracy of 2D pose estimation or possible occlusion. This conflicts with
the common assumption of noise-free motion in the existing motion modelling approaches.

We interpret the problem as a sequence-to-sequence translation task, and use a deep
network Tdenoise to map the noisy input pose sequence P̄low to its clean version P̂low. The
network predicts a correction term which is added to the input to reduce the noise:

P̂low = P̄low +Tdenoise(P̄low) (1)
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Figure 3: Human motion model. We adopt the transformer architecture [3] in our network.
Given a low FPS noisy pose sequence as input (left), our denoising network first reduces the
noise from the input. The interpolation network then infers the non-linear motion compo-
nent, obtaining high FPS motion by summing the linear and non-linear components together.
The required training data is obtained from simulating 2D keypoints using a large-scale hu-
man motion dataset AMASS.

Motion Interpolation Network. While linear motion models can approximate some of
the joint displacements, the residual non-linear component has a significant influence on
the realism of the motion. We thus model this non-linear component via a learned deep
network Tinterp. Starting by linearly interpolating the clean but low FPS pose sequence P̂low,
a high FPS linear motion sequence P̂linear is treated as an initial approximation of the high
FPS motion. Given P̂linear, we then recover the missing non-linear components using the
interpolation network Tinterp. The final output, i.e., the high FPS motion P̂high, is the sum of
both linear and non-linear components, given by

P̂high = P̂linear +Tinterp(P̂linear) (2)

Training. Training our networks requires large-scale realistic 2D human motion sequences,
which are scarce due to the known difficulty of annotating sequential data. Therefore, we
propose to simulate the required training data via the AMASS MoCap dataset [45] (details
in the supplementary materials).

Given the noisy low FPS motion P̄low at training time, the network recovers the clean and
high FPS motion P̂high, which is used for computing loss with the ground truth Phigh. The
training loss consists of two terms, one for denoising Ldenoise and the other for interpolation
Linterp. The denoising term penalizes the difference between the output of our denoising
network and the low FPS clean motion Plow, which is defined as:

Ldenoise =
∥∥Plow− P̂low

∥∥
1 . (3)

The interpolation term penalizes the difference between the output of our interpolation net-
work and the high FPS motion Phigh:

Linterp =
∥∥Phigh− P̂high

∥∥
1 . (4)

The final loss is defined as:

Lmotion = Ldenoise +λinterpLinterp, (5)

where λinterp controls the weights of the two terms.
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Figure 4: Pose-guided neural rendering. Our model maps a body pose to a human image
with the desired pose F̂t , along with an alpha mask M̂t that fuses the foreground F̂t and the
background B̂t into the final output Ît .

3.3 Posed-Guided Neural Rendering
After obtaining the high FPS pose sequence P̂high = {p̂0, p̂1/s, p̂2/s, ..., p̂1, ...p̂T} we can gen-
erate the high FPS video V̂high = {Î0, Î1/s, Î2/s, ..., Î1, ..., ÎT} via a learned neural rendering
model G : p→ I. We build our method upon the conditional image generation architecture
SPADE [54], and additionally address the problem of video consistency and background
motion via a learned composition with optical flow based interpolation methods. The pose-
guided neural rendering process is illustrated in Fig. 4.

Foreground Human Image Generation. Our neural rendering model G is built upon a
conditional encoder-decoder architecture (see model details in the supplementary materials).
The conditional image is first downsampled by an encoder, goes through a series of SPADE
residual blocks [54], and is finally upsampled by a decoder to generate the output image.
In our case, the conditional image represents the 2D joints pt and connecting limbs while
the target image F̂t depicts a person corresponding to the input pose. Motivated by [69], in
addition to the skeletal image, we also input the image generated at the previous time step
Ît−1 to improve temporal consistency.

Adaptive Foreground-Background Composition. In real videos, backgrounds can also
be dynamic, e.g., due to camera motion. These background motions, however, cannot be
covered by the human motion model and are not reflected in the 2D skeleton maps. On the
other hand, compared to human body motion, background motion is generally subtle and
can be modelled by optical flow based interpolation techniques [6, 76]. With the goal of
preserving both foreground consistency and background dynamic, we propose to learn an
adaptive foreground-background composition for neural rendering.

We first generate an interpolated frame B̂ with accurate background regions from the off-
the-shelf video interpolation model (e.g., DAIN [6] in our implementation) using the image
pair (It−1, It+1). Our neural rendering model would generate a foreground human image F̂
alongside an alpha blending mask M̂ by taking the skeleton p and the background B̂ as inputs.
Finally, the foreground and background images are composited according to the predicted
alpha blending mask. The final output is obtained by

F̂t ,M̂t = G(B̂t , pt , pt−1, Ît−1)

Ît = F̂t � M̂t + B̂t � (1− M̂t).
(6)

Here � denotes the element-wise multiplication.

Training. At training time, we use the low FPS video Vlow = {I0..., IT} and the corre-
sponding 2D poses Plow = {p0, ..., pT}. To optimize the network parameters, we minimize
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the reconstruction loss and the perceptual loss [17] between the generated frames Ît and the
ground-truth frames in the low FPS video It :

Limage =
T−1

∑
t=1

(‖It − Ît‖1 +λpercep‖ψ(It)−ψ(Ît)‖1), (7)

where ψl is a trained deep feature extractor from the VGG-19 network [62] pre-trained on
ImageNet and λpercep is a scalar weighting the two terms. In addition we also encourage the
generated foreground F̂t to be similar to It using the human-centric masks Mt generated from
Plow following [43]:

L f g =
T−1

∑
t=1

(‖(It − F̂t)�Mt‖1 +λpercep‖ψ(It �Mt)−ψ(F̂t �Mt)‖1). (8)

Finally, to encourage the usage of B̂t to handle the background and static part of human
bodies, we regularize the predicted mask M̂t with

Lmask =
T−1

∑
t=1
‖M̂t � (1−Mt)‖1. (9)

The overall loss function is the summation of the above terms plus an adversarial objective
Ladv (see our supplementary materials):

Ltotal = Ladv +λimLimage +λ f gL f g +λmLmask, (10)

where λ s are weights that control the interaction of the loss.

4 Experiments
4.1 Evaluation Protocol
Dataset. Existing video interpolation benchmarks focus on general scenes and are not ade-
quate for our evaluation. We collect a new human action interpolation dataset HumanSloMo
containing 80 sequences recorded at 30-240 FPS, capturing various high-speed activities like
boxing and dancing performed by 10 subjects. For test, videos are downsampled to 15 FPS,
from which high FPS videos are to be recovered and compared with the ground truth.

Baselines. We compare our proposed method with state-of-the-art two-frame video inter-
polation, including optical-flow based methods SuperSlomo [30], DAIN [6], BMBC [53],
and implicit generation methods CycleGen [38] and CAIN [12]. We also evaluate recent
four-frame non-linear methods QVI [76] based on PWC-Net [64] and HumanFlow [58].

Metrics. Following the protocol in [12, 77], we generate only one intermediate frame be-
tween two consecutive frames from the low FPS video and compute the following metrics:
PSNR, SSIM [72], LPIPS [81], FVD [66]. Since the human part in the image is of greater
interest to us, we further report these metrics averaged over the human regions using the
human-centric masks Mt , denoted by mask PSNR/LPIPS/SSIM.

4.2 Video Interpolation Comparison to SOTA
We first conduct the comparison with other SOTA video interpolation methods. Fig. 5 indi-
cates that our generated results are perceptually closer to the ground truth than other baseline
methods. It can be seen that the baselines struggle to model large motion between input
frames and produce artifacts such as ghosting, missing or blurry limbs, while our method
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Input Overlay GTOursDAINCAINSuperSlomo QVI

Figure 5: Qualitative comparison on HumanSloMo. We generate intermediate frames
from a low FPS video using our method and video interpolation baselines. Our generated
results are perceptually close to the ground truth. Despite the large motion, our method does
not suffer from the common interpolation artifacts such as missing, ghosting or blurry limbs.

Methods PSNR / mask PSNR(↑) SSIM / mask SSIM(↑) LPIPS / mask LPIPS(↓) FVD(↓)
Vid2vid [69] 21.01 / 20.17 0.7619 / 0.9467 0.1967 / 0.0352 309.60
PATN [84] 26.22 / 20.52 0.8956 / 0.9511 0.1110 / 0.0365 319.75

CyclicGen [38] 28.90 / 22.87 0.9502 / 0.9609 0.0529 / 0.0315 203.02
SuperSlomo [30] 29.39 / 23.47 0.9556 / 0.9669 0.0466 / 0.0256 190.58
BMBC [53] 29.80 / 23.83 0.9617 / 0.9712 0.0449 / 0.0239 196.41
CAIN [12] 30.52 / 24.59 0.9642 / 0.9731 0.0419 / 0.0251 157.81
DAIN [6] 30.42 / 24.50 0.9655 / 0.9740 0.0400 / 0.0222 160.23
Ours 30.75 / 24.93 0.9648 / 0.9745 0.0395 / 0.0200 123.04

QVI-HumanFlow [58] 29.63 / 23.78 0.9604 / 0.9708 0.0484 / 0.0262 209.15
QVI-PWCNet [76] 30.75 / 25.01 0.9657 / 0.9759 0.0415 / 0.0211 139.35
Ours† 31.00 / 25.36 0.9658 / 0.9773 0.0409 / 0.0198 121.86

Ours w/o fusion 26.83 / 23.46 0.8873 / 0.9668 0.1696 / 0.0278 219.38
Ours w/o prev. frame 30.16 / 24.39 0.9631 / 0.9734 0.0418 / 0.0207 129.91
Ours w. linear pose 30.22 / 24.58 0.9627 / 0.9734 0.0435 / 0.0215 143.45
Ours w. pred. pose 30.75 / 24.93 0.9648 / 0.9745 0.0395 / 0.0200 123.04
Ours w. GT pose 31.37 / 25.60 0.9665 / 0.9761 0.0384 / 0.0192 109.73

Table 1: Quantitative comparison on HumanSloMo. We report the PSNR, SSIM, LPIPS
and FVD wrt. the ground-truth frames for various video interpolation baselines and ours.

generates complete and realistic human bodies. Moreover, our generated body poses align
significantly better with the ground-truth images.

Table 1 summarizes the quantitative results. Our method achieves SOTA performance on
pixel-level metrics. When considering only the area of interest, indicated by the ground-
truth foreground mask, our method outperforms other baselines consistently (cf. mask
PSNR/SSIM/LPIPS). While non-linear methods QVI slightly improve the metrics using
more information for synthesizing the frame, it still suffers from large displacements of fast
human motion in Fig. 5. Moreover, our pipeline can further improve the non-linear model
by using its background information (denoted as Ours†). Pixel-level metrics do not always
reflect the perceptual plausibility since the task of motion interpolation is inherently uncer-
tain and stochastic. That is, there might be several feasible joint trajectories, which do not
fully agree with the ground truth. Thus we employ the distributional metric FVD to better
quantify visual quality and temporal coherence, where ours outperforms existing ones with
a noticeable margin, indicating improved realism and visual quality.
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1D
CNN

2D
CNN Seq2seq Linear

Ours w/o
Denoising

Ours‡
Quadratic Ours

avg L1 (↓) 3.194 3.260 1.170 3.767 0.917 1.870 0.820
max L1 (↓) 80.543 75.774 28.818 96.838 23.467 26.958 19.581

Table 2: Ablation study on human motion modelling. We evaluate ablative baselines of
human motion modelling on 2D motion sequences simulated from AMASS. We measure the
mean and max L1 error among all joints.

Fused ImagePose-guided
Generation

Predicted Mask GTInterpolated
Background

w/o prev.
frame

w. prev.
frame

𝑡 =
4
16

𝑡 = 0 𝑡 =
7
16 𝑡 =

12
16 𝑡 =

15
16

(a) (b)
Figure 6: Ablation study on neural rendering. (a) Qualitative result of foreground and
background fusion. (b) Qualitative result with and without using previous frames.

4.3 Ablation Study
We conduct controlled experiments to verify the effectiveness of our design choices in both
human motion modelling module and neural rendering module.

Human Motion Modelling. We generate noisy 2D poses in 7.5 FPS for test following
the data generation procedure described in Sec. 3.2 from 500 held-out motion sequences
in AMASS. We measure the average L1 difference between recovered 60 FPS motion se-
quence and the ground truth, denoted by avg L1. Moreover, since extreme failure cases with
large pose errors could severely affect the quality of the generated image, we also report the
average of maximum L1 error among all joints, denoted by (max L1).

Results are summarized in Table 2. First of all, simple linear interpolation (Linear) leads
to unsatisfactory results due to the non-linear dynamics of human motion and the noise in
the input poses. By introducing our motion interpolation network Ours w/o denoising, the
pose error is significantly reduced (3.767 vs 0.917). With the additional denoising network,
our full motion modelling pipeline Ours is complete and achieves the lowest pose error.
Alternative backbones are also evaluated, including 1D CNNs [1, 79], 2D CNN [31] and
Seq2Seq [25], demonstrating that transformer-based architecture indeed leads to the best
performance. We also replace linear interpolation by a higher order one in our model (de-
noted as Ours‡). Since our transformer model is capable of predicting non-linear motion
using attention mechanism, quadratic interpolation does not contribute improvement.

Pose-Guided Neural Rendering. As discussed in Sec. 3.3, the neural rendering model is
not designed to infer background pixels and we propose to learn the composition of fore-
ground and background images instead. As shown in Table 1, without fusion (Ours w/o fu-
sion), the performance (e.g. PSNR) decreases significantly due to inconsistent backgrounds.
As shown in Fig. 6 (a), pose-guided neural rendering performs well on the human region
while the optical flow based interpolation method [6] is more stable on the background and
static regions. The alpha mask is correctly predicted to fuse both images. We also find that
providing previously generated frames as conditional inputs can improve temporal consis-
tency and reduce the shape distortion, as shown in Fig. 6 (b). Removing this feature reduces
the accuracy as reported in Table 1 (Ours w/o prev. frame).
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Figure 7: Result of user studies. The participants voted the best result for each instance.
Our generated high FPS sequences are consistently preferred in both tasks.

We also compare the neural rendering module with methods that are capable of generat-
ing human images based on poses, including Vid2vid [69] and PATN [84]. We train their
networks with the same data as our method requires, namely the low FPS videos and the cor-
responding 2D poses. As shown in Table 1, without our proposed adaptations these methods
do not yield comparable results.

Human Motion Modelling for Video Synthesis To understand how important human mo-
tion modelling indeed is, we generate intermediate frames using linearly interpolated joints.
As shown in Table 1 Ours w. linear pose, this leads to a performance decrease especially in
terms of realism and visual quality measured by FVD, showing that modelling the non-linear
dynamics of the human motion is crucial for video interpolation.

We also evaluate the performance of our method given known human motion. We use
2D poses detected from the ground-truth images to generate these intermediate frames. As
shown in Table 1 as Ours w. GT pose, significant improvements are gained across all
metrics, showing that the motion interpolation task contains inherent uncertainty. Thus, even
if our method generates plausible motion, it may not be identical to the GT motion, which
propagates to the generated pixels and affects pixel-level metrics (e.g., PSNR). That’s why
we introduce the distributional metric FVD to assess visual quality of our results.

4.4 User Study
We conducted two user studies to verify our proposed pipeline :

• Task 1: Users are asked to select the preferred results among CAIN, DAIN and Ours.
• Task 2: Users are asked to choose the preferred synthesized results using motion of

Ours and linearly interpolated ones.
For each task, 30 participants are invited to make decisions for 10 different sequences. As
shown in Fig. 7 (b), 7.33% choose CAIN, 6.67% choose DAIN, 86.0% choose Ours. More-
over, Ours is preferred 74.67% when compared with linearly interpolated motion. The results
confirm our findings from Sec. 4.2 and Sec. 4.3.

5 Conclusion
In this paper, we propose a novel method for the synthesis of videos of human activities. Our
pipeline uniquely integrates modules of human motion modelling and pose-guided neural
rendering, which enables the reasoning about challenging articulated motion with highly
non-linear dynamics. We believe that the further cross-pollination of ideas from these two
rapidly developing areas is a exciting and up-and-coming direction for video synthesis.
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