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Abstract

In autonomous driving scenarios, straight lines and vanishing points are important
cues for single-image depth perception. In this paper, we propose the deep line encoding
to make better use of the line information in scenes. More specifically, we transform po-
tential lines into parameter space through the deep Hough transform. The aggregation of
features along a line encodes the semantics of the entire line, whereas the voting location
indicates the algebraic parameters. For efficiency, we further propose the novel line pool-
ing to select and encode the most important lines in scenes. With deep line encoding, we
advance the state-of-the-art on KITTI single-image 3D object detection and depth predic-
tion benchmarks. The code is available at https://github.com/cnexah/DeepLineEncoding.

1 Introduction
Recovering depth from RGB images has been a long-standing problem in vision and robotics.
For example, a key step in 3D object detection is to predict the distance (depth) of foreground
objects. Whereas in 3D reconstruction, the depth of all pixels is often required. It is known
that for a single RGB image, in general, the problem is ill-posed. Thereby the dominant ap-
proaches resort to multiple images from different viewpoints and locate points in 3D space by
triangulation [15]. However, the human being can make a rough estimate of depth even from
a single eye. The observation motivates researchers to explore various cues for single-image
depth perception, such as shading [40], defocus [13], and so on.

Restricted to street scenes, Dijk and Croon [7] show an important cue to infer objects’
depth, i.e., objects that are further away tend to appear higher in the image. However, bring-
ing into full play the prior for accurate depth perception is by no means trivial. Because the
road surface has been assumed to be a rough plane, which is often violated in reality. For
example, there are usually different slopes in different areas, and cars might even be on curb
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bricks. In those cases, the simplified relation between objects’ depth and their image coordi-
nates might deviate from the truth. How to model the above complex situation effectively is
still an open question.

In this paper, we propose to exploit the basic primitives, like straight lines and vanishing
points, in man-made environments, especially in autonomous driving scenarios. Because
their angle or position indicates the slope of the road and even the 3D layout of the whole
scene. To explicitly represent the semantics (e.g. guard rail or horizontal line) and algebraic
parameters of lines, we perform deep Hough transform [8, 25] on the feature map of deep
networks. The voting for a line is obtained by aggregating the features along the line, which
encodes the semantic information from the entire line. In addition, the angle and position are
indicated by the voting location in parameter space.

In parameter space, feature maps are sparser than the ones in image space in the sense
that most of the locations are meaningless. Only a few elements represent straight lines that
make sense, whereas the vast majority correspond to random aggregation. For efficiency, we
propose the line pooling module to select important lines in parameter space. The lines are
finally represented as a vector, and can be easily incorporated into conventional networks.

We apply our design to off-the-shelf frameworks for monocular 3D object detection and
depth prediction. The main challenges in the two tasks are to predict the distance (depth)
of foreground objects and estimate the dense depth map respectively. With deep line en-
coding, we advance the state-of-the-art on KITTI monocular 3D object detection and depth
prediction benchmarks [11]. The improvements demonstrate the effectiveness of our design.

In summary, our main contributions are as follows: (1) We introduce the line information
in scenes as a novel cue for single-image depth perception. (2) We propose a novel archi-
tecture to exploit the line information, which fits well into off-the-shelf frameworks. (3) We
advance the state-of-the-art on KITTI single-image 3D object detection and depth prediction
benchmarks.

2 Related Work

In this section, we briefly review recent advances in monocular 3D object detection and depth
prediction.

2.1 Monocular 3D Object Detection

In monocular 3D object detection, a series of attributes of the object is required to estimate,
including the 3D coordinate, size and orientation. However, our method only aims to help the
network better estimate the Z coordinate (depth) of the object. Thereby we divide existing
methods into three main categories according to their way to infer the depth of objects. It’s
noteworthy that, compared with the dense depth estimation task, only the depth of foreground
objects are required. Thereby more priors can be exploited, and the methods can be more
sophisticated.

The most popular way is to make use of the depth information provided by external
models. A typical example of the external model is DORN [10], which learns to convert
images to dense depth maps. Pseudo-LiDAR [36] back-projects the depth map into 3D
points and then apply off-the-shelf LiDAR-based 3D object detectors. PatchNet [29] encodes
camera calibration information by spatial coordinates transformation. However, instead of
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further improving depth estimation accuracy, such approaches focus more on making better
use of the prediction results from existing models.

Deep3DBox [30] and RTM3D [22] infer depth through perspective relationships between
3D corners and their 2D projections. The motivation is to explicitly encode the geometric
prior that objects that are further away appear smaller. However, other cues such as object’s
image position may be ignored. In addition, prediction error in orientation, dimension, and
2D bounding box will harm the accuracy of depth estimation.

There are also works that directly regress the depth of centers of foreground objects.
Although simple, many works have demonstrated the effectiveness of the paradigm. More
specifically, M3D-RPN [2] designed a novel depth-aware convolutional layer which is able
to learn spatially-aware features. MonoDIS [33] introduced the disentangle transformation
to isolate the contribution of groups of parameters to a given loss. VisualDet3D [27] pro-
posed the so called ground-aware convolution to incorporate features from contacting points
between objects and the ground plane.

2.2 Monocular Depth Prediction

Focusing on fully-supervised methods, we find that recent works mainly proceed in two
directions.

One line is to design more sophisticated loss functions. Eigen et al. [9] proposed the
scale-invariant loss to save the network from learning the absolute global scale. DORN [10]
and SORD [6] treat depth network learning as an ordinal regression problem. Jiao et al. [19]
investigated the long tail property of depth values and proposed the attention-driven loss.
Wei et al. [38] formed a high-order geometric constraint called virtual normal, biasing the
network to produce depth maps with better surface. TSN [35] and CTN [31] jointly predict
depth, surface normal and semantic segmentation to exploit cross-task affinity patterns.

Proposing novel network architectures is the other direction. Aich et al. [1] and Xu et
al. [37] fuse the feature maps from different stages of the backbone by the bidirectional
attention modules and continuous graphical models respectively. Lee et al. [21] combine
multi-scale depth map candidates in the Fourier domain. Chen et al. [3] proposed the spatial
attention blocks to guide the network attention to global structures or local details across
different feature layers. Huynh et al. [18] developed the depth-attention volume to exploit
planar structures in the scene.

3 Approach

In this section, we start with an analysis of the simplified projection model. Its limitation
motivates us to explicitly encode the line information from the scene. As an effective way, the
Hough transform is briefly reviewed, and then we take a step further by proposing the novel
line pooling module. At last, we present the overall architecture with deep line encoding.

3.1 Depth from Lines

In autonomous driving scenarios, an important cue to depth prediction is object’s vertical
position in the image. As shown in Figure 1 (a), in the ideal case where the ground plane is
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perfectly horizontal, the distance of the object can be easily obtained by:

Z =
fY
y
, (1)

where f and Y are camera’s focal length and height respectively, and y is the image vertical
coordinate difference between the principal point and the 2D projection of object’s ground
contact point.

Image Plane

Camera 

y

Y

f

Ground Plane Contact PointZ

(a) Projection Model (b) Slope (c) Step (d) Pose Variation

Figure 1: (a) Illustration of depth estimation from the image coordinate of the object. (b)-
(d) Examples of real situations. We highlight some representative lines (red) that provide
information about slope, step and camera pose variation respectively.

In real-world applications, the road is rarely a perfect plane, and the projection relation
can be affected by various factors, such as slope, step, camera pose variation, and so on.
Special structures in the scene, especially straight lines and vanishing points, can indicate the
geometric layout of the scene and help the convolutional networks reason the real projection
relation, as shown in Figure 1 (b)-(d).

3.2 Deep Line Encoding
In this section, we introduce the deep line encoding to make better use of the line information
from the scenes.

3.2.1 Hough Transform

The traditional Hough transform algorithm [8] usually takes a binary edge map as input. A
straight line l is represented by a point (θ ,ρ) in the parameter space, where θ is the angle
between the x-axis and the normal vector of the line, and ρ is the distance from the origin to
the line. Its power is limited because the single point (θ ,ρ) is short of semantic context and
prone to noise.

Recently, Lin et al. [25] and Han et al. [14] proposed the deep Hough transform. The
input is replaced with features from deep networks, which enables end-to-end training and
is more robust. Given a feature map X , the transformed map Y is calculated by the following
equation:

Y (θ ,ρ) = ∑
(x,y)∈l

X(x,y), (2)

where l is the line parameterized by (θ ,ρ).
It’s known that in last convolutional blocks of deep networks, the feature maps are rich

in semantics. Thereby the aggregation of features along the line can be an encoding for the
semantics of the entire line, which is necessary for the line pooling module to select the most
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important lines. The voting position (θ ,ρ) in the transformed map Y indicates the algebraic
parameters of the line.

In implementation, we set the origin to be the center of the feature map X , and discretzie
θ ∈ [0,180◦) and ρ ∈ [−

√
W 2 +H2/2,

√
W 2 +H2/2] into bins, where W and H are the width

and height of the feature map X respectively.

3.2.2 Line Pooling

In deep Hough transform, the size of the transformed map Y is usually large but most of
the elements are invalid aggregation. As only a few elements of Y represent lines that make
sense, we propose a line pooling module to compress Y . The pipeline of our proposed line
pooling module is shown in Figure 2 (a).

As introduced in the previous section, the feature vector Y (θ ,ρ) aggregates features in
X along the corresponding line l, and encodes the semantics of the entire line. However,
Y (θ ,ρ) itself is ignorant of its own absolute position in Y , that is, the algebraic parameters
of l. Thereby we first fuse Y with the coordinate map [26] by convolutional layers. The
coordinate map indicates the position by filling in the location (i, j) of the coordinate map
with vector [i, j]. Denoting the resulting feature map as Z, the vector Z(θ ,ρ) is expected to
contain not only semantic but also algebraic information about the corresponding line l.

The next step is to select meaningful lines in Z. To do so, we first apply stacks of
convolutional layers on Z to generate a score map. The score in each location indicates the
importance of the corresponding line. Then we normalize the scores in the map through the
soft-max operation. The resulting probability map M represents the probability of selection.

Finally, the expectation, i.e., channel-wise sum of Z ·M, is regarded as the output line
vector. It means the weighted sum of information from all the possible lines. In implemen-
tation, we divide channels of Z into k groups, and predict M with k channels. We perform
group-wise pooling to select multiple lines at the same time.

Comparing with max or average pooling, the line pooling module is more flexible. In
experiment we found the probability distribution in M might concentrate on a single global
maximum, or several local maxima, or even uniformly distribute around all locations.

3.3 Overall Architecture
Our method is generic and can be applied to various frameworks. For generality, we suppose
the rough architecture for monocular 3D object detection or depth prediction to be as shown
in Figure 2 (b). Given an input image, the backbone extracts features at first, and then the
head makes prediction for the specific task.

In most cases, such as in VGG [34] and ResNet [16], the backbone is composed of a
series of stages. The feature maps from early stages are of high resolution but semantically
weak. After stacks of convolutional and pooling layers, features from different locations are
hierarchically aggregated in a complex way. Thereby in later stages the feature maps are
semantically stronger but of lower resolution.

We perform deep Hough transform [14, 25] on feature maps from an early stage of i. The
choice is natural since high resolution maps preserve more accurate location information. A
key step in deep Hough transform [14, 25] is to aggregate the features along the line. The
resulting vector can be viewed as an explicit representation for the semantics of the entire
line, which is necessary for the line pooling module to distinguish between the guard rail and
the horizontal line. The angle and position of the line are indicated by the voting location.
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Y
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(a) Line Pooling
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(b) Overall Architecture

Figure 2: (a) Pipeline of the line pooling module. The circle with black dot denotes element-
wise product. (b) Overview of the architecture with deep line encoding. Dotted box indicates
the backbone.

After deep Hough transform [14, 25], key lines in the scene will be selected by the line
pooling module and encoded as a short vector.

To incorporate the line information into the backbone, we concatenate the feature map F
from the stage of j with the line vector. To do so, we up-sample the line vector to the same
resolution as F in advance. The relative position of the object with respect to the lines or the
principle point is an important factor, thereby we also append the coordinate map [26]. We
concatenate F , the line vector and the coordinate map and compress into the same number
of channels as F . The resulting feature map will replace F and be fed into the stage of j+1.

While the deep line encoding module is plugged into the backbone, other parts of the
framework are kept the same as original. We train the framework in an end-to-end manner,
without any extra supervision than the common monocular 3D object detection or depth
estimation frameworks. In experiment (Section 4.4), we found the network can discover
related lines automatically.

4 Experiment
In this section, we analyze and verify each component in deep line encoding by detailed
ablation study and visualization. We also apply deep line encoding to the state-of-the-art
frameworks for monocular 3D object detection and depth prediction.

4.1 Monocular 3D Object Detection
Dataset The KITTI 3D Object Detection dataset [11] consists of 7,481 training images and
7,518 testing images from autonomous driving scenes. Following Chen et al. [4], we split
the training data into 3,712 training and 3,769 validation images. As has been the focus of
prior work [2], we primarily compare methods using the car class.
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Configuration Coordinate Line Vector AP3D
Easy Moderate Hard

a 23.63 16.16 12.06
b ✓ 25.21 16.48 12.46
c ✓ 24.92 16.41 12.33
d ✓ ✓ 26.49 16.75 13.07

Table 1: Different configurations ablation study. Configuration a is from Liu et al. [27].

VisualDet3D We apply deep line encoding to the state-of-the-art monocular 3D object de-
tector, i.e., VisualDet3D [27]. It is a single end-to-end network composed of a backbone and
two task-specific heads. The backbone is responsible for extracting feature maps over the
input image. The default is to take the first three stages of ResNet-101 [16] as backbone.
The first head performs convolutional object classification; the second head performs con-
volutional 3D bounding box regression. The 3D bounding box is disentangled into a group
of parameters to be regressed, including 2D projection location of the 3D center, depth, size
and orientation. The detector is trained with focal loss [24] for the classification branch and
smooth l1 loss [12] for the regression branch.
Line Encoding We choose feature maps from the first stage to perform deep Hough trans-
form. The transformed map will be compressed into a short vector by the line pooling
module. The line vector and coordinate map will be fused with the feature map from the
second stage and then fed into the third stage.
Training Details We adopt the Adam algorithm [20] to optimize network parameters for
40 epochs. We use an initial learning rate of 1e-4, a cosine annealing scheduler [28] with
target learning rate of 1e-5, a batch size of 8, and no weight decay. The data pre-processing
and augmentation are exactly the same as VisualDet3D [27]. We increase the loss weight of
depth prediction branch from 3.0 to 5.0, while other hyper-parameters are kept the same. For
deep Hough transform [14, 25], we set the resolution of ρ and θ to be 3 pixel units and 3◦.

4.2 Ablation Study
We perform detailed ablation study on the validation set. The experiments are repeated 5
times for average. We first evaluate the effects of critical components in deep line encoding,
including the coordinate map and the line vector. Main results are shown in Table 1. More
details are presented in supplementary. From Table 1 (b), we observe that simply adding
the coordinate map to the framework can boost the performance significantly. The result
coincides with the conclusion of Liu et al. [26], i.e., the vanilla network might fail to learn
the absolute coordinate information. Table 1 (c) shows the improvement from the line
vector alone, indicating that the information about straight lines in scenes is beneficial for
depth perception. We observe a further improvement from Table 1 (d) by combining the
coordinate map with the line vector.

Then we evaluate the effects of each component in the line pooling module. The results
are shown in Table 2. One of the most important design is the coordinate map, which rep-
resents the algebraic parameters of lines. If we remove the coordinate map, there will be a
drop in performance, especially in the hard case of AP3D. The other key design is the soft-
max operation. We verify its effects by directly selecting the average or maximum in each
channel of Z. The results show that the soft-max operation is better. Particularly, selecting
the maximum even harms the performance.

We further apply deep line encoding to M3D-RPN [2] to demonstrate the generalization
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Pooling APBEV AP3D
Easy Moderate Hard Easy Moderate Hard

LinePooling 34.06 22.59 16.96 26.43 16.72 13.02
-Coordinate 33.25 22.11 16.77 24.96 16.44 12.52
-Soft-max (avg) 33.34 22.55 16.91 24.77 16.26 12.55
-Soft-max (max) 31.50 21.68 16.29 23.28 15.80 11.75

Table 2: Pooling ablation study.

Method APBEV AP3D
Easy Moderate Hard Easy Moderate Hard

M3D-RPN [2] 20.85 15.62 11.88 14.53 11.07 8.65
+ Line Encoding (ours) 22.97 16.59 13.33 16.36 11.93 9.35

VisualDet3D [27] 29.70 20.98 16.20 23.63 16.16 12.06
Line Encoding (ours) 34.06 22.59 16.96 26.43 16.72 13.02

Table 3: Frameworks ablation study.

ability across frameworks. M3D-RPN [2] is a simple single-stage network composed of a
backbone and two task-specific heads. It takes DenseNet-121 [17] as backbone, while re-
moving the final pooling layer and dilating each convolutional layer in the last Dense-Block
by a factor of 2. The heads are used for object classification and attributes regression respec-
tively. We adopt the configuration without depth-aware convolutional layers and optimize
the model for 100 thousands iterations directly.

We select the feature map from the second Dense-Block to extract the line vector. Then
together with the coordinate map, we fuse the line vector with the original feature map and
feed into following modules. As shown in Table 3, deep line encoding module improves
the performance of M3D-RPN [2] under all the metrics. We also list the performance of
VisualDet3D [27] for comparison.

4.3 Computation Cost

Model size and test time are shown in Table 4. Following Lin et al. [25], the deep Hough
transform is implemented as matrix multiplication. We compress the feature maps into 16
channels before feeding into the deep Hough transform module. The accumulator is then
expanded to 256 channels through convolutional layers. Thereby the line vector has a length
of 256. We evaluate the test time for the two models both on NVIDIA Tesla V-100 GPU
with a batch size of 1.

Method Model Size (MB) Test Time (s/image)
VisualDet3D [27] 55.68 0.053

+ Line Encoding (ours) 61.84 0.060
Table 4: Model size and processing time.

4.4 Visualization of Lines

We perform inverse Hough transform on the probability map M to visualize the lines selected
by the line pooling module. The results are shown in Figure 3. The first column shows the
input image. The second column shows an example of the feature map to perform deep
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(a) Image (b) Feature Map (c) Channel#74 (d) Channel#223

Figure 3: Visualization of lines from the line pooling module.

Hough transform. The third and the forth columns show the inverse Hough transform of
different channels of M.

In Figure 3 (c) and (d), the bright areas show the distribution of important lines generated
by different channels of M. The areas are blur because the probability is often distributed
among a combination of multiple lines. However, we still observe that the selected lines
often align with special structures in scenes, such as guard rails, horizontal lines, vanishing
points and so on. Specifically, Figure 3 (c) focuses on vanishing points or horizontal lines,
while Figure 3 (d) is sensitive to the guard rails. Although we select only a single value from
each channel, the soft-max operation is flexible such that the probability can concentrate on
a single global maximum, or several local maxima. On Figure 3 (d) it is obvious that both
the left and right guard rails are selected.

4.5 Comparison with State-of-The-Art Methods

Table 5 presents the performance of recent methods on the KITTI monocular 3D object de-
tection benchmark [11]. Our method shows superiority over VisualDet3D [27] and achieves
the state-of-the-art on easy and moderate cases. Particularly, on the easy case of AP3D our
method increases by 2.58 points of AP (24.23 vs. 21.65). For the hard case, our method lags
behind MonoPair [5]. However, our method does not exploit many popular improvements,
such as the feature pyramid network [23] and deep layer aggregation [39], which are helpful
for small objects. These improvements are complementary to deep line encoding and should
boost the accuracy of hard case further.

Method APBEV AP3D
Easy Moderate Hard Easy Moderate Hard

M3D-RPN [2] 21.02 13.67 10.23 14.76 9.71 7.42
MonoPair [5] 24.12 18.17 15.76 16.28 12.30 10.42
RTM3D [22] 19.17 14.20 11.99 14.41 10.34 8.77
PatchNet [29] 22.97 16.86 14.97 15.68 11.12 10.17

VisualDet3D [27] 29.81 17.98 13.08 21.65 13.25 9.91
+ Line Encoding (ours) 31.09 19.05 14.13 24.23 14.33 10.30

Table 5: Performance comparison on KITTI monocular 3D object detection benchmark.
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Method SILog sqErrorRel absErrorRel iRMSE
DORN [10] 11.77 2.23 8.78 12.98
VNL [38] 12.65 2.46 10.15 13.02
SORD [6] 12.39 2.49 10.10 13.48
BANet [1] 11.55 2.31 9.34 12.17
GAC [27] 12.13 2.61 9.41 12.65

+ Line Encoding (ours) 11.81 2.22 9.09 12.49
Table 6: Performance comparison on KITTI single-image depth prediction benchmark.

4.6 Monocular Depth Prediction

Dataset The KITTI monocular depth prediction dataset [11] consists of 42,949 training im-
ages, 1,000 validation images, and 500 test images, annotated with sparse point clouds.
GAC We select the open-source framework GAC [27] to evaluate deep line encoding. GAC
is based on the U-Net structure [32], and is composed of a backbone and a head. The default
is to take the ResNet-34 [16] as backbone. The head is to fuse features from different stages
into a feature map with high resolution and rich semantic information, and then perform
convolutional depth regression. The network is trained with a scale-invariant loss [9] and a
smoothness loss.
Line Encoding We perform deep Hough transform [14, 25] on the features from the second
stage of the backbone. The line vector will be fused with coordinate maps and feature maps
from the third stage.
Training Details We adopt the Adam algorithm [20] to optimize network parameters for
8 epochs. We use an initial learning rate of 1e-4, a cosine annealing scheduler [28] with
target learning rate of 1e-5, a batch size of 8, and no weight decay. For deep Hough trans-
form [14, 25], we set the resolution of ρ and θ to be 3 pixel units and 3◦.
Performance on KITTI As shown in Table 6, with deep line encoding, we achieve a bet-
ter performance than GAC [27] under all the metrics. Especially in sqErrorRel, we observe
a significant improvement (2.22 vs. 2.61). Comparing with other published methods, we
achieve the state-of-the-art in terms of the metric of sqErrorRel, and the second best rat-
ing under absErrorRel and iRMSE. Qualitative results and validation set performance are
presented in supplementary.

5 Conclusion

Recovering depth from a single RGB image is a challenging task. In this paper, we have
shown that line structures in scenes provide valuable information for depth perception. Fur-
thermore, we presented a simple architecture to exploit the lines inside ConvNets. Our
method obtains state-of-the-art results on single-image 3D object detection and depth pre-
diction benchmarks. Finally, our study suggests that despite the success of deep ConvNets,
it is still necessary to incorporate prior knowledge and design more efficient representation
for the specific task.
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