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Abstract

Knowledge distillation aims at compressing deep models by transferring the learned
knowledge from precise but cumbersome teacher models to compact student models.
Due to the extreme imbalance between the foreground and the background of images,
when traditional knowledge distillation methods are directly applied to the object detec-
tion task, there is a large performance gap between the teacher model and the student
model. We tackle this imbalance problem from a sampling perspective, and we pro-
pose to include the teacher-student prediction disagreements into a feature-based detec-
tion distillation framework. This is done with PDF-Distil by dynamically generating a
weighting mask applied to the knowledge distillation loss, based on the disagreements
between the predictions of both models. Extensive experiments on PASCAL VOC and
MS COCO datasets demonstrate that, compared to state-of-the-art methods, PDF-Distil
is able to better reduce the performance gap between the teacher and student models.

1 Introduction

Despite their outstanding performance on different computer vision tasks, deep learning-
based techniques still suffer from practical limitations that make them difficult to deploy at a
large scale, especially when dealing with real-time embedded applications such as automatic
surveillance and autonomous driving. This is due to the fact that state-of-the-art trained
deep learning models often have a huge number of parameters that make them both slow
at inference and heavy to store. Therefore, model compression techniques such as network
pruning [18], parameter quantification [7] and knowledge distillation [9] are suggested to
reduce the computational complexity and the storage cost of deep models, while minimizing
the performance degradation.
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(A) Input image  (B) Fine-grained  (C) Decoupled (D) Prime-aware  (E) PDF-Distil

Figure 1: Visualization of sampling strategies from different feature-based detection distil-
lation methods. We plot from left to right: (A) input image with ground truth boxes, (B)
Fine-grained [29], (C) Decoupled [6], (D) Prime-aware [36] and (E) our PDF-Distil method.

In this paper, we investigate how knowledge distillation (KD) can be used in the context
of object detection. KD utilizes a teacher-student framework to transfer the learned knowl-
edge from a complex model (teacher) to a compact one (student). The concept of KD was
firstly introduced in [9], where the KL-divergence between the predicted probability distri-
butions of the teacher model and the student model is treated as a term of the loss function
to optimize the student model. The motivation behind this logits-based distillation is that,
for a given input image, we expect the image classification prediction of the student model
to be as similar as possible to that of the teacher model, so that the student model is able to
maintain high compactness and high precision simultaneously.

The internal representations (i.e., the features maps) in deep neural networks carry rich
semantic information, thereby providing better distillation guidance than the probability dis-
tributions. Leveraging this, recent studies have implemented feature-based distillation for
image classification [25, 31]. However, when directly applying feature-based distillation to
object detection, the precision gap between the teacher model and the student model remains
significant. As shown in Figure 1 column (A), in the object detection task, the target ob-
jects normally only occupy a small part of the images. Therefore, the supervision of the
feature distillation is often dominated by the abundant, less informative background. This
foreground-background imbalance greatly reduces the efficiency of the knowledge transfer
in feature-based distillation for object detection.

We tackle the aforementioned imbalance problem from a sampling perspective, i.e., by
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adaptively assigning weights to each sampling location on the feature maps. Some previous
works assigned weights according to the foreground-background distinction [6, 29] or the
feature-mimicking uncertainty [36], while discarding the initial motivation of KD, which is
minimizing the prediction difference between the teacher and the student models. We thus
propose to combine feature-based with logits-based distillation, where the former is guided
by the latter to more important areas on the feature maps. Specifically, the distillation weight
on each feature map location is assigned according to the disagreement degree between the
corresponding object detection predictions from the teacher and the student. In this way,
the distillation is optimized to focus on areas where the student model makes inaccurate
predictions, thereby minimizing the precision performance gap between the two models.

This paper is organized as follows: Section 2 reviews some representative works on
object detection and knowledge distillation; Section 3 introduces the implementation details
of our proposed method; Section 4 reports experimental results on different public datasets
and compares our method with state-of-the-art methods; Section 5 concludes the paper.

2 Related work

Object detection. Object detection is one of the fundamental tasks in computer vision.
Modern neural network-based object detection models consist of three sub-networks: the
backbone, the neck and the head. Backbone networks are used to extract features from the
input images. They are often taken from image classification networks, such as VGG [27],
ResNet [8, 30], MobileNet [10, 11, 26] and ShuffleNet [20, 34]. Neck networks realize
multi-scale object detection by fusing features at different scales. FPN [14] and PAFPN [16]
are, nowadays, the most commonly adopted neck networks. Head networks handle instance
classification and bounding-box regression. They can be roughly divided into two types:
two-stage and single-stage detectors. Two-stage detectors [, 21, 23] firstly generate various
regions of interest, then refine and classify each region candidate separately; Single-stage
detectors [15, 17, 22] directly localize and classify all existing objects on the image. Another
criterion divides head networks into anchor-based and anchor-free detectors. Anchor-based
detectors [15, 17, 23] resort to numerous predefined anchor boxes to handle objects’ scale
and shape variations; Anchor-free detectors directly predict objects’ key-points [3, 12, 38]
or centers-points [28, 37, 39], without the help of anchor boxes.

Knowledge distillation. KD is an effective means to compress deep models. A typical
KD framework consists of three components: a teacher model, a student model and a knowl-
edge transfer module. Although the teacher model allows high detection accuracy, it requires
enormous parameters and calculations, which is impractical for real-time applications in em-
bedded environments. In the setting of KD, a lighter student model is trained to inherit the
knowledge learned by the teacher model. Logits-based and feature-based are two major KD
strategies. Logits-based methods [9, 35] assign the output probability from the teacher model
as the (soft) target for the training of the student model, which is a straightforward fashion
to make the student model learn the class distributions from the teacher model. Alterna-
tively, feature-based methods [25, 31] transfer high-level semantic information by making
the student model mimic the intermediate features of the teacher model.

Knowledge distillation for object detection. Feature-based methods are the most com-
monly adopted KD strategy for object detection [6, 29, 36]. However, due to the extreme
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Figure 2: Overview of the proposed PDF-distil. We have added a prediction disagreement
aware feedback branch (in red) in a traditional feature-based distillation framework.

foreground-background imbalance in object detection (see Section 1), a direct feature distil-
lation is suboptimal. As shown in Figure |, various solutions have been proposed to tackle
this imbalance problem: Fine-grained [29] (column B) suggested to only perform feature
imitation on near object regions; Decoupled [6] (column C) noticed that distillation on back-
ground regions reduces false positive detections, and thereby proposed to assign different
weights for foreground features and for background features; Prime-aware [36] (column D)
realized an adaptive sample weighting by incorporating uncertainty learning into the feature
distillation. In their implementation, sample weighting is biased towards “easy” samples,
most of which are actually background. Different from the above methods, our proposed
weighting mechanism relies on the disagreements between the teacher and student predic-
tions. Our intuition is that regions where the two models make different object detection
predictions are actually regions where the student model struggles the most. The column E
of Figure | shows that our weighting mechanism is biased towards “hard” regions, such as
unknown objects (first line), reflection in water (second line), object junctions (third line)
and ambiguous objects (fourth line). Our experimental results demonstrate that enhancing
distillation on these regions greatly reduces the performance gap between the teacher model
and the student model.

3 Proposed approach

3.1 Overview

We illustrate the two involved models for feature-based detection distillation in Figure 2.
The student model (presented by the in the figure) employs a simpler network
architecture than the teacher model (blue blocks), namely thinner or shallower backbone
and neck networks in the context of object detection. Note that in Figure 2 the multi-scale
detection architecture [14, 16] is not presented for the sake of clarity. The

in Figure 2 show that the training of the student model is supervised by the normal object
detection loss (including the instance classification and the bounding-box localization losses)
as well as the knowledge transfer loss, which is defined as the Mean Square Error (MSE)
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between the intermediate feature maps of the teacher model and the projected feature maps
of the student model. The projection is performed through a 1 x 1 convolution to map the
student hidden layer to the teacher hidden layer.

The main contribution of the proposed approach consists in adding a prediction dis-
agreement aware feedback branch (the red branch in Figure 2), in a traditional feature-based
detection distillation framework. This feedback branch leverages the prediction difference
between the teacher model and the student model to generate a disagreement map, which is
used as a weighting mask for the knowledge transfer loss.

3.2 Disagreement mapping

In order to obtain the aforementioned disagreement map, we compute the distance between
the respective classification branches of the teacher model and the student model'. Formally,
let P' and P* respectively represent the output probability distributions from the classification
branches of the teacher and the student, and let N denotes the number of object categories.
Assume that there are M classification predictions associated to a specific feature map loca-
tion. To be more specific, for anchor-based methods, M equals to the number of anchors per
location, e.g., M = 6 for SSD [17] and M = 9 for RetinaNet [15]; for anchor-free methods
like FCOS [28], M equals to 1 since each feature map location only produces one bounding-
box prediction. The prediction disagreement at each feature location (Dy, ) is defined as:

Dy =YY F(P,.P5) (1)
M N

where F is a given dissimilarity function (in Section 4, we compare KL-divergence, L1 and
L2 distances). Let H, W and C denote the height, width and depth of the feature maps, the
actual weighting value at each location on the disagreement map (W}, ,,) is assigned as:

HXxW xD
th_ihvw

= 2
' ZH ZW Dh,w ( )

Let X’ denote the intermediate feature maps of the teacher model and X* the projected
feature maps of the student model, the weighted knowledge transfer loss Ly, is computed as:

_ En Ty Wi X Ec(X = X°)

L
kd HxWxC

3)

For a better understanding of the proposed weighting strategy, we provide more visual-
ization results in Figure 3. Specifically, the column E corresponds to the presented disagree-
ment map. As is shown, the key difference between the proposed weighting method with
previous methods [6, 29, 36], is that ours is capable to adaptively locate challenging areas
for the student model to perform object detection, e.g., ambiguous objects (first line), shadow
of objects (second line), defocused objects (third line) and human photos (fourth line).

I'Since localization predictions on background areas are meaningless, we do not consider the prediction differ-
ence between the teacher model and the student model in the localization branches.
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(A) Input image  (B) Fine-grained  (C) Decoupled (D) Prime-aware  (E) PDF-Distil

Figure 3: More visualization of sampling strategies from different feature-based detection
distillation methods.

4 Experiments

4.1 Experimental setting

Datasets and evaluation metric. Extensive experiments are conducted on PASCAL VOC
[4] and MS COCO [13] datasets, containing 20 and 80 object categories respectively. For
PASCAL VOC dataset, models are trained on the union of the 2007 trainval set and the 2012
trainval set, and evaluated on the 2007 test set; For MS COCO dataset, we use the 2017 train
set for training and the 2017 val set for evaluation. Following the common practice, we adopt
the (COCO-style) mean Average Precision (denoted as mAP) as the evaluation metric, which
is defined as the average of AP scores across 10 Intersection-over-Union (IoU) thresholds
from 0.5 to 0.95. We report using (+...) the absolute mAP improvement from KD for each
distilled model. Moreover, the AP scores with the IoU threshold 0.5 and 0.75 (denoted as
AP50 and AP75) are also listed for comparisons.

Network architectures. We evaluate our proposed method by implementing object detec-
tors using different combinations of backbone, neck and head networks. To be more specific,
in terms of the backbone network, a deeper or wider version of ResNet [8] or ShuffleNetV2
[20] is adopted for teacher models, and their shallower or thinner version is used for stu-
dent models; For the neck network, teacher models are equipped with the more complex
PAFPN [16], while student models employ the simpler FPN [14]; As for the head network,
we use RetinaNet [15] as a representative for anchor-based methods and FCOS [28] as a
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Figure 4: Comparisons on computational complexity and number of parameters for each
network component from teacher models (blue bars) and student models ( ).

representative for anchor-free methods. Both detection heads are optimized by the Mutual
Guidance label assignment strategy [32]. To compare the computational cost of both teacher
and student models, we summarize in Figure 4 the amount of Multiply—Accumulate opera-
tions (denoted as MACs) as well as the amount of learnable parameters (denoted as Params)
for each network component. It can be observed that student models require much less
computing resources than teacher models. Since we implement the same head network for
each teacher and the corresponding student, the computational complexity and the number
of parameters remain unchanged for this component.

Implementation details. For each detector, the backbone network is pre-trained on the
ImageNet-1k dataset [2], while the neck and the head networks are randomly initialized.
We adopt single-scale training and evaluation, where the input image resolution is fixed to
320 x 320 for all experiments. Several data augmentation strategies are applied, such as
random image flipping, shifting, cropping, padding, noising and mixup [33]. Note that the
mentioned data augmentation strategies are applied to all the compared methods, including
our competitors. We use the Stochastic Gradient Descent (SGD) optimizer with 32 images
per mini-batch and with an initial learning rate of le-2. The warm-up strategy [5] is applied
to stabilize the training at the beginning, followed by the cosine annealing strategy [19]
for learning rate decay. Models are trained for 70 and 140 epochs for PASCAL VOC and
MS COCO, respectively. We use Balanced L1 loss [21] and Generalized IoU loss [24] to
optimize the localization branch of RetinaNet [15] and FCOS [28], respectively. Focal loss
[15] is adopted for the training of the classification branch for both head networks.

4.2 Ablation study

Ablation experiments are conducted on PASCAL VOC to explore the relationship between
the teacher-student prediction disagreements and the knowledge transfer effects. In Table
I, we consider eight different feature sampling strategies for detection distillation: 1) the
baseline setting where all samples are treated equally (equivalent to Fitnet [25]); 2-5) hard
sampling strategies where the distillation is only conducted on 25% or 50% of feature areas
with the most similar or the most different teacher-student predictions; 6-8) the proposed
adaptive sampling approach with respectively KL-divergence, L1 distance or L2 distance
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Models | mAP AP50 AP75
Teacher ResNet34-PAFPN-RetinaNet 60.0 82.5 65.3
Student ResNet18-FPN-RetinaNet 56.5 80.1 61.5

1) All samples equally 57.8(+1.3) 814 629

2) 25% most similar predictions 57.5(+1.0) 81.0 62.6
3) 50% most similar predictions 57.8 (+1.3) 81.3 62.9
4) 50% most different predictions | 59.2 (+2.7) 82.3 64.6
5) 25% most different predictions | 59.3 (+2.8) 82.3 64.8
6) PDF-Distil (KL-divergence) 59.4 (+2.9) 82.5 64.7

7) PDF-Distil (L1 distance) 59.5 (+3.0) 82.7 653
8) PDF-Distil (L2 distance) 59.8(+3.3) 83.0 654
Teacher ShuffleNetl.0-PAFPN-RetinaNet | 51.6 75.9 55.0
Student  ShuffleNet0.5-FPN-RetinaNet 41.3 65.5 43.1
1) All samples equally 430 (+1.7) 66.8 44.6

2) 25% most similar predictions 424 (+1.1) 662 444
3) 50% most similar predictions 42.6 (+1.3) 663 44.5
4) 50% most different predictions | 44.1 (+2.8) 68.2  46.2
5) 25% most different predictions | 44.7 (+3.4) 68.9 46.3
6) PDF-Distil (KL-divergence) 45.0(+3.7) 69.5 472

7) PDF-Distil (L1 distance) 45.1 (+3.8) 69.5 476
8) PDF-Distil (L2 distance) 454 (+4.1) 69.6 47.7
Teacher ResNet34-PAFPN-FCOS 58.6 83.1 639
Student ResNet18-FPN-FCOS 54.9 80.7  59.1
1) All samples equally 56.7 (+1.8) 81.8 61.3

2) 25% most similar predictions 56.4 (+1.5) 814 60.6

3) 50% most similar predictions 56.6 (+1.7) 81.7 60.8

4) 50% most different predictions | 57.8 (+2.9) 824 624

5) 25% most different predictions | 58.0 (+3.1) 82.6 62.9

6) PDF-Distil (KL-divergence) 58.1(+3.2) 82.6 632

7) PDF-Distil (L1 distance) 582 (+3.3) 82.6 632

8) PDF-Distil (L2 distance) 583 (+34) 829 633
Table 1: Ablation studies on PASCAL VOC. We compare eight different feature sampling
strategies for detection distillation, and the proposed PDF-Distil with L2 distance as the
dissimilarity function achieves the best result.

as the dissimilarity function in Equation 1. The results are summarized in Table 1. When
comparing the distillation results of the four hard sampling strategies (i.e., 2-5), we can con-
clude that feature samples with different teacher-student predictions are much more effective
than those with similar predictions. This finding validates our initial hypothesis that the dis-
agreements between the teacher-student object detection predictions can be regarded as an
indicator of the importance for feature-based distillation. Moreover, regardless of the specific
dissimilarity function, the adaptive sampling strategies (6-8) outperform the hard sampling
strategies (2-5), indicating the effectiveness of the proposed dynamic weighting mechanism.
As for the selection of the dissimilarity function, L2 distance (i.e., 8) demonstrates a constant
advantage for all backbone-neck-head combinations. Therefore, we choose L2 distance as
the dissimilarity function for the following experiments.
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4.3 Comparison with state-of-the-art

As shown in Tables 2 and 3, we further compare our method with SOTA detection distilla-
tion methods on PASCAL VOC and MS COCO datasets. The results show that for either
backbone-neck-head combinations and on both datasets, our method outperforms all ex-
isting KD methods. In particular, our method brings more than 3% (respectively 2%) of
absolute precision improvements in comparison to student models without KD on PASCAL
VOC (resp. MS COCO), and about 1% of absolute improvements to all previous detection
distillation methods. Moreover, we report on the test set of each dataset the absolute differ-
ence between the detection predictions of the teacher model and the student model (denoted
as Dp.q), and we notice that our method effectively reduces the teacher-student prediction
difference. Figure 5 illustrates the detection results on a few exemplar images treated by
the teacher model, Fitnet [25], Fine-grained [29], Decoupled [6], Prime-aware [36] and our
method. As is shown, our method gives detection results more similar to the teacher model
than the other SOTA methods that miss some objects (dog, bicycle, potted plant, chair in the
four examples, respectively).

Models | mAP AP50  AP75 | Dyre
Teacher ResNet34-PAFPN-RetinaNet 60.0 82.5 65.3 -
Student ResNet18-FPN-RetinaNet 56.5 80.1 61.5 2.96E-4
w/ Fitnet [25] 57.8 (+1.3) 814 629 2.54E-4
w/ Fine-grained [29] 58.6 (+2.1) 81.6 644 2.66E-4
w/ Decoupled [6] 584 (+1.9) 81.8 63.5 2.43E-4
w/ Prime-aware [36] 58.6 (+2.1) 81.9 63.7 2.44E-4
w/ PDF-Distil (L2 distance) 59.8(+3.3) 83.0 654 | 2.20E-4
Teacher ShuffleNetl1.0-PAFPN-RetinaNet | 51.6 75.9 55.0 -
Student  ShuffleNet0.5-FPN-RetinaNet 41.3 65.5 43.1 4.34E-4
w/ Fitnet [25] 43.0(+1.7) 66.8 44.6 3.97E-4
w/ Fine-grained [29] 44.8 (+3.5) 69.1 47.3 4.01E-4
w/ Decoupled [6] 432 (+1.9) 67.1 45 3.79E-4
w/ Prime-aware [36] 43.1 (+1.8) 669 447 3.79E-4
w/ PDF-Distil (L2 distance) 454 (+4.1) 69.6 47.7 3.62E-4
Teacher ResNet34-PAFPN-FCOS 58.6 83.1 63.9 -
Student ResNetl18-FPN-FCOS 54.9 80.7 59.1 1.56E-3
w/ Fitnet [25] 56.7 (+1.8) 81.8 61.3 1.35E-3
w/ Fine-grained [29] 57.0 (+2.1) 81.5 614 1.56E-3
w/ Decoupled [6] 57.1 (+2.2) 822 62.0 1.33E-3
w/ Prime-aware [36] 573 (+24) 822 619 1.30E-3
w/ PDF-Distil (L2 distance) 583 (+34) 829 633 1.24E-3
Teacher ShuffleNetl.0-PAFPN-FCOS 50.0 76.2 524 -
Student  ShuffleNet0.5-FPN-FCOS 394 66.0 393 2.44E-3
w/ Fitnet [25] 414 (+2.0) 679 414 | 2.04E-3
w/ Fine-grained [29] 42.4 (+3.0) 68.9 43.0 2.32E-3
w/ Decoupled [6] 414 (+2.0) 675 414 | 2.04E-3
w/ Prime-aware [36] 42.0 (+2.6) 68.1 43.0 | 2.05E-3
w/ PDF-Distil (L2 distance) 43.2 (+3.8) 69.6 444 | 1.96E-3

Table 2: Comparisons with SOTA detection distillation methods on PASCAL VOC.
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Models | mAP AP50  APT5 | Dpreq
Teacher ResNet34-PAFPN-RetinaNet 38.7 562 414 -
Student ResNetl18-FPN-RetinaNet 35.0 522 372 1.75E-4
w/ Fitnet [25] 356 (+0.6) 52.7 378 1.62E-4
w/ Fine-grained [29] 36.0 (+1.0) 53.0 383 1.58E-4
w/ Decoupled [6] 359 (+0.9) 532 377 1.53E-4
w/ Prime-aware [36] 35.6 (+0.6) 52.8 37.7 1.57E-4
w/ PDF-Distil (L2 distance) 369 (+1.9) 542 39.1 1.46E-4
Teacher ShuffleNetl.0-PAFPN-RetinaNet | 28.9 44.4 304 -
Student  ShuffleNet0.5-FPN-RetinaNet 21.3 352 221 2.65E-4
w/ Fitnet [25] 22.0(+0.7) 357 23.1 2.54E-4
w/ Fine-grained [29] 227 (+1.4) 360 240 | 2.59E4
w/ Decoupled [6] 224 (+1.1) 362 235 2.50E-4
w/ Prime-aware [36] 224 (+1.1) 363 233 2.47E-4
w/ PDF-Distil (L2 distance) 23.6 (+2.3) 375 247 | 2.36E-4

Table 3: Comparisons with SOTA detection distillation methods on MS COCO.

Teacher Fitnet l;"e-grained Decoupled l;rime—aware PDF-Distil
Figure 5: Visualization of some detection results from teacher model and student models
distilled by Fitnet, Fine-grained, Decoupled, Prime-aware and our PDF-Distil method.

5 Conclusion

We address the foreground-background imbalance problem which happens when distilling
knowledge from a teacher model to a student model in the context of object detection. To do
so, we leverage the teacher-student prediction disagreements (i.e. logits-level information)
to guide the knowledge distillation in a feature-based distillation framework. Our experi-
ments demonstrate that the proposed method helps to reduce the performance gap between
the teacher and the student models compared to all related state-of-the-art methods. Fu-
ture studies could investigate how to include predictions from localization branches into the
disagreement mapping to further improve the distillation.
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