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Abstract

Inspired by the great success achieved by CNN in image recognition, view-based
methods applied CNNs to model the projected views for 3D object understanding and
achieved excellent performance. Nevertheless, multi-view CNN models cannot model
the communications between patches from different views, limiting its effectiveness in
3D object recognition. Inspired by the recent success gained by vision Transformer in
image recognition, we propose a Multi-view Vision Transformer (MVT) for 3D object
recognition. Since each patch feature in a Transformer block has a global reception field,
it naturally achieves communications between patches from different views. Meanwhile,
it takes much less inductive bias compared with its CNN counterparts. Considering both
effectiveness and efficiency, we develop a global-local structure for our MVT. Our ex-
periments on two public benchmarks, ModelNet40 and ModelNet10, demonstrate the
competitive performance of our MVT.

1 Introduction
In the past decade, we have witnessed the great success achieved by convolutional neu-
ral network [13, 18] in image understanding. Inspired by its success in understanding 2D
images, several works attempt to deploy CNN in 3D object understanding, achieving ex-
cellent performance. These methods can be coarsely divided into three groups: view-based
methods [8, 11, 12, 17, 28, 31], volume-based methods [22, 23, 24, 35], and point-based
methods [3, 25, 26]. Among them, view-based methods are closely related to 2D image
understanding. View-based methods project a 3D object into multiple views and model each
view through the model original used in modelling 2D images. Benefited from pre-training
on the large-scale 2D image dataset such as ImageNet [5], they achieve competitive perfor-
mance compared with their volume-based and point-based counterparts.

MVCNN [28] is the pioneering view-based method. It extracts each view features through
a vanilla 2D CNN and aggregates the view features through sum-pooling. The follow-
ing works [8, 11, 12, 17, 31, 33] seek to find a more effective way to aggregate the view
features. Specifically, RCPCNN [31] and GVCNN [8] group views into multiple sets and
conduct pooling within each set. Seqviews2seqlabels [12] and 3D2SeqViews [11] model
the view order through recurrent neural network. View-GCN [33] models the view-based
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Figure 1: The architecture of the proposed Multi-view Vision Transformer (MVT). Each
view is split into non-overlap patches. Each patch is projected into an embedding vector,
which is added to a position embedding. Patch embedding vectors from each view are fed
into the local Transformer encoder for communications between patches within the view.
Then the outputs of the local Transformer for all views are concatenated into a global set,
which is fed into the global Transformer encoder for communications between patches from
different views. After that, the set of attended patch features from the output of the global
Transformer encoder are sum-pooled into a global representation for the 3D object. We
finally use the MLP head for classification.

relations through graph convolution network. MHBN [38] and MVLADN [39] observe the
limitations of view-based pooling, formulate the view-based 3D object recognition into a set-
to-set matching problem, and investigate in patch-level pooling. Nevertheless, view-based
pooling and patch-based pooling methods only fuse the visual features from different views
in the last pooling layer. There are no interactions between visual features from different
views in previous layers. This configuration leads to the fact that a patch can only have a
local perception field and fails to perceive patches in other views. Relation Network [37]
enhances each patch feature by patches from all views, achieving better performance than
the above-mentioned view-based pooling and patch-based pooling methods.

In this work, inspired by the great success achieved by vision Transformer [7, 29], we
propose a multi-view vision Transformer (MVT) to empower each patch to have the global
reception field to perceive the visual content of all views from a 3D object. It adopts a pure-
Transformer architecture and thus takes much less inductive bias compared with its CNN
counterparts [7]. Considering the total number of patches is largely due to multiple projected
views, simply concatenating all patches will generate an extremely long sequence, leading
to an expensive computational cost. Taking both effectiveness and efficiency into consider-
ation, we devise a local-global structure, as visualized in Figure 1. In the local Transformer
encoder, we adopt Transformer to process the patches within each view individually. In the
global Transformer encoder, we merge patch features from all views and feed them together
into Transformer layers for the global reception field. Using such a simple and elegant ar-
chitecture, we achieve state-of-the-art recognition accuracy on public benchmarks, including
ModelNet40 and ModelNet10.
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2 Related Works

3D object recognition. Existing mainstream 3D object recognition methods can be cat-
egorized into three groups: volume-based methods [22, 23, 24, 35], point-based meth-
ods [3, 25, 26] and view-based methods [8, 11, 12, 17, 31, 33],. Among them, volume-based
methods quantize the 3D object into regular voxels, and conduct 3D convolutions on vox-
els. Nevertheless, 3D convolution is computationally expensive when the resolution is high.
For satisfactory efficiency, volume-based methods normally conduct low-resolution quan-
tization, inevitably leading to information loss. In parallel, point-based methods directly
model the cloud of points, efficiently achieving competitive performance. View-based meth-
ods project a 3D object into multiple 2D views. They model each view through the vision
backbone for image understanding to obtain view features or patch features. Our work can
be categorized into view-based methods. Thus, we mainly review view-based methods here.

MVCNN [28] is one of the earliest works exploiting convolutional neural network (CNN)
for modelling multiple views. It aggregates the view features from CNN through max-
pooling. MVCNN-MultiRes [24] exploits views projected from multi-resolution settings,
boosting the recognition accuracy. Pairwise [16] decomposes the sequence of projected
views into several pairs and models the pairs through CNN. GIFT [2] represents each 3D
object by a set of view features and determines the similarity between two 3D objects by
matching two sets of view features through a devised matching kernel. RotationNet [17]
considers the viewpoint of each project and treats viewpoints as latent variables to boost the
recognition performance. RCPCNN [31] groups views into multiple sets and concatenate
the set features as the 3D object representation. GVCNN [8] also groups views into multiple
sets. It adaptively assigns a higher weight to the group containing crucial visual content to
suppress the noise. Seqviews2seqlabels [12] and 3D2SeqViews [11] exploit the view or-
der besides visual content through recurrent neural network. View-GCN [33] models the
relations between views by a graph convolution network. MHBN [38] and MVLADN [39]
investigate in pooling patch-level features to generate the 3D object recognition. Relation
Network [37] enhances each patch feature by patches from all views through a reinforce-
ment block plugged in the rear of the network. Our method has a similar spirit but needs
much less inductive bias and only takes a standard Transformer to achieve the communica-
tions between patches of different views.

Vision Transformer. Inspired by the great success achieved by Transformers [30] in natural
language processing, vision Transformer (ViT) [7] is proposed. It crops an image into mul-
tiple non-overlap patches and feeds the cropped patches into a stack of Transformer layers.
Compared with CNN models, each patch in ViT has a global reception field. Meanwhile,
ViT has much less image-specific inductive bias than CNN models. By pre-training on huge-
scale datasets, ViT has achieved comparable accuracy compared with its CNN counterparts.
DeiT [29] proposes a data-efficient approach using an improved optimizer, more advanced
data augmentation, and training tricks. PVT [32] and PiT [14] bring back inductive bias in
CNN and exploit the pyramid structure to shrink the spatial size progressively. T2T [40] and
TNT [10] focus on improving the effectiveness of modeling local structure within patches.
Swin [20] and Twin [4] exploit the locality and sparsity to achieve a better trade-off between
effectiveness and efficiency. CvT [34] and Container [9] exploit a hybrid structure combining
Transformer and convolution. Unlike the methods mentioned above that exploit Transformer
for 2D image understanding, we investigate its effectiveness in 3D object recognition.
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Figure 2: The structure of a Trans-
former block. It consists of layer-
normalization (norm) layers, a multi-
layer perceptron (MLP) module and
a multi-head self-attention module.

In this section, we briefly introduce the structure of
Transformer [30] block as visualized in Figure 2.
It consists of two layer-normalization (LN) layers,
a multi-head self-attention (MSA) module, and a
multi-layer perceptron (MLP) module.

Multi-head self-attention (MSA) module. Let us
denote the inputs by X ∈ RN×D where N is the num-
ber of input vectors and D is the dimension of each
input vector. MSA maps X into the queries QN×DQ ,
keys K ∈ RN×DK and values V ∈ RN×DV through
three fully-connected layers, where DQ = DK = DV .
Then it splits Q, K and V into M heads:

Q→ [Q1, · · · ,QM], K→ [K1, · · · ,KM], V→ [V1, · · · ,VM],

where, for m = 1, . . . ,M, we have

Qm ∈ RN×
DQ
M , Km ∈ RN×DK

M , Vm ∈ RN×DV
M .

Then the self-attention operation is conducted on
each query-key-value triplet {Qm,Km,Vm} (m =
1, . . . ,M) and generates the attended features:

Ym = softmax(
QmK>m√

Dk
)Vm, m = 1, . . . ,M.

The attended features from each head are concatenated to obtain the final output of the self-
attention module:

Y← [Y1, · · · ,YM] ∈ RN×DV .

Layer Normalization (LN) [1] is widely used in Transformer-based architecture for training
stability. Given a D-dimension feature vector x = [x1, · · · ,xD], it computes the mean µ and
the standard deviation ε by

µ =
1
D

D

∑
i=1

xi, ε =

√
1
D

D

∑
i=1

(xi−µ)2.

Then a linear operation is conducted on each element of x:

x̂i = γ
xi−µ

ε
+β , (1)

where β and γ are learnable parameters for affine transform.

Multi-layer perceptron (MLP). The MLP is normally plugged after self-attention module
to operate on each input separately [30]. It consists of two fully-connected layers with a
bottleneck structure and an activation layer for for non-linearity. Specifically, for each feature
x ∈ RD, MLP enhances x by

MLP(x) = σ(xW1 +b1)W2 +b2, (2)
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where W1 ∈ RD×rD and b1 ∈ RrD are weights of the first fully-connected layer, which in-
crease the feature dimension from D to rD and r > 1 is termed as expansion ratio. Mean-
while, W2 ∈ RrD×D and b2 ∈ RD are weights of the second fully-connected layer, which
decreases the feature dimension from rD back to D.

4 Method
In this section, we introduce the proposed multi-view vision Transformer. We first clarify
the input of the model and then illustrate the details of the model.

4.1 Input
For each 3D object, we project it into L views {V 1, · · · ,V L}. Each view V j ( j = 1, . . . ,L)
is of W ×H × 3 size. For each view, we crop it into w× h non-overlap patches and each
patch is of p× p×3 size. Each patch is unfolded into a vector p ∈ R3p2

. We denote the i-th
patch in the view V j by p j

i , where i ∈ [1,wh] and j ∈ [1,L]. For each p j
i , we map it into a

D-dimension vector through a fully-connected layer and obtain

x j
i ←W0p j

i , i = 1, . . . ,wh, j = 1, . . . ,L, (3)

where W0 ∈ RD×3p2
is the weight matrix. Meanwhile, a position embedding pi is learned

for each spatial location i ∈ [1,wh]. Then the patch feature is obtained by summing up its
visual feature and position embedding:

z j
i ← x j

i +pi. (4)

Note that, pi is only dependent on the spatial location (i) and is shared among different views.
Like BERT’s [class] token [6], for each view V j, we additionally devise a special token,
z j

0, which is a learnable embedding whose state at the output of the Transformer encoder
serves as the view representation. We merge the special token z j

0 and the patch features
{z j

i }wh
i=1 into a matrix Z j defined as

Z j = [z j
0,z

j
1, · · · ,z

j
wh] ∈ RD×(wh+1). (5)

{Z j}L
j=1 are the inputs of our multi-view vision Transformer.

4.2 Multi-view Vision Transformer
The proposed multi-view vision Transformer consists of two parts. The first part processes
patches in each view, individually. It generates the low-level features for patches in each
view. We term the first part as local Transformer layers. The second part takes the low-level
patch features from the first part as input. It merges patches features from all views in a set
and feeds the merged set into a stack of Transformer layers for empowering each patch of
each view to have a global reception field. We term these layers exploiting global visual
content as global Transformer layers.

Local Transformer blocks. They process the patch features from each view, individually.
Let us denote the number of local Transformer blocks as S. The feature matrix Z j from each
view V j goes through S blocks sequentially. The input of the s-th local Transformer block
is denoted by Z j

s−1 and the output by Z j
s . In this case, the input of the first block Z j

0 is just
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the patch feature set Z j defined in Eq (5). Meanwhile, we denote the layers in the s-th local
Transformer block by {MSAl

s,MLPl
s,LNl

s,1,LNl
s,2}. For the s-th local Transformer block, it

conducts the following operation:

Z j
s ← Z j

s−1 +MSAl
s(LNl

s,1(Z
j
s−1)), j = 1 . . .L,

Z j
s ← Z j

s +MLPl
s(LNl

s,2(Z
j
s)), j = 1 . . .L.

(6)

After S local Transformer blocks, we obtain the output, Z j
S for each view V j.

Global Transformer blocks. They process the patch features from each view, jointly. At
first, the output of the last local Transformer block for all views, {Z j

S}L
j=1 are concatenated

into a global matrix:
M = [Z1

S, · · · ,ZL
S ] ∈ RD×Lwh. (7)

We denote the layers in the t-th global Transformer block by {MSAg
t ,MLPg

t ,LNg
t,1,LNg

t,2}.
The input of the t-th local Transformer block is denoted by Mt−1 and the output is denoted
by Mt . For the t-the global Transformer block, it conducts the following operation:

Mt ←Mt−1 +MSAg
t (LNg

t,1(Mt−1)),

Mt ←Mt +MLPg
t (LNg

t,2(Mt)).
(8)

After T global Transformer blocks, we obtain the output, MT :

MT = [m1
0,m

1
1, · · · ,m1

wh,m
2
0,m

2
1, · · · ,m2

wh, · · · ,mL
0 ,m

L
1 , · · · ,mL

wh] ∈ RD×L(wh+1), (9)

where m j
0 denotes the attended special token for the view V j. We conduct sum-pooling on

{m j
0}L

j=1 and obtain the global representation for the 3D object:

m =
1
L

L

∑
j=1

m j
0. (10)

Then m is fed into a fully-connected layer for classification.

5 Experiments
Datasets. We perform experiments on ModelNet40 and ModelNet10 [35]. ModelNet40
consists of 12,311 3D CAD models from 40 categories. Among them, 9,843 models are for
training, and 2,468 models are for testing. ModelNet10 is a subset of ModelNet40 and has
10 categories. We use two settings for generating views from the 3D object. The 12-view
setting follows the setup in [31] and the 20-view setting follows the manner in [17].

Implementation. The architecture of our MVT follows DeiT [29]. We also attempt several
configurations, including the tiny and small models. The details of different configurations
are summarized in Table 1.

hidden dimension # heads # local blocks # global blocks
tiny 192 3 8 4

small 384 6 8 4

Table 1: The details of different settings.
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Training details. The training follows the settings in DeiT [29]. To be specific, we use
AadmW [21] as the optimizer, with an initial learning rate of 0.001, β1=0.9, β2=0.98. Our
model is implemented based on the PaddlePaddle deep learning platform. The model is
trained with mixed precision on 2 NVIDIA V100 GPUs. We train 300 epochs for training
from scratch and 100 epochs for finetuning on a pre-trained model. The pre-trained models
are trained on ImageNet1K dataset [5].

5.1 The influence of the global Transformer blocks
When the number of global Transformer blocks is 0, it is equivalent to replacing the CNN
in MVCNN [28] by a vision Transformer. We term this configuration as the local baseline.
In this baseline setting, each patch can only communicate with patches from the same view.
When we replace the local transformer block with the global transformer block, the patch
embeddings from the local transformer are fed into the global transformer to interrelate with
patches from other views.

tiny small

local blocks 12 11 10 8 4 0 12 11 10 8 4 0
global blocks 0 1 2 4 8 12 0 1 2 4 8 12

w/o pre-train 90.42 91.02 91.30 92.35 92.07 91.13 92.57 92.35 92.73 93.12 92.79 92.35
w/ pre-train 94.55 94.16 94.38 94.82 94.82 94.66 94.77 94.71 95.10 95.21 95.04 95.21

GPU memory (M) 1523 1528 2114 2548 3394 4289 3072 3817 4242 5095 6843 8586
time/epoch (s) 15 17 17 20 23 26 24 25 27 33 40 49

throughput (obj/s) 53 50 47 47 36 18 25 23 23 19 16 15

Table 2: Evaluation of our method with different numbers of block layers on ModelNet10
dataset, where w/o pre-train denotes training from scratch and w/ pre-train means fine-tuning
from a pre-trained model. The view number is fixed as 6. We set the batch size (the number
of 3D objects per batch) as 8 when testing the GPU memory cost. The inference throughput
is measured as the number of 3D objects processed per second on an NVIDIA TITAN X
Pascal GPU. Setting 4 global transformer blocks strikes a good balance between interrelate
intra-view and inter-view on patches.

Accuracy. To investigate how the number of global transformer blocks and local transformer
blocks influence the performance, we use the ModelNet10 as a testbed to ablate. The results
are shown in Table 2. When training the tiny model from scratch, we can see that when we
add global transformer blocks, the performance improves compared to the local baseline, no
matter how deep. Training the small model without fine-tuning on the pre-trained model, in-
cluding global transformer blocks, has better performance in most cases. The increase proves
that adding global Transformer blocks to communicate patches from different views helps
the classification performance. The local baseline achieves 90.42% using the tiny model
and 93.12% using the small model. When including 4 global Transformer blocks with the
tiny model, the performance achieves the highest with an accuracy of 92.35% compared to
90.42% of local baseline, compared to 92.57% of local baseline. However, increasing the
number of global Transformer blocks does not always guarantee better performance. When
we have more than 4 global Transformer blocks, the accuracy declines. Less local Trans-
former blocks, leading to fewer layers where patches only attend to intra-view patches, could
cause such a decrease. We suppose intra-view attention for low layers is essential. If we al-
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ter all local transformer blocks with global transformer blocks, there is no layer to restrict
the patches interrelate with other patches only within its view. Using all global transformer
blocks is another setting we call global baseline. However, when fine-tuned on pre-trained
models, more global Transformer blocks do not always lead to better performance.

To investigate the choice of the number of global Transformer blocks, we keep fixed local
Transformer blocks while gradually increasing the global Transformer blocks from 0 to 6.
Table 3 displays the accuracy on the ModelNet10 test set with a different number of global
Transformer blocks. We observe that more global Transformer blocks do not always lead to
better performance. The accuracy of 5 and 6 global Transformer blocks is lower than of 4.
More global Transformer blocks have more trainable parameters. From Table 2 and Table 3
we conclude that 4 global transformer blocks is a good trade-off and we set as the default.

global 0 1 2 3 4 5 6

accuracy 90.42 91.46 91.57 92.02 92.35 91.85 91.96

Table 3: Evaluating the number of global Transformer blocks when fixing the number of
the local Transformer blocks.

Efficiency. Meanwhile, in the last rows of Table 2, we show the GPU memory cost per
batch and the time cost per epoch of different settings. We include the inference speed in
Table 2 as well. It is shown that when we use more global blocks, the GPU memory and
the training time increase accordingly. At the same time, the inference speed decrease corre-
spondingly. Specifically, using the small model, when the number of global blocks increases
from 0 to 12, the GPU memory cost increases from 3072M to 8586M, the training time cost
per epoch increases from 24 seconds to 49 seconds, and the throughput decreases from 25
objects/second to 15 objects/second. Considering both effectiveness and efficiency, we set
the number of the local Transformer blocks as 8 and the number of the global Transformer
block as 4, by default.

Tiny vs Small. From Table 2 we can also see the performance improvement of using a
larger model. The small model has 6 heads with a hidden dimension of 384. The number
of heads and dimensions is double to the tiny model, leading to better performance. Take 4
global Transformer blocks as an example. The accuracy increases from 92.35% (tiny without
pre-train) to 93.12% (small without pre-train).

5.2 The influence of the number of projected views

Accuracy. We evaluate the effect of the number of views on the average instance accuracy
of our method on the ModelNet10 dataset. As shown in Table 4, more projected views
lead to better classification accuracy. Specifically, using a single view, a small model with
pre-training only achieves a 89.98% recognition accuracy, whereas it achieves a 95.26%
recognition accuracy using 12 views. It is expected since more views will provide more
visual information for a 3D object and benefit the 3D object recognition.

Efficiency. We report the number of views on the GPU memory consumption and time cost
per epoch in the last two rows of Table 4. As shown in the table, using more views leads to
more computational cost and GPU memory cost. In detail, using the small model, the GPU
memory per batch increases from 1010M to 10700M when the number of views increases
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tiny small

views 1 3 6 12 1 3 6 12

w/o pre-train 82.54 89.70 92.35 92.47 85.19 92.35 93.12 93.13
w/ pre-train 90.64 94.00 94.82 95.01 89.98 94.82 95.12 95.26

GPU memory (M) 365 1457 2548 5455 1010 2354 5095 10700
time/epoch (s) 5 11 20 33 25 14 33 68

Table 4: Evaluation of our method with different view numbers on ModelNet10 datasets.

from 1 to 12. We recommend to use only 3 projected views when the computing resources
are limited since it has achieved a excellent accuracy. Meanwhile, we suggest to use 12
projected views when computing resources are abundant.

5.3 The influence of the class token
In the current settings, we feed the attended class token feature in the output of the last
Transformer block to the classifier to obtain the recognition result. A choice is to average-
pool all attended patch features in the output of the last Transformer block to generate a
global representation for classification. We investigate the effectiveness of leveraging class
tokens compared to average-pooling patch features. The tiny model is trained from scratch
on ModelNet10 with 6 views. In Table 5, we show the experimental results. The improved
performance shows that the attended class token achieves a better performance than its coun-
terpart using the global feature obtained from average-pooling the attended patch features.

avg_pool class_token

accuracy 91.45% 92.35%

Table 5: Comparisons between the global feature from average pooling the attended patch
features and the attend class token feature.

5.4 Comparsions with state-of-the-art methods
We compare with three groups of methods including volume-based methods, point-based
methods and view-based methods in Table 6. The first part of Table 6 reports the performance
of volume-based methods including 3DShapeNets [35], VoxNet [22], Volumetric CNN [24],
3D-A-Nets [27], and LP-3DCNN [19]. As shown in the table, the recognition accuracy of
these volume-based methods are not competitive compared with view-based methods.

Then we compare with point-based methods including PointNet [25], PointNet++ [26],
3DmFV-Net [3], and DeepCCFV [15]. Compared with volume-based methods, point-based
methods achieve considerably higher recognition accuracy. To be specific, PointNet++ [26]
achieves 91.9 recognition accuracy. It significantly outperforms the best volume-based method
in Table 6, 3D-A-Nets [27], with only 90.5 recognition accuracy. But the point-based meth-
ods are still not as competitive as their view-based counterparts.

At last, we compare with view-based methods including MVCNN [28], RotationNet [17],
3D2SeqViews [11], SeqViews2SeqLabels [12], Relation Network [37] and CARNet [36]
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Method Views ModelNet40 ModelNet10

Volume-based methods

3DShapeNets [35] - 77.0 83.5
VoxNet [22] - 83.0 92.0

Volumetric CNN [24] - 89.9 -
3D-A-Nets [27] - 90.5 -
LP-3DCNN [19] - 92.1 -

Point-based methods

PointNet [25] - 89.2 -
PointNet++ [26] - 91.9 -
3DmFV-Net [3] - 91.6 95.2
DeepCCFV [15] - 92.5 -

View-based methods

MVCNN [28] 80 90.1 -
RotationNet [17] 12 91.0 94.0
RotationNet [17] 20 97.4 98.5

Relation Network [37] 12 94.3 95.3
3D2SeqViews [11] 12 93.4 94.7

SeqViews2SeqLabels [12] 12 93.4 94.8
GVCNN [8] 12 93.1 -
CARNet [36] 12 95.2 95.8
CARNet [36] 20 97.7 99.0

MVT-small (Ours) 12 94.4 95.3
MVT-small (Ours) 20 97.5 99.3

Table 6: Comparison with the present state-of-the-art methods on ModelNet40 dataset.

on both 12-view and 20-view settings. With more views, the performance achieved using
20-view settings usually is better than 12-view settings. Compared with these methods,
our MVT-small model achieves competitive performance. Specifically, on the ModelNet10
dataset, using 20-view settings, we reach the highest recognition accuracy. It is worth not-
ing that our MVT-small architecture is conceptually simple with more minor hand-designed
components than the compared methods such as Relation Network [37] and CARNet [36].

6 Conclusion

In this paper, we propose a multi-view vision Transformer (MVT) for effective 3D object
recognition. Considering the efficiency, we design our MVT in a local-global structure. The
global Transformer layers empower each patch to communicate with the patches from all
views, overcoming the limitations of existing CNN-based models with a local reception field
on patches from the same view. Although the proposed MVT is in a conceptually simple
structure, it has achieved state-of-the-art recognition performance on public benchmarks,
including ModelNet40 and ModelNet10 datasets.
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