Abstract

The absolute scale estimation of monocular structure from motion (SfM) is still under-explored even though it is essential for robotic tasks or real-world interaction. Typically, the use of physical scale cues requires a calibration process while context scale cues introduce geometric assumptions. In this paper, we propose a novel method to obtain absolute scales of the scene and camera motion by combining monocular SfM and uncalibrated depth from defocus (DfD) which is free for zooming and focusing on each shot independently. Specifically, we exploit that the scene structure and field of view (FoV) of each camera estimated by SfM are tightly coupled to the focal length and focused distance of DfD, and the radius of the effective aperture of the lens constrains the absolute scale of the entire estimation. The effectiveness of the proposed method is verified by using a commercially available camera with a varifocal lens through various experiments.

1 Introduction

Accurate depth estimation is a key component in many robotic tasks, including perception, navigation, and planning. In the last few decades, there has been significant progress in investigating methods to acquire depth using only a monocular camera, using motion parallax [2, 45, 47], context [12, 15, 16], and physical cues [13, 20, 41]. Structure from motion (SfM) is a typical method based on motion parallax [2, 45, 47]. Various methods introduce absolute scale by utilizing prior knowledge such as the height of the camera installation and the flatness of the ground [4, 5, 17, 36, 37, 53]. This introduces assumptions and reduces versatility. Another approach is to utilize additional sensors, such as stereo cameras and inertial sensors to overcome the scale ambiguity [25, 26, 31, 50]. In small robots, space-limitation makes additional sensors unfeasible. The context-based method that uses deep learning to directly regress the target depth based on the context is another typical approach for monocular depth estimation [12, 15, 16, 21, 34]. The combination of context and SfM has also been used to estimate the absolute scale of monocular SfM [44, 49]. However, if the target application has a different scale from the pre-training, the pre-trained model will have

© 2021. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.
We have made it possible to simultaneously obtain an unknown scale β and the unknown physical focal length f by associating the scene structure of the geometric side (SfM depth) and the bokeh radius of the physical side. Object size: GT=608[mm], ours=602[mm].

A scene geometry independent method is the depth from defocus (DfD). In DfD, the absolute scale depth can be obtained from the change in bokeh radius of two captured images with known focal length and focus distance [9, 13, 32, 38, 41, 46]. It has been shown in [20] that the bokeh radius with lens aberration uniquely determines the depth even from a single monocular image. However, to convert from the bokeh radius to the absolute scale depth, the physical focal length and focused distance must be calibrated. Therefore, it cannot be applied to uncalibrated cameras such as varifocal lenses that cannot be calibrated in advance.

In this paper, we target absolute scale estimation from varifocal monocular cameras. To the best of our knowledge, there is no method for estimating the absolute scale without making any use of context, prior knowledge, additional sensors, and pre-calibration of its focal length (Table 1). Our goal is to find the absolute scale using only a monocular camera without loss of flexibility. In particular, we propose a novel method to obtain absolute scales by combining monocular SfM and uncalibrated DfD which is free for zooming and focusing on each shot independently (Figure 1). Specifically, the scene structure and field of view (FoV) of each camera estimated by SfM are tightly coupled to the focal length and focused distance of DfD, and the radius of the effective aperture of the lens constrains the absolute scale of the entire estimation. To demonstrate the effectiveness of the proposed method, we conducted various experiments using a varifocal lens. As mentioned above, if the lens is fixed, the absolute scale depth can be obtained by pre-calibration of the focal length [20]. If the context does not change, the absolute scale can be estimated by learning the scale contained in the context [44, 49]. However, the problem we are tackling is difficult to learn in an end-to-end manner because neither the lens nor the context is fixed. Therefore, we

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Context-free</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Prior knowledge-free</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Only monocular camera</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pre-calibration-free</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1: While existing methods require some information or introduce assumptions, our method has the fewest assumption.
believe that the combination of physical cue-based deep learning and geometric information will be the breakthrough for absolute scale estimation with high flexibility.

The contributions of this paper are as follows. (1) We propose the first framework to estimate the absolute scale independent of the scene using only an uncalibrated monocular camera, as we combine monocular SfM and uncalibrated DfD. (2) We formulate the problem as a nonlinear regression problem. Moreover, we show that the nonlinear regression problem is a convex function with a unique local minimum where a global solution is easily found. (3) We demonstrate the effectiveness of the proposed method on our challenging dataset with varifocal cameras and provide an ablation study in comparison to the state of the art.

2 Related work

Depth estimation for monocular camera There are four major methods of depth estimation: based on motion parallax, shading, defocus, and context. The shading-based method utilizes the shading produced by additional light sources [24, 51]. The defocus-based method, which estimates depth from two images taken with a different focus, requires a special device to be able to accurately obtain the distance of image focus [9, 13, 32, 38, 41, 42, 46]. A typical method based on motion parallax is SfM [2, 45, 47]. When performing monocular SfM, both the camera positions and the 3D points are optimized based on geometric constraints between multiple viewpoints. The context-based method uses deep learning to directly regress the target depth based on the context in the image [12, 15, 16, 21, 34]. Recently, several methods based on physical cues have been proposed [8, 10, 18, 20, 27, 28].

Absolute scale estimation Application-specific studies are carried out by utilizing prior knowledge: known 3D model[35], the height of the camera installation and the flatness of the ground[17, 36, 37, 53] and the size of known object [4, 5, 19, 22, 40]. The other approach is to utilize additional sensors, such as stereo cameras [7, 11, 14, 33] and inertial sensors [25, 26, 30, 31, 43, 48]. The combination of context and SfM has also been used to estimate the absolute scale of monocular SfM [44, 49]. For monocular SfM, no method can estimate the absolute scale based solely on the monocular camera without any context information, prior knowledge, and additional sensors. Physical cue-based methods need pre-calibration for the absolute scale estimation [20]. No method can be used in scenarios where pre-calibration would be impossible, such as with varifocal lenses.

3 Convex regression for scale

Conventionally, to acquire the absolute scale in DfD, the physical focal length f and the effective focal length v need to be calibrated in advance. In contrast, we have made it possible to simultaneously optimize an unknown scale β and the unknown f by associating the scene structure of the geometric side and the bokeh radius of the physical side. The schematic diagram of our method is shown in Figure 2 (a). The relative scene structure z_{sfm} from SfM, called SfM depth, can be converted to a bokeh radius based on the defocus model via the unknown β, the unknown f, and v estimated by SfM as the FoV. Our method can optimize the above unknown parameters so that the converted bokeh radius matches the bokeh radius observed from the image at the same point. The above matching problem can be formulated as a nonlinear regression problem. Moreover, in this section, we show that the above nonlinear regression problem is a convex function, i.e., its unique local minimum is equal to the
SFM

Equation (1): Defocus phenomenon

\[f \text{i: Physical focal length} \]
\[v \text{i: Effective focal length} \]

Coordinates of feature points

\[F: F\text{-stop, p: pixel pitch} \]

Bokeh radius

Optimization by eq.(3)

Input (given) To be optimized Intermediate info.

Figure 2: (a) Schematic diagram of our method and (b) defocus model.

global minimum and the problem can be solved easily.

Optimization function: We use the following defocus model, introduced in [32], and shown in Figure 2 (b):

\[z = \frac{fv}{v - f - 2pfF} \]

where \(b \) is the bokeh radius, \(z \) is the absolute scale depth, \(a = f / F \) is the aperture diameter of the lens, and \(F \) and \(p \) are F stop and pixel pitch, respectively. We define the bokeh radius on the near side to be negative and on the far side to be positive. Then, we rearrange the above equation to find the bokeh radius

\[b = \frac{fv}{2pF} \left(\frac{1}{f} - \frac{1}{z} - \frac{1}{v} \right). \] (1)

Using SfM depth \(z_{sfm} \) and unknown scale factor \(\beta \), the absolute scale depth can be represented as \(z = \beta z_{sfm} \). Thus, (1) can be expressed as the following function with \(f \) and \(\beta \) as the unknown parameters:

\[b(z_{sfm}; f, \beta) = \frac{fv}{2pF} \left(\frac{1}{f} - \frac{1}{\beta z_{sfm}} - \frac{1}{v} \right). \] (2)

Let \(b_{obs} \) be the observed bokeh radius. To estimate the bokeh radius, we use CNN framework [20]. As \(b_{obs} \) and \(b(z_{sfm}; f, \beta) \) should be equal at the same point of the object, the following regression problem can be derived:

\[\hat{f}_i, \hat{\beta}, (\forall i \in I) = \arg \min_{f_i, \beta, (\forall i \in I)} \sum_{i \in I} \sum_{b_{obs}, z_{sfm}} L \left(b_{obs} - \frac{f_i v_i}{2pF} \left(\frac{1}{f_i} - \frac{1}{\beta z_{sfm}} - \frac{1}{v_i} \right) \right), \] (3)

where \(L \) is an arbitrary distance function, \(i \) is the index number of the captured images, and the index set \(I \) is \(\{0, \cdots , N-1\} \). As the images are acquired by uncalibrated cameras, such as varifocal lenses, we assume that \(f_i \) is different for each image. This is a nonlinear regression problem for \(f_i \) and \(\beta \). In the following, we show that the subproblems divided into each image are convex and the original problem in (3), which combines them, is also convex.

Showing convexity: To simplify the problem, let us first consider finding a solution for each image, and use the L2 norm as follows:

\[\hat{f}_i, \hat{\beta}_i = \arg \min_{f_i, \beta_i} \sum_{b_{obs}, z_{sfm}} \left(b_{obs} - \frac{f_i v_i}{2pF} \left(\frac{1}{f_i} - \frac{1}{\beta z_{sfm}} - \frac{1}{v_i} \right) \right)^2, \] (4)

where \(\beta_i \) is the per-image scale parameter. After applying the variable transformation \(d_{sfm} = \)
\[
\frac{1}{d_{\text{sfm}}} \quad (4)
\]
becomes the following linear regression problem:

\[
d_{0i}^{*}, d_{1i}^{*} = \arg \min_{d_{0i}, d_{1i}, \ b_{\text{obs}}, \ d_{\text{sfm}}} (b_{\text{obs}} - (a_{0i} + a_{1i} d_{\text{sfm}}))^2.
\]

(5)

With respect to the solutions \(d_{0i}^{*}\) and \(d_{1i}^{*}\), the following relations are obtained from (4) and (5):

\[
\begin{align*}
\hat{d}_{0i} &= \frac{v_i}{2pf} - \frac{f_i}{2pf}, \\
\hat{d}_{1i} &= -\frac{f_i v_i}{2pf \beta_i}.
\end{align*}
\]

(6)

The analytical solution \(\hat{f}_i\) and \(\hat{\beta}_i\) can be obtained by transforming the above equation. This solution is guaranteed to be a global minimum because (5) is a linear regression problem.

Next, we derive the original nonlinear regression problem in (3) from the per-image linear regression problem in (5). Concatenating the per-image regression problem in (5) and introducing a regularization term such that the per-image scale \(\beta_i\) gets closer to the same value as each other, the following equation is obtained:

\[
\hat{f}_i, \hat{\beta}_i, (\forall i \in I) = \arg \min_{f_i, \beta_i, (\forall i \in I)} \sum_{i \in I} \left\{ \sum_{b_{\text{obs}}, d_{\text{sfm}}} (b_{\text{obs}} - (a_{0i} + a_{1i} d_{\text{sfm}}))^2 + \lambda \sum_{j \in I} (\beta_i - \beta_j)^2 \right\},
\]

(7)

where \(\lambda > 0\) is a balancing parameter of two terms. Thus, in the above equation, the first term on the right-hand side is convex, because it involves linear regression problems in (5). The second term is also convex because of its quadratic form, and thus, (7) is also convex. When \(\lambda\) is set to infinite, \(\beta_i\) for each image converges to the same value, i.e. the single scale value \(\beta\). Then, in the case of L2 norm, (7) is equivalent to the original regression problem in (3). From the above discussion, the nonlinear regression problem in (3) can be solved easily by any nonlinear solver [6, 29] because of its convexity. In this paper, we use Trust Region Reflective [6] implemented in scikit-learn [1] as a nonlinear solver and Cauchy (aka Lorentzian) [3] as the distance function for reducing the effect of outliers. We will confirm the difference between L2 norm and Cauchy in the experiment. Once \(\hat{\beta}\) is obtained, the absolute scale depth \(z\) can be obtained as \(z = \hat{\beta} d_{\text{sfm}}\).

4 Experiment

To demonstrate the effectiveness of the proposed method, we conducted various experiments using a digital SLR camera (Nikon D810) and a varifocal lens (AF-S NIKKOR 24-70mm f/2.8G ED). Throughout all experiments, the F-number of the lens was fixed at 2.8. The captured images were saved as RAW data and resized to 1845x1232 pixels for the experiment. The pixel pitch \(p\) was calculated as 0.0195 based on the horizontal sensor size (35.9[mm]) and the horizontal number of pixels. We used COLMAP [39] to obtain a dense 3D point cloud from the multi-view image. Although COLMAP refers focal length based on EXIF information if accessible, we input images without EXIF which are converted from the RAW data. In this setting, COLMAP estimates reasonable focal length during SfM pipeline. We trained the CNN which estimates bokeh radius for each pixel [20] by fixing the focal length of the zoom lens at 48mm.

Input and output: The input of our experiment is multi-view images taken by the above camera and lens. The outputs are the absolute scale depth \(z\) and the estimated size of objects.
Table 1: Fitting result from the bokeh radius to the ground truth depth according to the defocus model in (1) for various focal lengths. The bokeh radius is predicted by the CNN trained on a single focal length at 48mm.

<table>
<thead>
<tr>
<th>Focal length (mm)</th>
<th>Fitting score</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>0.9529</td>
</tr>
<tr>
<td>28</td>
<td>0.9738</td>
</tr>
<tr>
<td>35</td>
<td>0.9971</td>
</tr>
<tr>
<td>42</td>
<td>0.9963</td>
</tr>
<tr>
<td>50</td>
<td>0.9953</td>
</tr>
<tr>
<td>70</td>
<td>0.9942</td>
</tr>
</tbody>
</table>

Figure 3: Fitting result from the bokeh radius to the ground truth depth according to the defocus model in (1) for various focal lengths. The bokeh radius is predicted by the CNN trained on a single focal length at 48mm.

Ground truth: The ground truth is the size of the objects measured by a ruler.

Oracle (fixed setup): As mentioned in the related work, there is no method for estimating absolute scale using only a monocular camera in a setting where zoom and focus are variable for each captured image. In contrast, in a fixed lens setup, the absolute scale can be estimated by pre-calibrating the defocus cue. As an oracle, we utilize a single image DfD [20] with the fixed lens and full calibrated settings (FixedOracle). The single image DfD was calibrated with f and v in the defocus model (1) using the ground truth depth obtained by a chessboard [52]. From the absolute scale depth z_{dfd} obtained by the calibrated DfD, we find the scale parameter as $\beta = \text{median}(z_{dfd}/z_{sfm})$.

Metric: We evaluate the mean absolute error (MAE) between the estimated size of the objects and the ground truth. We also use the following metric to evaluate the error between the estimated value and the ground truth in the ablation study.

$$\text{ErrRate}(x, x_{GT}) = \begin{cases}
(1 - \frac{x}{x_{GT}}) \times 100, & \text{if } x < x_{GT} \\
(1 - \frac{x_{GT}}{x}) \times 100, & \text{otherwise}
\end{cases}$$

Robustness of the bokeh extraction CNN trained with a single focal length: We tested how well the CNN trained at a single focal length would adapt to other focal lengths of the zoom lens. The CNN was trained with a focal length of only 48mm. Then, we took images at several different zoom-in increments. Thus, for each zoom, we took five images at different distances and fitted the blur radius predicted by the CNN to the ground truth depth using the defocus model in (1). The focal length and the effective focal length are the fitting parameters. The fitting results is shown in Figure 3. The fitting scores (coefficient of determination) are above 0.95 for all focal lengths. It can be confirmed that the CNN trained at a single focal length fits the defocus model well for various focal lengths.

Evaluation in the wild: To evaluate our method in the wild, we captured 11 outdoor scenes; each scene contained 9 images. The examples of the scenes are shown in Figure 4. This is a challenging setting that includes a variety of focal lengths within a single scene. To demonstrate the effectiveness of our method for the situations where pre-calibration was not possible, we randomly changed the zoom factor and autofocus on an object for each image. This is the same condition as the last row of Table 2 (Ours). The distance to the objects is about 4~7[m]. The examples of the measurement point, the SfM depth, the bokeh radius, and the absolute scale depth are shown in Figure 5. The quantitative result is shown in Figure 6. The average MAE of all scenes is 23.035±4.014[mm], which is about 0.42%
error against the object distance from the camera. In the fixed lens setup, the average MAE of FixedOracle is 13.855±4.204[mm]. Although our method is not quite as good as FixedOracle’s, it achieves good accuracy under the difficult conditions of variable lens settings.

Figure 4: Examples of the multi-view images under both variable zoom and focus settings. The number in each image indicates its focal length. This is a challenging setting that includes a variety of focal lengths within a single scene. The last row is an example of the multi-view image for the ablation study.

Ablation study: For the ablation study, we captured several indoor multi-view images at a distance of about 1.0 [m] from a chessboard (each scene contains 9 multi-view images, and the baseline length between two views is about 15[cm]) as shown in Figure 4. We randomly sampled and resized photos from the dataset [23], and they were printed on some planes so that the absolute scale depth could not be determined from the context. To avoid using prior knowledge of the camera height, we captured sparse multi-view images by a handheld camera. The experimental setup is shown in Table 2. The conditions (zoom: Z, focus: F, distance function: L, and effective focal length: v) for our method are shown in the last row of Table 2 (Ours). The ablated conditions are appended to the method name. We define the inlier as the rate of pixels in which the absolute difference between b_{obs} and $b(z_{sfm}; f, \beta)$ is below the certain threshold corresponding to 100 [mm].

(1) FixedOracle vs. Ours_Z_F_v: We compare our method (Ours_Z_F_v) with FixedOracle under same conditions of FixedOracle. We evaluated the accuracy of β and the grid size of the chessboard estimated by FixedOracle and Ours_Z_F_v. Comparing β and the grid size of the chessboard of FixedOracle and Ours_Z_F_v, it can be seen that FixedOracle is very slightly more accurate as shown in Table 2. However, FixedOracle and Ours_Z_F_v have almost the same accuracy, and their errors are around 1%, which shows that our method is working very well, even without the need for calibration.

(2) L2 norm (Ours_Z_F_L_v) vs. Cauchy (Ours_Z_F_v): We verify the difference
Figure 5: Examples of SfM depth, bokeh radius, and estimated absolute scale depth in the wild. The ground truth of the object size is overlaid on the captured image, and the corresponding estimate is overlaid on the absolute scale depth.

between L2 norm and Cauchy as the distance function in (3). In Figure 7, we show the error maps of (3). It can be seen that the error maps of both Cauchy and L2 norm indicate convexity. However, the solution of L2 norm deviated from the ground truth due to outliers. Comparing Ours_Z_F_L_v and Ours_Z_F_v in Table 2, we can see that L2 norm is much less accurate for both f, β, and the grid size than Cauchy.

(3) Calibrated v (Ours_Z_F_v) vs. estimated v (Ours_Z_F): We investigated whether the estimated v by SfM (Ours_Z_F) causes any accuracy degradation compared to the calibrated v (Ours_Z_F_v). Although v should not change in the fixed camera setting, the estimated v (Ours_Z_F) changes as shown in Figure 8(a). Comparing Ours_Z_F_v and Ours_Z_F in Table 2, we can see the accuracy of the estimated f of Ours_Z_F is slightly worse than that of Ours_Z_F_v. However, the estimated β of Ours_Z_F was better than that of Ours_Z_F_v, and the grid size was estimated almost the same accuracy. From the above results, we confirmed that the influence of the estimated v by SfM is small.

(4) Scalability to both variable zoom and focus: We checked the scalability for both variable zoom and focus. Under the variable zoom setting, we changed the zoom magnification randomly for each image. Under variable focus setting, the camera was autofocus on the chessboard in the center for each captured image. We evaluated the grid size of the chessboard because there is no way to know the ground truth of β and f under variable zoom and focus setting. The results are shown in Figure 8 and Table 2. We note that the variable zoom setting (Ours_F and Ours) is less accurate than the fixed zoom setting (Ours_Z_F).
Figure 6: Mean absolute error between the estimated size and the ground truth for each scene in the wild, and captured images of the scenes out of Figure 5. The black solid line indicates the standard deviation of the MAE. The average MAE of all scenes is 23.035 ± 4.014 [mm] at the distance of about $4 \sim 7$ [m] to each object, which is about 0.42% error against the object distance from the camera. In the fixed lens setup, the average MAE of FixedOracle is 13.855 ± 4.204[mm].

<table>
<thead>
<tr>
<th>Method</th>
<th>Zoom</th>
<th>Focus</th>
<th>L</th>
<th>ν</th>
<th>f</th>
<th>β</th>
<th>Grid size</th>
<th>$%$ Inlier</th>
</tr>
</thead>
<tbody>
<tr>
<td>FixedOracle [20]</td>
<td>Fix</td>
<td>Fix</td>
<td>-</td>
<td>Calib</td>
<td>Calibrated</td>
<td>0.779\pm0.080</td>
<td>1.087\pm0.79</td>
<td>0.809</td>
</tr>
<tr>
<td>Ours Z_F_L_v</td>
<td>Fix</td>
<td>Fix</td>
<td>L2</td>
<td>Calib</td>
<td>0.122\pm0.047</td>
<td>3.514\pm0.931</td>
<td>3.595\pm1.364</td>
<td>0.824</td>
</tr>
<tr>
<td>Ours Z_F_v</td>
<td>Fix</td>
<td>Fix</td>
<td>Cauchy</td>
<td>Calib</td>
<td>0.078\pm0.010</td>
<td>0.998\pm0.110</td>
<td>1.139\pm0.784</td>
<td>0.794</td>
</tr>
<tr>
<td>Ours Z_F</td>
<td>Fix</td>
<td>Fix</td>
<td>Cauchy</td>
<td>SfM</td>
<td>0.242\pm0.208</td>
<td>0.606\pm0.350</td>
<td>1.134\pm0.806</td>
<td>0.794</td>
</tr>
<tr>
<td>Ours Z</td>
<td>Fix</td>
<td>Variable</td>
<td>Cauchy</td>
<td>SfM</td>
<td>-</td>
<td>-</td>
<td>1.001\pm0.735</td>
<td>0.857</td>
</tr>
<tr>
<td>Ours F</td>
<td>Variable</td>
<td>Fix</td>
<td>Cauchy</td>
<td>SfM</td>
<td>-</td>
<td>-</td>
<td>2.530\pm1.133</td>
<td>0.692</td>
</tr>
<tr>
<td>Ours</td>
<td>Variable</td>
<td>Variable</td>
<td>Cauchy</td>
<td>SfM</td>
<td>-</td>
<td>-</td>
<td>1.485\pm1.246</td>
<td>0.784</td>
</tr>
</tbody>
</table>

Table 2: The error rate of the focal length f, the scale β, and the grid size of the chessboard.

and Ours Z). This is because the focal length ($f=48$mm) at which the CNN is trained is close to the focal length of the fixed zoom setting ($f=42$mm). Because of the nature of regression problems, a high inlier rate leads to high accuracy. Comparing the inlier ratio of the fixed zoom setting with that of the variable zoom setting, we can see that the former is higher. Furthermore, the variable focus (Ours Z and Ours) has better accuracy than the fixed focus (Ours Z_F and Ours F). This is because the bokeh extraction CNN is highly accurate near the focus [20]. In the variable focus setting, we found that all of the images were taken well. However, it was confirmed that in the autofocused setting, the error of the grid size is relatively high even with the variable zoom setting.

Effect of the number of images: To evaluate the effect of the number of images on the accuracy, we experimented with varying the number of images in Ours Z_F setting. As shown in Figure 9, The accuracy of the estimated grid size deteriorates as the number of images decreases. The error is especially large for 2 or 3 images, and for practical use, 5 or more images are desirable.

Robustness to textureless surfaces: Even if the scene has a lot of texture less area, our method can estimate absolute scale by bokeh radius and SfM. As shown in Figure 10, we confirmed that the absolute scale can be obtained even in scenes with few textures.

Limitations: Our method degenerates accuracy for pan-focus images, where bokeh cues are difficult to obtain. It is also inaccurate in scenes where the depth is concentrated in one
Figure 7: The error map of (3). The horizontal axis is β, the vertical axis is f_0, and the heat map represents the error value. Solid green and blue lines indicate the ground truth and estimated values of β and f_0, respectively.

Figure 8: Plots of the effective focal length v vs. the error rate of the estimated grid size of the chessboard. Each dot represents v and the error rate for each image.

Figure 9: Plot of the number of images vs. the error rate of the estimated grid size of the chessboard.

place due to poor regression accuracy.

5 Conclusion

In this paper, we have proposed a novel method to obtain absolute scales by combining monocular SfM and bokeh cues without making any use of context, prior knowledge, additional sensors, and pre-calibration. Since our method can optimize unknown focal length as well as scale, it can be applied to uncalibrated cameras. We have formulated the above optimization problem as a nonlinear regression problem. Moreover, we have shown that the above non-linear regression problem is convex. To demonstrate the effectiveness of the proposed method, we conducted various experiments using a varifocal lens.

Figure 10: Results for the textureless scene. Our method can estimate absolute scale. Estimated and GT of the monitor width are 556 mm and 570 mm, respectively.
References

