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Abstract

Despite the advances in the field of generative models in computer vision, video
stabilization still lacks a pure regressive deep-learning-based formulation. Deep video
stabilization is generally formulated with the help of explicit motion estimation modules
due to the lack of a dataset containing pairs of videos with similar perspective but differ-
ent motion. Therefore, the deep learning approaches for this task have difficulties in the
pixel-level synthesis of latent stabilized frames, and resort to motion estimation modules
for indirect transformations of the unstable frames to stabilized frames, leading to the
loss of visual content near the frame boundaries. In this work, we aim to declutter this
over-complicated formulation of video stabilization with the help of a novel dataset that
contains pairs of training videos with similar perspective but different motion, and ver-
ify its effectiveness by successfully learning motion blind full-frame video stabilization
through employing strictly conventional generative techniques and further improve the
stability through a curriculum-learning inspired adversarial training strategy. Through
extensive experimentation, we show the quantitative and qualitative advantages of the
proposed approach to the state-of-the-art video stabilization approaches. Moreover, our
method achieves ∼ 3× speed-up over the currently available fastest video stabilization
methods.

1 Introduction
The prevalent integration of high-quality cameras in hand-held devices, has enabled the gen-
eral population to record the memorable moments of their life, but it still requires profes-
sional equipment to record stable videos. Thus, considerable literature has been devoted to
solving the video stabilization problem. Despite the advances in the generative deep learn-
ing models, there is still a long way to go for deep-learning-based approaches to truly take
over in video stabilization from the traditional reconstructive feature-tracking [19, 20] and
trajectory optimization [8, 18] methods.

Recently, Wang et al. [28] released the DeepStab dataset, which is the first large-
scale dataset for video stabilization. This dataset is captured with two synchronized cam-
eras placed on a contraption fixed around the base of a mechanical stabilizer. The camera
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Figure 1: (a) An illustration of the perspective mismatch in the DeepStab dataset and our
proposed Dataset Generation Pipeline (DGP). (b) Large non-overlapping regions (transpar-
ent purple zone) present in the DeepStab dataset [28] along with the minimized perspective
difference in our dataset. (c) A visual description of iterative frame interpolation leading to
visual stability and smooth camera trajectory.

placed on the physical stabilizer captures the stable video while the camera on the contrap-
tion rotates freely along the stabilizer and records unstable videos. Due to the rotational
motion of the unstabilized camera, both of the recorded videos often contain a significant
non-overlapping field-of-view, and a perspective mismatch (as shown in Figure 1). This in-
consistency in the perspective makes it difficult for the models to learn the direct pixel-level
spatio-temporal relations of unstable videos to their stable counterparts. Thus, video stabi-
lization is generally defined with the help of dense optical flow estimation modules and the
networks learn to warp the original frames instead of synthesizing them [32]. This warping
generally entails a substantial cropping near the frame boundaries and temporal distortions
in the stabilized videos. To overcome this problem, we provide a new dataset by extending
and improving the idea of iterative frame interpolation leading to smooth motion trajectories
as presented in [2] to generate stable and unstable training videos which virtually share the
same perspective (highlighted in yellow in Figure 1 (b)). Through our experiments with the
proposed dataset, we attempt to declutter and relieve the dependence on motion-awareness
in the formulation of video stabilization pipelines, and demonstrate that full-frame video sta-
bilization can be formulated with conventional network architectures and modules without
explicit motion awareness. In addition, we further propose a contrastive motion loss and
a temporal adversarial training strategy to produce more stable and temporally consistent
full-frame videos. Our proposed stabilization network compares favorably to the currently
available motion-aware solutions, and we summarize our contributions as follows:

• Unsupervised dataset generation: we introduce an unsupervised and extensible video-
frame-interpolation-based strategy to produce equi-perspective stabilized videos from
unstable videos captured from hand-held devices.

• Motion blind full-frame video stabilization: we declutter the overly complex video
stabilization formulation and propose the first ever motion blind deep stabilization
network with the help of the proposed equi-perspective dataset.

• Curriculum Learning strategy: we present a targeted sequential learning strategy
where we allow the same network to focus on multiple aspects of stabilization in dif-
ferent stages.
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2 Related Work

Liu et al. [16] proposed a 3D approach for this task, in which camera poses along with fea-
ture tracks were reconstructed in the 3D space, and the feature positions were projected along
smoothened camera poses, whereas, Smith et al. [27] employed depth-aware cameras to do
the same. However, these global 3D approaches cannot properly handle dynamic scenes
including moving objects, and thus 2D transformations (e.g., homography) become more
popular in video stabilization methodologies. In general, these 2D methods rely on tracking
prominent features and stabilizing their trajectories along the motion path. The results pro-
duced by these methods generally need cropping around the borders and up-scaling to retain
the original resolution of the input video. In addition, Buehler et al. [1] estimated the cam-
era positions through shaky videos and rendered the frames at smoothened camera positions
using a non-metric Image Based-Rendering method. Matsushita et al. [21] and Gleicher et
al. [6] used simplistic 2D transformation mechanisms to warp the original frames. Whereas,
Liu et al. [18] introduced a grid-based warping of frames for smoothing the feature trajecto-
ries. Grundmann et al. [8] proposed an L1-based cost functions for obtaining optimal camera
trajectory for stabilized feature tracks, whereas, Liu et al. [17] proposed a similar approach
but employed the eigen-trajectory smoothing technique. Wang et al. [29] and Goldstein et
al. [7] also approached this task with optimization-based models to acquire feature tracks
and camera position using epipolar geometry.

All of these methods relied heavily on feature tracks and ignored the underlying re-
lation of independent motion of multiple objects in consecutive frames, which compelled
Liu et al. [19, 20] to investigate applications of optical flow in the field of video stabiliza-
tion. Their studies helped understanding the importance of inter-frame motion estimation
in video stabilization and paved the path for modern video stabilization methods. Thus, Yu
and Ramamoorthi et al. [31, 32] and Choi et al. [2] employed dense optical flow estimation
modules to warp the neighboring frames to obtain smoother and better-quality videos. In
particular, Yu and Ramamoorthi et al. [31] proposed a scene-specific optimization approach
that estimates dense motion to optimize the network weights for each video and extended
their approach in [32] to a generalized framework capable of handling complex situations
including (de)occlusion and non-linear motion through warp fields.

Two pioneering methods implicitly using motion flow were proposed in [28, 30]. These
methods employ generative adversarial networks and spatial transformer networks to learn
the inter-frame motion and warp the frames for video stabilization. Wang et al. [28] proposed
the DeepStab dataset and attempted to find a possible solution for video stabilization with a
Siamese network containing a pre-trained ResNet50 model. Another attempt to train a pure
image-based stabilizer using the DeepStab dataset without motion estimation was discussed
in [32] and was termed as an “essential over-fitting task", because using this dataset for
training can lead to the network learning an entirely different perspective of the same scene
without the presence of any correlation or information about the perspective in the input
unstable video frames.

Meanwhile, a new stabilization network based on dense optical flow estimation and video
frame interpolation was proposed in [2] called DIFRINT. They achieve temporal stability by
rendering interpolated frames between unstable frames and obtain full-frame video stabiliza-
tion results. These attempts have helped us in pinpointing the shortcomings of the DeepStab
dataset and have encouraged us to propose an equi-perspective dataset which can simplify
the task of video stabilization.
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Figure 2: (a) Interpolated frame by DIFRINT [2]. (b) Interpolated frame by CAIN [3].

3 Dataset Generation Pipeline (DGP)
The generation of a labeled dataset for video stabilization is a challenging task. Before final-
izing our dataset generation pipeline, we experimented with various techniques to pinpoint
the missing link that hinders motion blind formulation of this task. Our experiments in-
cluded training the same network on DeepStab [28] dataset and a dataset generated through
random affine transforms. Through this experiment, we observed that the network trained
with the synthetic dataset learns to better stabilize videos than the network trained on the
DeepStab [28] dataset. In order to minimize the effect of large non-overlapping regions, we
also experimented with downscaling the DeepStab [28] to an eighth of its original frame
size. This downscaling operation reduced the overall inter frame motion. Even with these
downscaled frames, we were unable to learn meaningful stabilization. Through these exper-
iments, we concluded that learning the high-level reasoning for stabilization does not just
require a minimized non-overlapping region but it also requires the target and input videos
to share similar perspective in order to properly find correspondences. This is generally
avoided in the motion aware techniques with the help of dense optical flow estimation which
helps the model to differentiate between local and global motion present between the frames
along with an abstract sense of jerkiness in unstable videos. In order to generate a new large-
scale video stabilization dataset that fulfills these requirements, we draw motivation from
DIFRINT [2], which is a frame-interpolation-based stabilization network. Specifically, the
first part of their network is similar to the conventional video frame interpolation networks.
Their intuition for incorporating this network in their pipeline was to achieve temporal sta-
bility by reconstructing frames with high-frequency jerks. Their pseudo frame interpolation
network is trained for video stabilization, with a synthetic dataset generated using random

Figure 3: Comparison of frame interpolation methods used in iterative arrangement (20
iterations). (a) SepConv [24]. (b) CAIN [3]. (c) Proposed DGP.
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affine transformations. This synthetic dataset lacks the complexity of real motion in dynamic
scenes. Thus, this network faces difficulties in handling the differently moving objects in
real-world scenarios, and often results in undesirable wobble like artifacts as shown in Fig-
ure 2 (a). Notably, in the modern frame interpolation methods [3, 24], this is compensated by
training the networks on real-world videos containing complex inter-frame local and global
motions as shown in Figure 2 (b). Based on these observations, we deduce that conven-
tional video frame interpolation models (specifically trained for this task) can outperform
DIFRINT [2] in handling dynamic motion scenarios and produce stabler and higher quality
videos.

In general, video frame interpolation methods behave like a low-pass filter and produce a
middle frame by blending the neighboring frames. This generation of the middle frame can
remove high-frequency jitter present between the alternate frames. In an iterative arrange-
ment, this approach can take into account the relative motion of all the frames present in the
sequence, and generate a temporally consistent sequence free from sudden high-frequency
jerks. It is worth noting that DIFRINT [2] enforces stability by skipping intermediary frames
in their stabilization pipeline and generates the skipped frames with an assumption that the
intermediary frames lie along a straight line and the inter-frame motion is strictly linear.
These assumptions enforce temporal stability in fairly lesser iterations, but result in un-
desirable artifacts around the depth boundaries of distinctly moving objects, and a jagged
progression in the stabilized videos. First, to solve these problems we propose a new dataset
generation technique, which instead of skipping frames, generates the intermediate frames
and uses these intermediate frames to reconstruct the original sequence which preserves the
original progression of the video sequence. Secondly, we propose a refinement network
which restores the integrity of iteratively generated data.
• Iterative Frame Interpolation: For the first part of our dataset generation pipeline,

we tested two state-of-the-art frame interpolation methods SepConv [24] and CAIN [3] in
an iterative arrangement and opted to use CAIN [3] as it produced better quality frames in
our experiments (presented in Figure 3). Unlike DIFRINT [2], we use our frame interpolator
without any rigid assumptions about the nature of inter-frame motion, and only compensate
for high-frequency jerks through our iterative frame interpolation pipeline. This iterative
stability comes at the cost of visual distortions and artifacts. Although the generated frames
include lesser high-frequency jerks, various artifacts such as blur and color distortions are
generated as shown in Figure 3. To overcome these problems, we additionally introduce a
refinement network that restores the visual integrity of the generated frames.
• Refinement Network: To remove the artifacts introduced by the iterative frame inter-

polations, we introduce a refinement network. Our refinement network is based on ResNet [11]
with a modified version of the channel attention module from CAIN [3] (as shown in Fig-
ure 4). Our modified attention module treats the features with a succession of space-to-depth
operations followed by global average pooling, and a 1× 1 convolution layer. The output
of this layer is passed through a sigmoid function and then multiplied (element-wise) to the
input features. We observed that the original frames contain unaltered high-quality regions
necessary to restore the degraded interpolated frames. Thus, this network takes in an in-
terpolated frame with its neighboring original (unstable) frames as input, and generates the
restored version of the interpolated frame. Through customized losses and training strat-
egy, we ensure that the network does not alter the spatial relations of the content present in
the interpolated frame and only targets the artifacts introduced by the iterative interpolation.
A comparison of the refined results with the interpolated results is provided in Figure 3.
Please refer to our supplementary material for the detailed dataset generation, formulation,
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configuration and training and testing strategies of this network. For the finalized DGP, the
refinement network was integrated within the iterative frame interpolation pipeline. We in-
troduced a refinement step after every k iterations of the frame interpolation network (i.e.,
CAIN), and repeated this setting for a definite number of times m (as illustrated in Figure 4)
to acquire temporally stable and high-quality frames as shown in Figure 3 (c). In our ex-
periments, we select k and m to be 4 and 5, respectively. Due to the space limitation, we
present a visual ablation study to justify our choices of parameters k and m in the accom-
panied supplementary material. We utilize unstable videos from the DeepStab dataset along
with videos acquired through the internet to generate our final video stabilization dataset.

4 Learning Motion Blind Video Stabilization

4.1 Re-formulation of Video Stabilization

The conventional deep video stabilization methodologies formulate the task of video stabi-
lization with explicit motion estimation modules. Generally, these modules further compli-
cate an already convoluted formulation with additional steps to process the calculated motion
flows as described in [32]. Contrary to the normal convention, we propose a simplistic and
straightforward formulation of the video stabilization through our generated dataset. The
minimized perspective mismatch in our dataset assists the model to focus on the spatial re-
lations between the stable and unstable videos. Various model architectures like U-Net [25]
and ResNet [11] structures were tested before finalizing the baseline architecture for this task.
We employ a modified version of a super-resolution network, ENet [26] (based on ResNet
architecture) for our stabilization network. A very deep ResNet based architecture taking
multiple input frames allows the network to exploit spatio-temporal information along with
an extended receptive field as described in [28]. The architecture of the proposed network
for video stabilization is shown in Figure 5. Our model takes in five consecutive unstable
frames and produces the stabilized version of the middle frame. The number of input frames
used for the stabilization network was evaluated empirically.

Figure 4: (a) Proposed DGP for video stabilization with integrated the refinement network.
(b) The architecture and inference strategy of the refinement network.
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Figure 5: (a) Network architecture of the proposed stabilization network along with the
discriminator for training. (b) Training strategy for Stage 1 and Stage 2 (left to right)

4.2 Training Strategy
Inspired from the ideas presented in [5, 30], we divide the task of learning motion blind video
stabilization in to its different components and allow the model to focus on only one task at
a time. With this strategy we can learn all the aspects of video stabilization through the
same network. In the first two stages of our training, namely, Stable Frame Generation and
the Quality Enhancement, we purposefully employ conventional methodologies to verify the
effectiveness of the proposed dataset and the importance of equi-perspective training samples
for this task. Whereas, in the third stage, Strengthening, we let the model focus on learning
the abstract reasoning for improving the stability and temporal consistency.

4.2.1 Stage 1: Stable Frame Generation

In this stage, we train the network with a specific goal of generating stable frame f ′t from the
five unstable input frames ( ft−2, ft−1, ft , ft+1,, ft+2) (as presented on the left side of Figure 5
(b)). During this stage, the perceptual quality of the generated frames is purposefully ignored
as it can be enhanced in the upcoming stages with the help of an adversarial training strategy
and a perceptual loss. During our experiments, it was observed that introducing a quality
improvement loss at this stage significantly increased the convergence time. Therefore, at
this stage, the model is trained with a specific goal of learning only the high-level reasoning
necessary to justify the generated output frame f ′t from the input unstable frames. In this
stage, we train the stabilization network with the L2-based reconstruction loss as,

L=
∥∥ f ′t − fgt,t

∥∥2
2, (1)

where fgt,t is the frame acquired through our proposed DGP (described in Sec. 3).

4.2.2 Stage 2: Quality Enhancement

After the convergence with the L2 reconstruction loss in (1), the results produced by the
network are stable but quite blurry *. The perceptual quality of these stable but blurry frames

*The quality of the results produced at this stage can be assessed through the supplementary text
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can be improved by fine-tuning the network with a perceptual and an adversarial loss for
their proven success in enhancing the visual quality of degraded images [13, 15, 23]. The
primary loss used during this stage is a VGG based loss defined as follows:

Lcontent =
∥∥φ( f ′t )−φ( fgt,t)

∥∥2
2, (2)

where φ (·) represents the relu_3_3 layer of a pre-trained VGG-19 network. This loss en-
sures the preservation of high-level visual cues present as proposed in [12]. In addition to the
perceptual loss, we also employ an adversarial training schema in this stage. The discrimi-
nator used in our work is shown in Figure 5 (a). It is a simple feed-forward network inspired
by the discriminator used in [14] with alternating convolution and Leaky-Relu operations.
The final loss for training in this stage is given by the following equation,

L= Lcontent +λ ·Ladv, (3)

Here, Ladv is the adversarial loss and λ denotes a user-parameter that controls the contribu-
tion of the adversarial loss in the optimization step. As for the adversarial loss we utilize
WGAN-GP [9] for its success in similar quality improvement tasks such as [14, 15]. A brief
inter-stage ablation study is provided in the accompanied supplementary material. At this
stage we verify and prove the effectiveness of the proposed dataset and show that, the video
stabilization pipelines can be simplified with the help of our proposed dataset containing
pairs of stable and unstable training videos with a minimized perspective difference.

4.2.3 Stage 3: Strengthening

Wobble effect (as highlighted in Figure 2 (a)) is quite common in digitally stabilized videos.
This effect occurs due to the motion compensation, and it can be minimized in motion aware
approaches at the cost of stability. Since our model does not contain any explicit motion
estimation module, we address this issue with the help of specialized losses for this task.
During our experiments we observed that the natural video sequences do not contain these
artifacts. Therefore, we propose a temporal discriminator that can differentiate between a
natural sequence and an artificially generated one. With this intuition, we introduce a sec-
ondary discriminator which takes in 16 sequential frames of the generated videos along with
the corresponding DeepStab [28] stable frames, and encourages the proposed stabilization
network to generate wobble free frames. We also employ a contextual [22] and a perceptual
loss [12] between the generated and the unstable frames for content preservation. In addition
to these losses, we also propose a contrastive motion loss to enhance stability. This loss uses
an off the shelf pre-trained Video ResNet-18 for action recognition as proposed in [10] to
produce embeddings for the generated video sequences along with the corresponding Deep-
Stab stable and unstable sequences. These embeddings are then used with a triplet loss [4].
The embeddings for the DeepStab stable, unstable and our generated sequences are used
as anchor, negative and positive embeddings respectively. This loss minimizes the distance
between the positive and anchor while maximizing the distance between the anchor and the
negative embeddings. During the experimentation, an increase of 2-3% in the stability val-
ues from the Stage 2 network was observed by the introduction of this loss. The final loss
for training at this stage is given by the following equation,

L= λ1 ·Lφ +λ2 ·LCX +λ3 ·Ltd +λ4 ·Lid +λ4 ·Lcml, (4)
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Here, Lφ , LCX , Ltd , Lid and Lcml represent, perceptual, contextual, temporal discrimi-
nator, image discriminator and contrastive motion loss, respectively. Here, λn represent the
controlling hyperparameters. Due to the space limitation, the details of the above-mentioned
losses and the implementation are provided in the supplementary material.

5 Results

5.1 Quantitative Results

Figure 6: Quantitative comparison of Robust L1 [8], Bundled [18], DIFRINT [2], DGP (k=4,
m=5) and our stabilization network.

We evaluate the performance of the proposed method quantitatively in terms of stability,
distortion and cropping metrics as suggested by [18] on the 6 categories of videos presented
in the NUS dataset [18]. The provided results (Figure 6) are averaged over each category.
• Stability: This metric defines the stability in terms of frequency component analysis.
To calculate this metric, the feature trajectories are analyzed in the frequency domain as
described in [18]. It is worth emphasizing that this metric does not take into account the
quality of input videos and blurry results are also perceived stable through this metric.
• Distortion: This metric evaluates the anisotropic homography of the generated frames to
the actual unstable frames. The lowest ratio is selected as the final distortion score. A higher
score in this metric signifies better preservation of the content.
• Cropping: This metric measures the retention of visual information in generated frames
through homography calculation between the generated and the actual frames. A higher
score signifies better preservation of the visual information.

Through Figure 6, it is evident that the proposed network outperforms the SOTA methods
in terms of distortion and cropping and performs competitively in terms of stability on the
videos from Crowd, Parallax and Quick Rotation and lags behind in the remaining three
categories. This is due to the fact that a large portion of the generated dataset consists of
the unstable videos from the DeepStab [28], which contain the motion profiles similar to the
above mentioned three categories. This bias in the results can be minimized by fine-tuning
the network on videos containing motion profiles similar to the videos from the remaining
three categories. We do not include the quantitative results produced by iterated CAIN [3]
as the results contain inconsistent inter-frame artifacts that hinder the calculation of stability
score by introducing a new local motion profile in the resulting videos. It is worth noting that
the videos generated by the DGP and the iterated CAIN [3] share the same global motion
profiles hence the actual stability score for both the methods should be similar. Please note
that the Figure 6 does not include the results from [18] for Quick Rotation, Run and Zoom
as it fails to stabilize most of the videos from these categories because of the extremely large
non-overlapping regions.
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5.2 Qualitative Results
For visual quality comparison, we present the results generated by Adobe Premiere 2018 CC,
Robust L1 [8], DIFRINT [2], Iterated CAIN [3] (20 iterations), frames generated through our
DGP (k=4, m=5) and the output from the proposed stabilization network in Figure 7. The
loss of visual resolution can be clearly seen in the results by Adobe premiere 2018 CC and
Robust L1 [8]. The bounded yellow regions in DIFRINT [2] and iterated CAIN [3] highlight
the artifacts caused by both methods. It can be seen from these results that our models (DGP
and stabilization network) produce better quality results and preserve the scale and content.
The user study and more results are presented in the supplementary material.

Figure 7: Visual quality comparison of Adobe Premiere 2018 CC, Robust L1 [8],
DIFRINT [2], Iterated CAIN [3], DGP (k=4, m=5), and our stabilization network.

6 Conclusion
In this work, we firstly pinpoint the obstacles that hinder a motion blind video stabilization
formulation, and then present the first ever pixel-level synthesis solution for it. To do so,
we firstly propose a dataset generation scheme that produces equi-perspective high-quality
stable videos through iterative frame interpolation and refinement. Through the generated
dataset, and a carefully designed training strategy, we demonstrate that the proposed motion
blind video stabilization network compares favorably to the state-of-the-art video stabiliza-
tion solutions that utilize explicit motion estimation modules, and our proposed model also
preserves the visual information as well as the resolution which the currently available meth-
ods struggle with.
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