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Abstract

Convolutional Neural Networks (CNNs) have become the de facto gold standard in
computer vision applications in the past years. Recently, however, new model archi-
tectures have been proposed challenging the status quo. The Vision Transformer (ViT)
relies solely on attention modules, while the MLP-Mixer architecture substitutes the self-
attention modules with Multi-Layer Perceptrons (MLPs). Despite their great success,
CNNs have been widely known to be vulnerable to adversarial attacks, causing serious
concerns for security-sensitive applications. Thus, it is critical for the community to
know whether the newly proposed ViT and MLP-Mixer are also vulnerable to adver-
sarial attacks. To this end, we empirically evaluate their adversarial robustness under
several adversarial attack setups and benchmark them against the widely used CNNs.
Overall, we find that the two architectures, especially ViT, are more robust than their
CNN models. Using a toy example, we also provide empirical evidence that the lower
adversarial robustness of CNNs can be partially attributed to their shift-invariant prop-
erty. Our frequency analysis suggests that the most robust ViT architectures tend to rely
more on low-frequency features compared with CNNs. Additionally, we have an intrigu-
ing finding that MLP-Mixer is extremely vulnerable to universal adversarial perturba-
tions. Code: https://github.com/phibenz/robustness_comparison_
vit_mlp-mixer_cnn.

1 Introduction

Convolutional Neural Networks (CNNs) [37] have been the gold standard architecture in
computer vision. In Natural Language Processing (NLP), however, attention-based trans-
formers are the dominant go-to model architecture [13, 55, 56]. Various attempts have been
made to apply such transformer architectures to computer vision tasks [8, 10, 53, 58]. A
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breakthrough moment was achieved with the advent of the Vision Transformer (ViT) [15],
presenting a transformer architecture achieving comparable performance to state-of-the-art
CNN architectures. Recently, another MLP-Mixer model architecture [66] which does not
rely on convolutions or self-attention, has been presented competing with CNN and ViT.
Following [66], MLP-Mixer is termed Mixer in the remainder of this work for simplicity.

Despite the success of CNNs, they are widely known to be vulnerable to adversarial
examples [18, 65] whose small additive perturbations of the input cause the CNN to misclas-
sify a sample. This vulnerability causes serious concerns in security-sensitive applications,
and thus it is also important to know whether the recently proposed ViT and Mixer are also
vulnerable to adversarial attacks. This work sets out to evaluate the adversarial vulnerabil-
ity of ViT and Mixer architectures and compare their robustness against the CNN models.
Therefore, a wide range of adversarial attack methods has been adopted for a comprehensive
study. Specifically, first, the performance of the different architectures is compared under the
white-box attack, where an adversary has full knowledge of the model parameters to attack.
Overall, the two newly proposed architectures, especially ViT, exhibit significantly higher
robustness than CNNs against adversarial examples. We further compare their robustness
under both query-based and transfer-based black-box attacks. In both cases, we observe a
similar trend that ViT is the most robust architecture while CNN is the least robust.

To facilitate the understanding of why CNN is more vulnerable, we design a toy task
of binary classification where each class is only represented by a single image. The image
from each class has either a vertical or horizontal black stripe in the center. We find that
the adversarial example for a CNN exhibits repetitive stripes over the image, while that
of an FC network mainly exhibits a single stripe in the center. This observation indicates
that the vulnerability of a CNN might be partially attributed to the fact that a CNN, which
exploits local connections and shared weights by convolving kernels, is shift-invariant [38,
83]. We also attempt to provide an analysis from the perspective of frequency, investigating
whether the different model architectures are biased toward learning more high-frequency or
low-frequency features. We find that the ViT seems to learn more low-frequency features,
while the CNN is biased towards high-frequency features. Finally, we also investigate their
robustness against common corruptions [26] and universal adversarial perturbations [47].

2 Related Work

Beyond CNNs for vision applications. In Natural Language Processing (NLP), transform-
ers [70], solely based on the attention mechanisms, are the predominant model architec-
ture [13, 55, 56]. In contrast, CNNs have been the de facto standard in deep learning for
vision applications, while the application of transformers to vision tasks is an emerging
trend [8, 10, 53, 58]. The Vision Transformer (ViT) [15] was recently introduced, demon-
strating that transformers can achieve state-of-the-art performance, by sequencing the im-
ages into patches and pre-training the model on large amounts of data. To address the data
issue, DeiT [67] introduced a teacher-student strategy specific to transformers and trained a
transformer architecture only on the ImageNet-1K dataset. Concurrently, the T2T-ViT had
been proposed [78] introducing an advanced Tokens-to-Tokens strategy. Further works are
attempting to extend the ViT architecture to increase the efficiency and performance of trans-
former architectures [11, 22, 41, 74]. ViTs have further been explored beyond the task of
image classification [7, 25, 34, 51, 71]. Tolstikhin er al. [66] challenge the status-quo of
convolutions and attention in current computer vision models and proposes MLP-Mixer, a
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pure Multi-Layer Perceptron (MLP)-based architecture.

Adversarial attacks and robustness. CNNs are known to be vulnerable to adversarial ex-
amples [18, 36, 65]. Depending on the accessibility to the target model, adversarial attacks
can be divided into white box ones [0, 18, 42, 46] that require full access to the target model,
query-based black-box attacks [9, 19, 30, 31, 52, 57, 62, 69], and transfer-based black-box
attacks [14, 21, 33, 40, 68, 73, 75]. Adversarial attacks can be divided into image-dependent
ones [0, 18, 42, 46, 60] and universal ones [3, 47, 48, 79, 80, 82]. Specifically, contrary to
image-dependent attacks, a single perturbation, i.e. universal adversarial perturbation (UAP)
exists to fool the model for most images [82]. The vulnerability of transformers in the con-
text of NLP has also been investigated [16, 23, 27, 29, 35, 39, 63]. This work focuses on the
empirical robustness evaluation of CNN, ViT, and Mixer in image classification.
Concurrent works. Recently, also other works [2, 4, 20, 44, 45, 49, 50, 54, 61, 72] inves-
tigated transformers from the perspective of adversarial robustness. Specifically, [2, 4, 44,
49, 54, 61] concurrently compare the robustness of transformers to CNNs and independently
derive conclusions resembling each other. Their main conclusions, ignoring their nuance
difference, can be summarized as vision transformers are more robust than CNNs. Not sur-
prisingly, our work also comes to the same main take-way message but differs in multiple
aspects, such as co-analysis of MLP-Mixer, perturbation-minimization (C&W and Deep-
Fool) results in white-box setting, evaluation under universal attack. Our works also leads to
some additional insight, such that MLP-Mixer shows an increased vulnerability to universal
attacks. In another parallel line, [45, 50] have investigated how to improve the adversarial
robustness of vision transformers.

3 Research Goal and Experimental Setup

Research goal and scope. CNNs have achieved dominant success in numerous vision appli-
cations in the last few years, however, they are also vulnerable to adversarial attacks. Such
vulnerability causes serious concern in security-sensitive applications, such as autonomous
driving. This concern has motivated an extensive study on model robustness against various
attack methods. With the recent popularity of ViT and Mixer as alternatives to CNNGs, it is
vital for the community to understand their adversarial robustness and to benchmark them
against the widely used CNNs. To this end, this work empirically investigates the adversarial
robustness of the three architectures. In other words, this work has no intention to understand
the reason behind why a certain architecture is more or less robust. Note that there is still no
consensus [1] on the explanation of CNN being sensitive to adversarial examples despite a
large body of works in this field. As an early attempt to investigate the adversarial robustness
of ViT and Mixer, our work focuses on the empirical evaluation and it is out of the scope of
this work to theoretically understand why they might be vulnerable. Nonetheless, our work
attempts to provide better understandings of the robustness gap between models from a shift-
invariance perspective and a frequency perspective. Admittedly, our attempt for explanation
is limited and future work is needed for better understanding.

Models and dataset. In our experiments, we compare the ViT [15] models, MLP-Mixer [66]
and CNN architectures [24]. Note that they all adopt shortcut [24] in their architecture
design. For the ViT models, we consider ViT-B/16 and ViT-L/16, where B and L stand
for “base” and “large”, respectively, while 16 indicates the patch size. The considered
ViT models were pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K [12]. We
also evaluate ViT models that are directly trained on ImageNet-1K from [64] (indicated by
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“ImageNet-1K”). Corresponding to the ViT models, we also investigated Mixer-B/16 and
Mixer-L/16 [66] which are trained on ImageNet-1K. We further consider CNN architec-
tures, ResNet-18 and ResNet-50 [24] trained on ImageNet-1K as well as the semi-weakly
supervised (SWSL) variant [76], which is pre-trained on 1G-1B-Targeted [43] with asso-
ciated hashtags from 1,000 ImageNet-1K classes followed by fine-tuning on ImageNet-1K
dataset. To evaluate adversarial attacks, if not otherwise mentioned we evaluate different ad-
versarial attacks in the untargeted setting on an ImageNet-compatible dataset. This dataset
was originally introduced in the NeurIPS 2017 adversarial challenge'. We compare differ-
ent architectures for the corresponding most widely used models, such as ResNet-18/50 for
CNN, and ViT and Mixer for B/16 and-L/16. However, we also note that many other factors
other than the architecture itself might also have a role in influencing the robustness. Given
the publicly available models, it is nearly impossible to rule out all other factors.

4 Experiment Results

4.1 Robustness Against White-Box Attacks

We first investigate the robustness under white-box attacks. Particularly, we deploy PGD [42]
and FGSM [18]. For both attacks we consider € = {d/255 | d € {0.1, 0.3, 0.5, 1, 3}} for
images in range [0, 1]. For the PGD attack, we set the number of iterations to 20 and keep
the other parameters as the default settings of Foolbox [59]. For these two attacks, we report
the attack success rate (ASR), i.e. the percentage of samples which were classified differ-
ently from the ground-truth class. Additionally, we evaluate the models on the ¢,-variants
of the C&W attack [6] and DeepFool [46]. These two attacks have the objective to mini-
mize the perturbation magnitude given the ASR of 100%. Hence, we report the ¢,-norm of
the adversarial perturbation and the results are available in Table 1. Overall a trend can be
observed that compared with CNN architectures, the ViT and Mixer models have a lower
attack success rate, suggesting they are more robust than CNN architectures. The increased
robustness of ViT and Mixer models is further supported by a higher ¢;-norm for the C&W
and DeepFool attacks. However, when the perturbation magnitude is very small, the oppo-
site phenomenon can be observed. For example for Mixer-L/16 for the PGD or FGSM with
€ = 0.1 the model can exhibit decreased robustness compared to the CNN models.

Clean PGD (L) } FGSM (fw) | C&W (£2)T  DeepFool (£2)1

Model ImageNet | NeurIPS | 0.1 03 | 05 1 3 0.1 03 | 05 1 3

ViT-B/16 81.4 90.7 22.6 | 63.6 | 86.5 | 97.5]99.9 | 19.1 | 38.7 | 52.8 | 66.3 | 79.7 0.468 0.425
VIiT-L/16 82.9 89.3 22.8 | 60.1 | 80.9 | 95.8 | 100 | 19.5 | 35.9 | 44.9 | 579 | 67.3 0.459 0.548
ViT-B/16 (ImageNet-1K) 76.7 86.6 29.2 | 683 | 87.1 | 96.8 | 99.5 | 26.7 | 52.2 | 67.1 | 83.4 | 91.0 0.408 0.308
ViT-L/16 (ImageNet-1K) 72.8 79.2 449 | 77.0 | 90.6 | 97.1 | 99.2 | 36.8 | 51.4 | 59.8 | 70.3 | 78.8 0.335 0.261
Mixer-B/16 76.5 86.2 29.5| 634 | 820|962 | 100 | 27.7 | 49.3 | 59.5 | 69.3 | 78.0 0.375 0.339
Mixer-L/16 71.8 80.0 41.1 | 67.3 | 80.4 | 92.1 | 99.4 | 36.7 | 51.8 | 56.9 | 61.6 | 67.4 0.297 0.377
ResNet-18 (SWSL) 733 90.4 4791 93.7 | 98.7 | 99.5 | 99.6 | 38.0 | 76.3 | 89.9 | 96.2 | 97.6 0.295 0.132
ResNet-50 (SWSL) 81.2 96.3 39.4 1902 | 97.0 | 98.4 | 99.4 | 26.3 | 60.9 | 73.0 | 83.8 | 87.5 0.380 0.149
ResNet-18 69.8 83.7 46.1 | 90.0 | 97.8 | 99.9 | 100 | 42.0 | 75.2 | 88.5 | 95.7 | 98.2 0.302 0.237
ResNet-50 76.1 93.0 358 863|979 995 | 100 | 27.5 | 63.1 | 77.6 | 89.4 | 93.9 0.371 0.287

Table 1: White-box attacks on benchmark models with different epsilons. We report the clean
accuracy on the ImageNet and NeurIPS dataset. The attack success rate (%) of PGD and FGSM
under /.. distortion, and the ¢;-norm of C&W and DeepFool, respectively are reported for the NeurIPS
dataset. All models are trained with an image size of 224. A model with a lower ASR| or higher
f>-normT is considered to be more robust.

https://github.com/rwightman/pytorch-nips201l7-adversarial
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Class-wise Robustness. To provide a more detailed robustness evaluation, we perform a
class-wise robustness study. We perform the class-wise robustness study on the ImageNet
validation dataset, where for each class 50 validation images are present and attack the mod-
els with the ¢..-PGD attack (¢ = 0.3). Figure 1 (left) shows every 50th class from the most
robust classes to the least robust classes for ViT-L/16, where the class “screen” exhibits
no robustness, while the class “yellow lady’s slipper” exhibits robustness of 100%. This
indicates an imbalance in the class-wise robustness between different classes. We further
calculate the similarity of the class-wise accuracies between different models. We treat the
different class-wise accuracies as a vector and calculate the cosine similarity between the
class-wise accuracies of different models. From Figure 1 (center), it can be observed that the
ViT and Mixer models exhibit relatively high similarity values, but also that ResNet18 and
ResNet50 are similar in their class-wise robust accuracies. Finally, we examine the relative
class-wise robustness of the models, by calculating how many classes of one model are more
robust than those of another model. These results are presented in Figure 1 (right). Here it
can be observed that the ViT and Mixer models exhibit higher class-wise accuracies than the
CNNs, with consistently more than 945 classes being more robust than the examined CNNs.

1.00
ViTB16 0 181

VIT-L 16 o
0.95

Mixer-B 16 | 420 234

VITB 16
yellow lady's slipper
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rock beaut\{
inwhe
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Figure 1: (Left): Most to least robust classes in increments of 50 for ViT-L/16; (Center): Cosine
similarity of class-wise robust accuracies between different models; (Right): Count of all class-wise
accuracies of one model (row) which are more robust than those of another (column). The robustness
of all models is evaluated under the {..-PGD attack with € = 0.3 on the ImageNet validation dataset.
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4.2 Robustness Against Black-Box Attacks

We evaluate and compare the robustness of different model architectures for the black-box
attacks in two setups: query-based black-box attack and transfer-based black-box attack.

ViT-B | ViT-L | Mixer-B | Mixer-L | RN18 (SWSL) | RN50 (SWSL) | RN18 | RN50

Boundary

() 3.980 | 7.408 1.968 1.951 1.403 1.846 1.468 | 1.740

Table 2: Boundary attack on benchmark models. We use 100 randomly selected images from
NeurIPS dataset against decision-based attack, and the ¢,-norm of adversarial perturbation is presented.

Query-based black-box attacks. Query-based black-box attacks work by evaluating a se-
quence of perturbed images through the model. We adopt a popular decision-based attack,
the Boundary Attack [5], which only requires a model’s final decision (i.e., class label) and
aims to minimize the perturbation while remaining adversarial. As with the white-box attack,
a trend can be observed in the black-box attack that the ViT and Mixer models are more ro-
bust, indicated by the relatively higher ¢;-norm of the adversarial perturbation (see Table 2).
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ViT-B/16 ViT-L/16 Mixer-B/16 | Mixer-L/16 | RN18 (SWSL) | RN50 (SWSL) RNI8 RNS50
Methods ASR  #Q | ASR #Q | ASR #Q | ASR #Q | ASR #Q ASR #Q ASR #Q | ASR #Q
Bandits7p (/<) | 93% 1032 | 86% 1588 | 93% 1079 | 91% 1308 | 99% 428 91% 974 99% 311 | 98% 440

Table 3: Results of Bandits; (with time and data-dependent priors) attack on benchmark mod-
els. ASR is the attack success rate and #Q denotes the average number of queries of the successful
attacks. We test on the total NeurIPS dataset with a query limit of 10,000.

We further test and compare the models using a more recently proposed approach [31] that
reduces the query cost. To achieve a higher success rate with fewer queries, Banditszp inte-
grates the prior information about the gradient (i.e. time and data) using bandit algorithm to
reduce the query number. Following the setting in [31], the maximum /..-norm of perturba-
tions is set to 0.05 and the others are set to default as well. As shown in Table 3, overall we
observe that ViT and Mixer require a larger average number of queries with a lower average
ASR, suggesting ViT and Mixer are more robust than their CNN counterparts.
Transfer-based black-box attacks. Transfer-based black-box attacks exploit the transfer-
able property of adversarial examples, i.e., the adversarial examples generated on a source
model transfer to another unseen target model. For the source model, we deploy the I-
FGSM [36] attack with 7 steps and evaluate the transferability on the target model. From
the result in Table 4, we have two major observations. First, adversarial examples from the
same family (or similar structure) exhibit higher transferability, suggesting models from the
same family learn similar features. Second, when a different model architecture is used as
the source model, there is also a trend that CNNs are relatively more vulnerable (i.e., transfer
poorly toward foreign architectures). For example, the transferability from CNN to ViT is
often lower than 20%, while the opposite scenario is higher.

Target model
Source model Variant | ViT-B/16 | ViT-L/16 | Mixer-B/16 | Mixer-L/16 | ResNet-18 | ResNet-50 | ResNet-18 | ResNet-50
(SWSL) (SWSL)
ViT-B/16 I-FGSM 100 84.7 48.8 50.5 320 20.5 40.9 31.7
ViT-L/16 I-FGSM 90.9 99.9 457 48.0 30.4 222 40.8 30.9
Mixer-B/16 I-FGSM 33.9 253 100 89.1 30.6 20.5 40.8 320
Mixer-L/16 I-FGSM 27.7 20.1 80.3 99.7 27.7 17.0 382 284
ResNet-18 (SWSL) | I-FGSM 16.2 13.6 24.8 29.5 99.6 57.1 73.5 63.4
ResNet-50 (SWSL) | I-FGSM 15.3 13.5 23.6 299 56.5 99.5 494 51.0
ResNet-18 I-FGSM 182 14.7 28.9 35.6 84.6 49.9 100 81.6
ResNet-50 I-FGSM 17.7 13.6 28.4 34.5 73.9 63.9 80.6 100

Table 4: Transfer-based black-box attacks on benchmark models. We report the attack success
rate (%) and a model with a lower ASR is considered to be more robust. All models are trained with
an image size of 224, and attacked with a maximum /., perturbation of € = 16.

4.3 Toy Example

ViT and Mixer are more robust to adversarial attacks than

conventional CNNs. In other words, CNN tends to be the

least robust in most setups. To facilitate the understanding of

the mechanisms, we design a toy example of binary classifi- Figure 2: Images for our bi-
cation where each class is represented by a single image with  pary classification toy example.
a size of 224. The two images shown in Figure 2 consist of a single black stripe on a grey
background, differing in the stripe orientation, namely a vertical and a horizontal stripe.
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We train a Fully Connected network (FC), Convolution — C@zv;sez) D1137N3<6ez> #Z(;r;;s
Neural Network (CNN), and Vision Transformer (ViT) on FC 25.06 2539 | 4.8M
ViT 27.82 59.99 4.88M

the images. Note that we designed the networks to be of Table 57 7,-norm of the adversarial
relatively similar small capacity (< 5M). We evaluate the perturbation on our toy example.
adversarial robustness of these models with the commonly used ¢, attacks C&W [6] and
DDN [60]. We report the ¢;-norm of the adversarial perturbation in Table 5. We observe that
the CNN is also less robust than the FC and the ViT in this toy example setup.

(a) CNN

©ViT

C&W
Adversarial
examples

C&W
Perturbations

(a) CNN () ViT

PGD
Adversarial
examples

PGD
Perturbations

Figure 3: Adversarial examples and perturbations generated with C&W (top) and PGD (bottom) using
different architectures trained on our toy example.

Explanation from a shift-invariance perspective. Recently, [17] has shown that the shift-
invariance property of CNNs can be one cause for its vulnerability to adversarial attacks.
Their conclusion is derived with the quantitative analysis and theoretical proof, while we
focus on an intuitive qualitative analysis. The qualitative results of adversarial perturbations
generated by the attacks are shown in Figure 3. For the ViT, one phenomenon can be ob-
served that the adversarial perturbation consists of square patches. This is likely due to the
division of the input image into patches in the ViT architecture. Without this split process on
the image, we observe clear stripes but with different patterns for CNN and FC. While the
CNN model generates perturbations with repeated stripes, the FC model generates perturba-
tions with only a single stripe centered in the image. It should be noted that perturbations
are generated toward the adversary, i.e., in the direction of the opposite class’ stripe. The
observation that the CNN model yields stripes all over the image can be attributed to the
shift-invariant property of the CNN model. From the perspective of shift-invariance, the
CNN model recognizes features, i.e. horizontal or vertical stripe in this setup, regardless of
the position of the features on the image. Thus, it is somewhat expected that the perturbation
has stripes in a different direction all over the image. For the FC model without the shift-
invariant property, it only recognizes the stripes in the center; thus, the resulting perturbation
mainly has the stripe in the center. Since our toy example only consists of two samples, the
ASR has only limited informative value about the model’s robustness. However, the quali-
tative results can still be observed. For the ¢,-PGD attack, we choose a sufficiently high €
of 40, such that both samples are misclassified. The qualitative results of the PGD attack in


Citation
Citation
{Carlini and Wagner} 2017

Citation
Citation
{Rony, Hafemann, Oliveira, Ayed, Sabourin, and Granger} 2019

Citation
Citation
{Ge, Singla, Basri, and Jacobs} 2021


8 BENZ ET AL.: ADV. ROBUSTNESS COMPARISON OF VIT AND MLP-MIXER TO CNNS

Figure 3 (bottom) resemble those of the C&W attack. These qualitative results provide an
interesting insight into the possible link between shift-invariant property and CNN vulnera-
bility. Admittedly, this link is vague and future work is needed to establish a more concrete
link between them.

4.4 Frequency Analysis

We further attempt to explain the lower robustness of CNN from a frequency perspective [77,
81]. We apply a low-pass filter and a high-pass filter to the input images before feeding them
to the model. We then evaluate the Top-1 accuracy of images from the NeurIPS dataset
by applying low-pass or high-pass filtering, and the results are shown in Figure 4. For the
low-pass filtering, a sharper decline of the CNN architectures can be observed than for the
ViT and Mixer, indicating that the CNN architectures are more reliant on the high-frequency
features compared to other models. For example, ResNet-50 (SWSL) has higher accuracy
than ViT-L/16 when filtered with large bandwidths; however, with smaller bandwidths, the
accuracy of ViT-L/16 becomes higher than the ResNet. Additionally, the Mixers have a
sharper decline than the ViTs at low-pass bandwidths from 60 to 180. For the high-pass
filtering, the ViT models show the steepest decline among the models, indicating that the
ViT models rely more on low-frequency features. Note that non-robust features tend to have
high-frequency properties [32, 77, 81] and explain the decreased model robustness. This
demonstrates why ViT models are more robust than CNN architectures from the frequency
perspective. Comparing the results from low-pass and high-pass filtering, we observe that
Mizxers, regardless of their absolute value of accuracy, exhibit a similar trend to CNNs rather
than ViTs.

100.0 100.0 = ViT-B/16
= - VIT-L/16
50 750 \ Mixer-8/16
= Mixer-L/16
ResNet-18
50.0 50.0 (SWSL)
= ResNet-50
(SWsL)
250 250 ~ ResNet-18

= ResNet-50

8 12 20 30 40

0.0 L L L L L 0.0
220 180 140 100 60 20

IS

Low-pass Bandwidth High-pass Bandwidth

Figure 4: Top-1 accuracy across a range of frequency bandwidths from low/high-pass filtering (The
right direction of x-axis is more oriented to the low and high frequency, respectively). Left: Low-pass
filtering. Right: High-pass filtering.

5 Additional Investigations

5.1 Robustness against common corruptions

Additional to our investigation of the adversarial vulnerability of ViT, Mixer, and CNN mod-
els, we examine the robustness of these models to common, i.e. naturally occurring, cor-
ruptions [26]. ImageNet-C was proposed by [26] benchmarking neural network robustness


Citation
Citation
{Yin, Lopes, Shlens, Cubuk, and Gilmer} 2019

Citation
Citation
{Zhang, Benz, Karjauv, and Kweon} 2021{}

Citation
Citation
{Ilyas, Santurkar, Tsipras, Engstrom, Tran, and Madry} 2019{}

Citation
Citation
{Yin, Lopes, Shlens, Cubuk, and Gilmer} 2019

Citation
Citation
{Zhang, Benz, Karjauv, and Kweon} 2021{}

Citation
Citation
{Hendrycks and Dietterich} 2019

Citation
Citation
{Hendrycks and Dietterich} 2019


BENZ ET AL.: ADV. ROBUSTNESS COMPARISON OF VIT AND MLP-MIXER TO CNNS 9

against these common corruptions. In essence, ImageNet-C is a perturbed version of the orig-
inal ImageNet validation dataset that has 1000 classes and 50 images per class. ImageNet-C
has 15 test corruptions, and four hold-out corruptions, each consisting of 5 severities.

Following [28], we evaluate on 15 test corruptions _ ImageNet | ImageNet-C | mCE
i . R ViT-B/16 8143 58.85 51.98

and the results are shown in Table 6. First, there is VIT-L/16 82.89 64.11 | 45.46
. Mixer-B/16 76.47 47.00 67.35

a clear trend that models that have higher accuracy ML /16 it w047 | 7582
o RNIS (SWSL) | 7329 37.84 78.30

on the original (clean) ImageNet tepd t'o also have RN50 (SWSD) | 8118 on e
higher accuracy on ImageNet-C, which is somewhat RN18 69.76 3292 | 84.67
RN50 76.13 39.17 76.70

expected. Second, with comparable accuracy on the Taple 6 Evaluation of benchmark
original (clean) ImageNet, ViT, and Mixer architec- models on the ImageNet-C dataset.
tures tend to have higher robustness against corrup- Accuracy the higher the better, mCE
tions. For example, ViT-B/16 has similar accuracy as the lower the better.

RNS50(SWSL), i.e. 81.43% vs. 81.18%, but the robustness of ViT-B/16 is notably higher than
that of RNSO(SWSL), i.e. 58.85% vs. 52.03%. A similar phenomenon can be observed for
Mixer-B/16 and RN50. More detailed corruption-wise results are shown in Figure 5. We
find that under some corruptions, such as zoom blur and snow, the superiority of ViT is more
significant than other corruptions, such as Gaussian noise.

mmm RN18 (SWSL)

$
&

$ N
\\» Q\\» @\s & &

@
&

= VT B-16
s Mixer B-16

Top 1 Accuracy (%)
N )
& g

N
S

& &
& &
& &

,,f' §a @° & &
&

Figure 5: Detailed corruption performance comparison of the different models.

5.2 Robustness against Universal Adversarial Perturbations

We further compare the robustness of the different model architectures against Universal
Adversarial Perturbations (UAPs). UAPs have been proposed in [47], however, their algo-
rithm has been identified to be relatively less effective yet slow. In this work, we adopt the
state-of-the-art UAP algorithm in [80]. Following [47, 80], we set the image size to 224
and constrain the UAP with an /.-norm of € = 10/255. The white-box and the correspond-
ing transferability results are shown in Table 7. Several observations can be made. First,
MLP-Mixer models are very vulnerable to UAPs in both white-box and black-box scenarios.
Especially in the black-box scenario, the attack success rate is always higher than 95% re-
gardless of the surrogate model architecture. On the contrary, ViT models and CNN models
are more robust against UAPs, particularly in the black-box scenarios. Second, comparing
ViT and CNN models, there is no obvious robustness gap with an ASR of around 90% for
all models. However, in the more challenging black-box scenarios, the ViT models are more
robust than their CNN counterparts. This trend aligns well with our previous finding that ViT
models are more robust than CNN models. We visualize amplified versions of the resulting
UAPs in Figure 6. It is noticeable that for the ViT and Mixer architectures, a tile pattern is
observable, which is caused by the operation of dividing the images into patches as tokens.
Another interesting observation is that the UAPs of Mixer tend to be less locally smooth
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than those generated on ViT and CNN. The ViT-L/16 with the highest robustness against
UAP seems to have the most locally smooth patterns. Overall, it is interesting that Mixer is
extremely vulnerable to UAPs and the finding from a qualitative result that they have locally
non-smooth patterns. However, we have no clear explanation for the observed phenomenon
since the Mixer is still a very recent architecture. An important message to the community
is that the adversarial threat to Mixer cannot be ignored since it is vulnerable in the practical
transferable universal attack scenario.

Target model
Source model | ViT-B/16 | VIT-L/16 | Mixer-B/16 | Mixer-L/16 | RN18 (SWSL) | RN50 (SWSL) | RN18 | RN50
ViT-B/16 93.9 32.7 95.7 96.0 433 292 46.4 37.2
ViT-L/16 42.1 84.8 95.6 95.6 39.0 212 41.6 31.7
Mixer-B/16 16.6 149 98.6 96.7 354 19.6 433 30.6
Mixer-L/16 152 13.7 96.3 98.9 30.3 15.5 387 | 26.0
RN18 (SWSL) 12.6 12.1 95.4 95.6 91.2 492 56.6 | 56.5
RN50 (SWSL) 11.8 11.9 95.3 95.6 50.4 87.1 46.8 | 46.6
RNI8 13.5 11.6 95.7 95.7 66.2 46.1 93.7 | 633
RN50 122 12.0 95.4 95.6 63.3 57.0 634 | 919

Table 7: Universal adversarial attacks on benchmark models. We report the attack success rate
(%) and a model with a lower ASR is considered to be more robust. All models are trained with an
image size of 224, and evaluated on the NeurIPS dataset. The bold font indicates white-box attacks.

RN18 RN50
\

Figure 6: Visualization of the amplified UAPs generated on different model architectures.

6 Conclusion

Our work performs an empirical study on the adversarial robustness comparison of ViT and
MLP-Mizxer to the widely used CNN on image classification. Our results show that ViT is
significantly more robust than CNN in a wide range of white-box attacks. A similar trend
is also observed in the query-based and transfer-based black-box attacks. Our toy task of
classifying two simple images with a vertical or horizontal black stripe in the image center
provides interesting insight on the possible link between shift-invariant property and CNN
vulnerability and future work is necessary for further investigating this link. Our analysis
from the feature perspective further suggests that ViTs are more reliant on low-frequency
(robust) features while CNNs are more sensitive to high-frequency features. We also investi-
gate the robustness of the newly proposed MLP-Mixer and find that its robustness generally
locates in the middle of ViT and CNN. We have also performed additional investigations on
robustness against common corruptions and UAPs. One very intriguing finding is that Mixer
is extremely vulnerable to UAPs, even in transfer-based black-box attacks. Future work is
needed for a better understanding of the reported empirical results.
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