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Abstract
Facial image manipulation is a generation task where the output face is shifted to-

wards an intended target direction in terms of facial attribute and styles. Recent works
have achieved great success in various editing techniques such as style transfer and at-
tribute translation. However, current approaches are either focusing on pure style trans-
fer, or on the translation of predefined sets of attributes with restricted interactivity. To
address this issue, we propose FacialGAN, a novel framework enabling simultaneous
rich style transfers and interactive facial attributes manipulation. While preserving the
identity of a source image, we transfer the diverse styles of a target image to the source
image. We then incorporate the geometry information of a segmentation mask to pro-
vide a fine-grained manipulation of facial attributes. Finally, a multi-objective learning
strategy is introduced to optimize the loss of each specific tasks. Experiments on the
CelebA-HQ dataset, with CelebAMask-HQ as semantic mask labels, show our model’s
capacity in producing visually compelling results in style transfer, attribute manipulation,
diversity and face verification. For reproducibility, we provide an interactive open-source
tool to perform facial manipulations, and the Pytorch implementation of the model.

1 Introduction
Facial image manipulation is a challenging task that involves generating images whilst pre-
serving the subtle texture of relevant features of the faces. When editing, different levels
of structural changes are imposed on key characteristics so that the system steers towards
the target direction, with the attempt to synthesize realistic facial images. Generative neural
networks have been very successful in this task, due to their ability to extract high-level fea-
tures, and they have been utilized in different editing tasks. Common editing techniques like
image-to-image translation include style transfer [7, 17] and attribute manipulation [6, 24].
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Figure 1: Given a source and a reference image, users can change the mask of the source so
that the synthetic result retains the identity from the source, with the style from the reference
and follows the customized mask (e.g., modified eyes, eyebrows, nose or mouth).

Style transfer approaches define two or more visual domains, where the goal is to trans-
late from one domain to another. Usually, these domains represent distinguishable properties
like gender, hairstyle, and skin colour among others. Ideally, while training these models,
one needs to predefine the boundaries of the target domains/styles, as they can be arbitrarily
large. To address this problem, [7] introduces an approach, where the styles are controlled
either by domain specific encoders or by semantic labels. This structure allows to have an
image-to-image translation model that can handle a wide diversity of styles. Despite the
remarkable results, this model has two important limiting factors. First, the scalability over
multiple domains has a direct impact on the size of the architecture. Additionally, it might
require a pre-classification of the data according to the target domain, which is not always a
simple task, since some domains cannot be binarised. The second limitation comes from its
semantic manipulation nature, i.e., it translates whole images, not allowing local nor pixel-
wise manipulations. As a consequence, it cannot have a fine-grained control of the faces,
generating less diverse attributes than a geometry manipulation approach.

With facial attribute geometry manipulations, we can achieve rich generation of attributes
thanks to its semantic reasoning. It consists of an image generation process, closely bounded
to the aforementioned technique, with supervision from a well-defined feature (target at-
tribute), which is modified with consistency preserving realism with the rest of the face. We
can categorize attribute manipulation techniques into semantic-level manipulation [6, 23, 26]
and geometry-level manipulation [30, 37, 38]. The former is precise and easy to train, how-
ever, it does not allow users to interactively manipulate the face images. Recent works on
geometry manipulation [11, 24, 34] have achieved notable results using semantic masks as
intermediate representations of facial features. While it is true that these methods grant the
user with more freedom to manipulate the attributes at will, they are not generating high
diversity outputs. [24] overcomes these drawbacks by mimicking user’s manipulation via a
mask manifold. Nonetheless, this method is limited in terms of style transfer, since it lacks
the ability to conduct morphological changes when applying style. A possible solution to
mitigate this issue is describing the style via the available attributes, but it is quite restricted.

To address these limitations, we propose a network that learns both styles and semantic
attribute translation, thereby ensuring that it can deal with all the aforementioned tasks at
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once. Similar to [7], we design a network that extracts and applies diverse styles to generate
realistic facial images. Additionally, inspired by [24], we incorporate geometry information
via segmentation masks to achieve a fine-grained manipulation of facial attributes, leading
to a rich diversity of outputs. We believe that having a functional end-user application is
important to both industry and academia, hence, we provide an open-source tool similar to
[1], where the user can play around and experiment with our pretrained model1.

2 Related Work
Generative Adversarial Networks (GANs) [10] have shown impressive results in various
computer vision tasks like image generation [3, 21], image-to-image translation [9, 17],
inpainting [18, 39] and image segmentation [2, 19]. Among them, facial manipulation tasks
have continuously gained attention in recent years due to the high demand of facial editing
applications. Facial manipulation can be seen as a multi-domain image-to-image translation
problem, where the model works with unique domain features from the face. From a style
transfer point of view [4, 7, 17, 25, 26, 29, 33, 41], each domain consists of styles, e.g.,
hairstyle, makeup and skin colour. From an attribute translation view [5, 6, 13, 24, 30, 31,
34, 35, 36, 37], each domain consists of attributes, e.g., smiling, beard and big nose.

One of the pioneer works on style translation [17] suggested learning to map from a
source to a target domain using paired images in a supervised manner. Shortly after, new
techniques such as cycle consistency [41] or shared latent space [26] were introduced to re-
move the need for pairs, reducing in this way the dataset complexity. Concurrently, more ad-
vanced topologies were developed, e.g., cascaded refinement [4] or multi-scale [33]. Follow-
up works proposed to use disentangled representations based on a domain-invariant content
space and a domain-specific attribute space [25], on a maximization of the ratio of the dis-
tance between generated images and their latent codes [29], or on a framework that tackled
both diversity of generated images and scalability over multiple domains [7].

Attribute translation tasks have also undergone major changes – including semantic-level
and geometry-level manipulations. Under a semantic-level umbrella, [36] tried to approach
the attribute translation task, by generating swapping attribute-related blocks in the latent
space between two images. [31] combined a conditional GAN with an encoder, which al-
lowed manipulating multiple attributes at once. [6] introduced an important breakthrough by
employing a single generator to perform multi-domain image translation. [13] also achieved
remarkable results with an encoder-decoder architecture, where the attribute information has
been treated as a part of the latent representation. For a finer control, [35] primarily took ad-
vantage of relative attributes, which described the desired change on selected attributes. As
for geometry-level attribute approaches, [37] introduced a new model that used two images
of opposite attributes as inputs, to transfer exactly the same type of attributes from one image
to another by exchanging certain part of their encodings. A different approach followed [30],
where they employed the input layout for modulating the activations in normalization lay-
ers through a spatially-adaptive, learned transformation. [5] suggested to decompose facial
attributes into multiple semantic components, each corresponding to a specific face region.
Similarly, [34] incorporated the influence region of each attribute into the generator, and
they combined it with a multi-level patch-wise discriminator structure. Finally, [24] enabled
diverse and interactive face manipulation via semantic masks that served as intermediate
representations for flexible face manipulations with fidelity preservation.

1Pytorch implementation is available at the https://github.com/cc-hpc-itwm/FacialGAN
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3 Contributions
In this work, we focus on the challenging task of facial image editing. Given an input face
image, a target style face image, and a guidance segmentation label mask, our novel frame-
work is able to synthesize an output image that (1) shares a similar style with the target
style image, while preserving the input face identity, and (2) follows accurately the semantic
mask. To the best of our knowledge, FacialGAN is a pioneer of incorporating both tech-
niques under the same umbrella, leading to a flexible and fine-grained editing control. As a
result, our facial system achieves state-of-the-art scores in reference-guided synthesis, im-
proving seminal works such as [7, 24]. We propose a multi-objective training that is able to
balance the different components of the architecture. In particular, we introduce a new local
segmentation loss to encourage the network to follow the geometry specified in the guidance
face mask. Unlike [24] where a complex training strategy generates a supervision signal,
our segmentation loss back-propagates informative gradients thanks to its locality character-
istics. In other words, it exploits the region of interest, i.e., the target pixel-wise attributes.
Overall, our contributions are summarized as follows

• We propose a novel model enabling simultaneous rich style transfers and interactive
facial attributes manipulation, while maintaining the identity.

• We introduce an intuitive local segmentation loss that guarantees the pixel-wise at-
tribute control, simplifying the complex global pipelines of [24].

• We assess both qualitatively and quantitatively results on CelebA-HQ dataset. We
report state-of-the-art scores on reference-guided generation, surpassing [7, 24].

• We provide an open-source framework which enables the user through an interactive
GUI to manipulate the structure of facial features along with transferring styles.

4 Our Approach

4.1 Problem Formulation
Given a source image x ∈ RH×W×3, its segmentation label mask m ∈ RH×W×C, and an ar-
bitrary reference image y ∈ RH×W×3, our goal is to train a model that can transfer the style
from y to x, control the gender domain, and being consistent with the geometry constraint of
m. Note that C is the category number of the semantic label.

To obtain images with diverse styles and flexible attribute manipulation, we train our ap-
proach on a twofold task: (1) to generate domain-specific style vectors from arbitrary images
and random noise, and (2) to synthesize realistic faces following the geometry dictated by
pseudo-random masks. By enforcing such a behaviour, the model will learn to reflect the
style vectors and the changes on the attributes of the masks, producing images with diversity
and scalability over multiple domains.

4.2 Model Architecture
The topology of our proposal is depicted in Figure 2. It is composed of a generative network,
a style network, a segmentation network and a discriminative network. By combining each
of these blocks sequentially, the ensemble model successfully transfers styles and attributes.
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Figure 2: Pipeline of FacialGAN framework. Given an input image x, the generator synthe-
sizes a new face x′, conditioned on a latent code s and a semantic mask m. The style network
extracts the s containing the style. It can be defined either from a reference image y, or from
random noise z. To ensure that the generated face is consistent with the mask, we employ a
segmentation network. Finally, the discriminator classifies the output: real (R) or fake (F).

Generative Network. The task of the generator G is to translate an input image x into an
output image x′, following the label mask m, while reflecting the style code s. Inspired by [9],
we use an encoder-decoder topology and randomly mask one of the attributes of x so that the
network learns to inpaint coherent attributes. Then, we concatenate the masked image with
the mask m, and feed it into the encoder. For the style transfer, we inject s into the decoder
using adaptive instance normalization [16]. Style Network. The aim of this network is to
generate valid style codes s. To do that, the network is split into two subnetworks: a mapping
network F and an encoder network E. While F generates a style code from random noise z,
E extracts the style from input images. We adopt the architecture of [7] as a backbone and
simplify it for a binary domain to control the gender information. The remaining attributes
are manipulated through the mask. Segmentation Network. To guarantee a diverse and
interactive face manipulation, we need to ensure that G follows the geometry of the mask.
Therefore, the segmentation network S generates a control signal that penalizes the generator
the moment that the output x′ and m are not aligned. To achieve that, we feed x′ into S and
compare the generated output mask m′ with the label mask m which serve as ground-truth.
Discriminative Network. The last component is a convolutional discriminator D. However,
it behaves slightly different from the vanilla implementation [10], as it takes samples of both
real and generated faces and tries to correctly classify them into real and fake based on the
gender domain. This discrimination procedure is called “multi-task classification” and it has
been successfully employed in previous works [7, 27].

4.3 Multi-Objective Learning
Learning to synthesize realistic and diverse images while transferring styles and manipulat-
ing attributes is a complex task. It requires different regularizer terms that focus on specific
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tasks. In this work, we mainly use five independent losses in training to achieve our goal.

Ladv = Ex[logD(x)]+Ex,m,z[log(1−D(G(x,m,F(z))))] (1)

The adversarial loss Ladv [10] is the core element in any GAN-based model. Essentially, it
makes the generated images more realistic and assess the control over gender’s domain.

Lsty = Ex,m,z[||s−E(G(x,m,s))||1] (2)

The style loss Lsty [7] is vital to achieve reliable style transfers. It is responsible to enforce
the generator to utilize the style codes s, extracted from F(z), by minimizing the distance
between them and the style codes, extracted from E when feeding with generated images.

Lds =−Ex,m,z1,z2 [||G(x,m,F(z1))−G(x,m,F(z2))||1] (3)

By maximizing the distance between two generated images with respect to their correspond-
ing latent codes z1 and z2, the diverse sensitivity loss Lds [29] forces the generator to explore
more minor modes and therefore, to produce more diversity.

Lcyc =Ex,m,z[||x−G(x′,m,E(x))||1]
with x′ = G(x,m,F(z))

(4)

The cyclic consistency loss Lcyc [41] guarantees the preservation of the domain invariant
characteristics (e.g., pose), while changing its styles faithfully.

Lseg =−∑
h,w

mh,w,c logS(xh,w,c)+(1−mh,w,c) log(1−S(xh,w,c)) (5)

Finally, the local segmentation loss Lseg is based on binary cross-entropy with the singu-
larity that it works locally. Depending on the manipulated attribute c, Lseg will evaluate a
certain image region (h,w). The goal of this loss is to ensure that the mask rules the attribute
geometry of output images. The overall objective can be formulated as

min
G,F,E,S

max
D
Lfinal = λadvLadv + λstyLsty + λdsLds + λcycLcy + λsegLseg, (6)

where λadv, λsty, λds, λcyc and λseg are the hyperparameters for each term.

5 Experiments

5.1 Experimental Setup
Baselines Models. We choose state-of-the-art DRIT [25], MSGAN [29], SPADE [30], Star-
GANv2 [7] and MaskGAN [24] as our baselines for comparison. DRIT, MSGAN and Star-
GANv2 perform latent-guided and reference-guided style transfer. Whereas SPADE and
MaskGAN perform geometry-level facial attribute manipulation. Datasets. We use CelebA-
HQ [20] and CelebAMask-HQ [24] datasets. While CelebA-HQ contains 30,000 high-
quality facial images picked from the CelebA [28] dataset, CelebAMask-HQ contains the
corresponding semantic segmentation labels separated on 19 classes. For our experiments
we resize all images to the size of 256×256, and we create and employ four customized
classes – eyes, nose, mouth and skin. Training Details. First, we train our segmentation
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Method FID ↓ LPIPS ↑
DRIT [25] 52.1 0.178
MSGAN [29] 33.1 0.389
StarGANv2 [7] 13.7 0.452
Ours 15.8 0.426

Method FID ↓ LPIPS ↑
DRIT [25] 53.3 0.311
SPADE [30] 46.2 -
MSGAN [29] 39.6 0.312
MaskGAN [24] 37.1 -
StarGANv2 [7] 23.8 0.388
Ours 22.8 0.415

Table 1: Distribution-level evaluation on style transfer. (Left) Quantitative comparison on
latent-guided synthesis. (Right) Quantitative comparison on reference-guided synthesis.

Figure 3: Qualitative comparison of style transfer on image synthesis. (Left) Latent-guided
generation using random latent codes. (Right) Reference-guided generation.

model based on [32], for 50 epochs using a batch size of 32, with the default Adam [22]
optimizer with learning rate set to 10−2. Then, we train our generative model for 200,000
iterations using a batch size of 8, but in this training we have four Adam optimizers, where
we set β1 = 0 and β2 = 0.99 with learning rates 10−4 for G, D and E, and 10−6 for F .
The losses are all equally weighted except for the segmentation with λseg = 2, and the style
diversification where λds is linearly decayed to zero over training.

5.2 Evaluation Metrics
Distribution-level Evaluation. To evaluate diversity and visual quality, we use the Fréchet
inception distance (FID) [14] and learned perceptual image patch similarity (LPIPS) [40]
metrics. Attribute-level Evaluation. To evaluate the ability to manipulate target attributes,
we train binary facial classifiers for the specific attributes on CelebA beforehand. In partic-
ular, we use a ResNet-18 [12] architecture. Segmentation-level Evaluation. To evaluate
the capacity to generate synthetic images conditioned on the input mask, we train a facial se-
mantic segmentation network on CelebA-HQ. In particular, we use a U-Net [32] architecture
that measures the pixel-wise accuracy between the input layout and the predicted parsing re-
sults. Identity-level Evaluation. In the context of style and attribute facial manipulation, it
can be relevant to preserve the identity. Therefore, we employ a pretrained face verification
classifier on LFW [15]. In particular, we use ArcFace [8] model with an accuracy of 99.5%.
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5.3 Style transfer

We start our experimental evaluation, assessing the style transfer ability of our model from
two perspectives: latent-guided synthesis and reference-guided synthesis.

Latent-guided refers to the fact that the system learns to model random noise into valid
latent code representations that account for a specific style. Table 1 provides a quantitative
comparison of the baseline methods. Our approach provides very competitive results, out-
performing most of the models on both FID and LPIPS score, and being very close to [7].
The main reason for these results is the ability of to morphologically change the attributes,
resulting in a wide variety of synthetic faces. Our model produces highly diverse results
given a single input, having a balanced image quality. Furthermore, we conduct a visual
inspection of a few samples. In Figure 3, a qualitative comparison between the different
baselines is illustrated. Each column contains the style transfer result from a different ran-
dom noise input. The top two rows correspond to the results of converting male to female
and vice versa in the bottom two rows. We observe that both [7] and our model generate im-
ages with a higher visual quality compared to [25] and [29] model. While most of the time
[25] synthesizes plausible outcomes, they do not contain morphological changes leading to
poorer style transfers. On the other hand, [29] generates results containing more substantial
modifications, nonetheless, the method seems to fail to synthesize realistic images.

The second perspective, reference-guided, refers to the fact that the system learns to
extract high-level semantics such as hairstyle, makeup, beard and age from the reference
images, and to represent it in a latent code. The pose and identity of the source images
are preserved. Table 1 shows the quantitative comparison of our method and the baseline
methods for reference-guided synthesis. Additionally, we also benchmark the models from
[30] and [24]. It should be noted, that these methods are using reference labels to the sources.
In this second experiment, our model achieves superior scores in both FID and LPIPS metric
compared to the competing models. This implies that our approach produces the most diverse
and realistic results while considering the styles of reference images. Figure 3 compares the
appearances of FacialGAN with the baseline methods. We observe our approach and [7] have
successfully rendered distinctive styles, e.g., hairstyle, makeup and skin colour, while [24]
fails at hairstyle translation, and [30] mostly matches only the colours of reference images.

5.4 Attribute transfer

On top of the style transfer capability, our model also allows a fine-grained attributes manip-
ulation based on supervised signals. Those signals come from one hot encoded vector that
determine the gender, and from the semantic facial mask that controls the eyes, eyebrows,
nose and mouth. Figure 4 shows synthesize images with style and attribute modifications.

We start our analysis by investigating the control over attribute transfers, in particular
over the gender. One important difference between some baseline models and ours, is how
the gender information is encoded into the generative system. On the one hand, we have [30]
and [24] that employ the reference image to determine the gender. In other words, they treat
gender as a part of the style information. On the other hand, we have our model and [7] that
use a label to set the gender, and therefore, treating it independently of the style. The first
column of Table 2 shows the classification accuracy that each baseline achieves on a gender
classifier when targeting only male outputs. As one can expect, there is a clear difference
between those approaches that use a gender-specific signal, and those who does not. Note
that the pretrained classifier has an accuracy of 96.1% which will serve as a ground-truth.
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Figure 4: In this picture, we show that our model is able to learn to transform a source image
to reflect the style of a given reference image while being consistent with the semantic mask.
The source and style reference images appear in the first two columns, whereas the respective
transformation masks are given in column 3 and 5. The columns 4 and 6 show the generated
images. Each row displays a modified attribute, i.e., mouth, nose and eyes (eyebrows).

Besides gender, our model allows manipulating eyes, eyebrows, nose and mouth inde-
pendently, and synthesizing images accordingly. As mentioned above, such control comes
from the segmentation information of the masks. Our approach is able to react to modifi-
cations on the segmentation mask at pixel-level. Hence, it is possible to scale the size of a
specific attribute, or even to redraw a new mask completely from scratch. The main limi-
tation in terms of manipulation would arise from the need of realistic customized masks so
that they could be translated into realistic faces. We conduct an experiment where we choose
smiling attribute to compare with previous works [24, 30]. Drawing smiles is a challenging
task since not only affects the mouth attribute, but also influences the whole expression of the
face, resulting in large geometry variety. To run this evaluation, we manipulate non-smiling
masks to be smiling and then, we generate a new set of images. The second column of Ta-
ble 2 shows how our method achieve very competitive results, outperforming the baselines.

Moreover, we evaluate identity preservation. We first study the effect of style transfer
on face recognition, where we measure the accuracy of face recognition of the source and
the generated image with style transfer. We achieve an identity accuracy of 89.8%. Further,
we apply attribute modification i.e., smiling faces, where we measure the accuracy of face
recognition between the source and the generated image with both attribute modification and
style transfer. The accuracy in Table 2 shows our method outperforms the baselines with
an accuracy of 89.8%. Even with additional modification, our method is able to preserve
identity better than the baselines. Having a high attribute transfer accuracy is an important
step towards our goal. Nevertheless, this metric might be incomplete as it does not evaluate
the precision of the mask, or if the identity is preserved. Hence, we conduct a segmentation
study per attribute, see Table 3, where we assess the consistency between the input layout
and the predicted parsing results in terms of pixel-wise accuracy.
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Method Male acc. Smile acc. Identity acc.
SPADE [30] 54.5 73.8 70.7
MaskGAN [24] 71.7 77.3 76.4
StarGANv2 [7] 100 - -
Ours 100 81.4 89.8*
Ground-truth 96.1 92.3 99.5

Table 2: Second and third column show the attribute-level
evaluation on male and smiling transfer synthesis accu-
racy. Fourth, identity-level evaluation after drawing smiles.
*Note that our synthetic image also contains style modifica-
tions, making more challenge the identity preservation.

Attribute Ours GT
Eyes 98.39 98.81
Nose 99.30 99.45
Mouth 98.78 99.06
All 96.40 98.75

Table 3: Segmentation-level
evaluation to measure the con-
sistency between the input
mask and the predicted pars-
ing results in terms of pixel-
wise accuracy.

Figure 5: Results on extreme manipulation of eyes (eyebrows) mask.

5.5 Limitations
We run an empirical study to determine under which circumstances our proposal starts to
behave erroneously, producing inconsistent outputs. To find such limitations, we constantly
increase the size of the mask of the target attributes and evaluate the results. We repeat the
same procedure but decreasing the mask size. Figure 5 displays a few examples, where we
can see how our model is following the mask if it can be translated into a realistic face. Once
the modified mask contains unnatural structures, e.g., no eyes, the network starts to ignore
the mask input. The main reason for this behaviour is the effect that the discriminator has
over the generator during training, avoiding generating unrealistic faces. A second limitation
factor arises from our segmentation loss. In order to generate informative gradients, it needs
to work locally. Therefore, we need training data with predefined areas where it will be
applied, i.e., the mask of the target attributes. Otherwise, the regions of no interest weaken
the learning signal, leading to a loss of control of attribute editing.

6 Conclusions
We propose a novel interactive attribute manipulation and style transfers framework for facial
image editing, coined FacialGAN. It learns to extract and to apply diverse style from a refer-
ence image while preserving the input face identity, and to incorporate geometry information
of a guidance segmentation mask. A multi-objective strategy guarantees the generation of
high-quality faces, and a fine-grained manipulation of facial attributes. Experimental re-
sults demonstrate that our FacialGAN outperforms state-of-the-art approaches. Finally, we
provide an open-source end-user application for the evaluation of our model.
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