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Abstract

A visual hard attention model actively selects and observes a sequence of subre-
gions in an image to make a prediction. The majority of hard attention models deter-
mine the attention-worthy regions by first analyzing a complete image. However, it may
be the case that the entire image is not available initially but instead sensed gradually
through a series of partial observations. In this paper, we design an efficient hard at-
tention model for classifying such sequentially observed scenes. The presented model
never observes an image completely. To select informative regions under partial observ-
ability, the model uses Bayesian Optimal Experiment Design. First, it synthesizes the
features of the unobserved regions based on the already observed regions. Then, it uses
the predicted features to estimate the expected information gain (EIG) attained, should
various regions be attended. Finally, the model attends to the actual content on the loca-
tion where the EIG mentioned above is maximum. The model uses a) a recurrent feature
aggregator to maintain a recurrent state, b) a linear classifier to predict the class label,
¢) a Partial variational autoencoder to predict the features of unobserved regions. We
use normalizing flows in Partial VAE to handle multi-modality in the feature-synthesis
problem. We train our model using a differentiable objective and test it on five datasets.
Our model gains 2-10% higher accuracy than the baseline models when both have seen
only a couple of glimpses. code: https://github.com/samrudhdhirangre’j/
Probabilistic-Hard-Attention.

1 Introduction

A deep feedforward network observes an entire scene to achieve state-of-the-art perfor-
mance. However, observing an entire scene may not be necessary as many times the task-
relevant information lies only in a few parts of the scene. A visual hard attention technique
allows a recognition system to attend to only the most informative subregions called glimpses
[41, 57]. A hard attention model builds a representation of a scene by sequentially acquiring
useful glimpses and fusing the collected information. The representation guides recognition
and future glimpse acquisition. Hard attention is useful to reduce data acquisition cost [54],
to develop interpretable [16], computationally efficient [29] and scalable [45] models.

The majority of hard attention models first analyze a complete image, occasionally at low
resolution, to locate the task-relevant subregions [4, 16]. However, in practice, we often do
not have access to the entire scene. Instead, we only observe parts of the scene as we attend
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to them. We decide the next attention-worthy location at each step in the process based

on the partial observations collected so far. Examples include a self-driving car navigating

in unknown territory, time-sensitive aerial imagery for a rescue operation, etc. Here, we
develop a hard-attention model for such a scenario. While the majority of existing hard

attention models pose glimpse acquisition as a reinforcement learning task to optimize a

non-differentiable model [41, 57], we use a fully differentiable model and training objective.

We train the model using a combination of discriminative and generative objectives. The

former is used for class-label prediction, and the latter is used for the content prediction

for unobserved regions. We use the predicted content to find an optimal attention-worthy
location as described next.

A hard attention model predicts the class label of an image by attending various informa-
tive glimpses in an image. We formulate the problem of finding optimal glimpse-locations
as Bayesian Optimal Experiment Design (BOED). Starting from a random location, a se-
quential model uses BOED to determine the next optimal location. To do so, it estimates
the expected information gain (EIG) obtained from observing glimpses at yet unobserved
regions of the scene and selects a location with maximum EIG. As the computation of EIG
requires the content of regions, the model synthesizes the unknown content conditioned on
the content of the observed regions. For efficiency reasons, the model predicts the content in
the feature space instead of the pixel space. Our model consists of three modules, a recur-
rent feature aggregator, a linear classifier, and a Partial VAE [39]. Partial VAE synthesizes
features of various glimpses in the scene based on partial observations. There may exist mul-
tiple possibilities for the content of the unobserved regions, given the content of the observed
regions. Hence, we use normalizing flows in Partial VAE to capture the multi-modality in
the posterior. Our main contributions are as follows.

* We develop a hard attention model to classify images using a series of partial observa-
tions. The model estimates EIG of the yet unobserved locations and attends a location
with maximum EIG.

* To estimate EIG of unobserved regions, we synthesize the content of these regions. Fur-
thermore, to improve the efficiency of a model, we synthesize the content in the feature
space and use normalizing flows to capture the multi-modality in the problem.

* We support our approach with a principled mathematical framework. We implement the
model using a compact network and perform experiments on five datasets. Our model
achieves 2-10% higher accuracy compared to the baseline methods when both have seen
only a couple of glimpses.

2 Related Works

Hard Attention. A hard attention model prioritizes task-relevant regions to extract mean-
ingful features from an input. Early attempts to model attention employed image saliency as
a priority map. High priority regions were selected using methods such as winner-take-all
[26, 27, 33], searching by throwing out all features but the one with minimal activity [1], and
dynamic routing of information [43]. Few used graphical models to model visual attention.
Rimey and Brown [49] used augmented hidden Markov models to model attention policy.
Larochelle and Hinton [35] used a Restricted Boltzmann Machine (RBM) with third-order
connections between attention location, glimpse, and the representation of a scene. Moti-
vated by this, Zheng et al. [63] proposed an autoregressive model to compute exact gradients,
unlike in an RBM. Tang et al. [53] used an RBM as a generative model and searched for in-
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formative locations using the Hamiltonian Monte Carlo algorithm. Many used reinforcement
learning to train attention models. Paletta et al. [44] used Q-learning with the reward that
measures the objectness of the attended region. Denil et al. [13] estimated rewards using par-
ticle filters and employed a policy based on the Gaussian Process and the upper confidence
bound. Butko and Movellan [7] modeled attention as a partially observable Markov decision
process and used a policy gradient algorithm for learning. Later, Butko and Movellan [8]
extended this approach to multiple objects.

Recently, the machine learning community uses the REINFORCE policy gradient algo-
rithm to train non-differentiable hard attention models [4, 16, 41, 45, 57]. Other recent works
use EM-style learning procedure [47], wake-sleep algorithm [5], a voting based region selec-
tion [2], and spatial transformer [17, 20, 28]. Among the recent methods, [4, 5, 47] look at
the low-resolution gist of an input at the beginning, and [16, 17, 20, 57] consume the whole
image to predict the locations to attend. In contrast, our model does not look at the entire
image at low resolution or otherwise. Moreover, our model is fully differentiable.

Image Completion. Image completion methods aim at synthesizing unobserved or missing
image pixels conditioned on the observed pixels [23, 46, 55, 56, 58, 59]. Image comple-
tion is an ill-posed problem with multiple possible solutions for the missing image regions.
While early methods use deterministic models, [9, 60, 61] used stochastic models to predict
multiple instances of a complete image. Many used probabilistic models to ensure that the
completions are generated according to their actual probability [18, 19, 39, 52, 62]. We use
Partial VAE [39] — a probabilistic model — to predict the content of the complete image given
only a few glimpses. However, unlike other approaches that infer image content in the pixel
space, we predict content in the feature space.

Patch Selection. Many computer vision methods select attention-worthy regions from an
image, e.g., region proposal network [48], multi-instance learning [24], top-K patch selection
[3, 11], attention sampling [29]. These approaches observe an entire image and find all
attention-worthy patches simultaneously. Our model observes an image only partially and
sequentially. Furthermore, it selects a single optimal patch to attend at a given time.

3 Model

In this paper, we consider a recurrent attention model that sequentially captures glimpses
from an image x and predicts a label y. The model runs for time t =0 to 7 — 1. It uses a
recurrent net to maintain a hidden state /#,_; that summarizes glimpses observed until time
t— 1. Attime ¢, it predicts coordinates /; based on the hidden state ;1 and captures a square
glimpse g, centered at /; in an image x, i.e. g = g(x,/;). It uses g; and /; to update the hidden
state to /; and predicts the label y based on the updated state #;.

3.1 Building Blocks

As shown in Figure 1, the proposed model comprises the following three building blocks. A
recurrent feature aggregator (F and R) maintains a hidden state /;. A classifier (C) predicts
the class probabilities p(y|A,). A normalizing flow-based variational autoencoder (S and D)
synthesizes a feature map of a complete image given the hidden state /. Specifically, a flow-
based encoder S predicts the posterior of a latent variable z from #,, and a decoder D uses z to
synthesize a feature map of a complete image. A feature map of a complete image can also
be seen as a map containing features of all glimpses. The BOED, as discussed in section 3.2,
uses the synthesized feature map to find an optimal location to attend at the next time step.
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Figure 1: A recurrent attention model sequentially observes glimpses from an image and
predicts a class label. At time ¢, the model actively observes a glimpse g; and its coordi-
nates ;. Given g; and [;, the feed-forward module F extracts features f;, and the recurrent
module R updates a hidden state to &,. Using an updated hidden state %, the linear clas-
sifier C predicts the class distribution p(y|h;). At time 7 + 1, the model assesses various
candidate locations [ before attending an optimal one. It predicts p(y|g,l, k) ahead of time
and selects the candidate / that maximizes Dky.[p(y|g,!,)||p(y|h:)]. The model synthe-
sizes the features of g using a Partial VAE to approximate p(y|g,/,h,) without attending to
the glimpse g. The normalizing flow-based encoder S predicts the approximate posterior
q(z|h;). The decoder D uses a sample z ~ g(z|h;) to synthesize a feature map f containing
features of all glimpses. The model uses f(/) as features of a glimpse at location / and evalu-
ates p(y|g,1, ;) ~ p(y|f(1),h;). Dashed arrows show a path to compute the lookahead class
distribution p(y|f(1),h;).

To distinguish the synthesized feature map from an actual one, let us call the former £ and
the latter f. Henceforth, we crown any quantity derived from the synthesized feature map
with a (7). Next, we provide details about the three building blocks of the model, followed
by a discussion of the BOED in the context of hard attention.

Recurrent Feature Aggregator. Given a glimpse g, and its location /;, a feed-forward mod-
ule extracts features f; = F(g;,/;), and a recurrent network updates a hidden state to #, =
R(hi—1, f;). We define F(g,l) = Fq(g) + Fi(I) and R(h, f) = LeakyReLU (F(h) + F¢(f)).
F, is a small CNN with receptive-field equal to size of g. F;, Fj, Fr are shallow networks
with one linear layer.

Classifier. At each time step ¢, a linear classifier predicts the distribution p(y|h;) = C(h;)
from a hidden state /,. As the goal of the model is to predict a label y for an image x, we
learn a distribution p(y|h;) by minimizing Dky [p(y|x)||p(y|h)]. Optimization of this KL
divergence is equivalent to the minimization of the following cross-entropy loss.

Lcg(t) = —p(ylx)log(p(ylh)) ¢))

Partial Variational Autoencoder. We adapt a variational autoencoder (VAE) to synthesize
the feature map of a complete image from the hidden state #,. A VAE learns a joint distribu-
tion between the feature map f and the latent variable z given hy, p(f,z|h;) = p(flz)p(z|h).
An encoder approximates the posterior g(z|f, A ), and a decoder infers the likelihood p(f|z).
The optimization of VAE requires calculation of Dxy [q(z|f,h)||p(z]h)] [30]. As the hard
attention model does not observe the complete image, it cannot estimate g(z|f,h;). Hence,
we cannot incorporate the standard VAE directly into a hard attention framework and use the
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following approach.

At the time ¢, let’s separate an image x into two parts, o, — the set of regions observed
up to ¢, and u, — the set of regions as yet unobserved. Ma et al. [39] observed that in a
VAE, o, and u, are conditionally independent given z, i.e. p(x|z) = p(u|z)p(0/]z). They
synthesize u, independently from the sample z ~ g(z|o;), while learning the posterior g(z|o;)
by optimizing ELBO on log(p(o,)). They refer to the resultant VAE as a Partial VAE.

The BOED, as discussed in section 3.2, requires features of o; and u;. Ma et al. [39]
consider o; and u; in pixel space. Without the loss of generality, we consider o; and u; in
the feature space. Synthesizing o; and u, in the feature space serves two purposes. First,
the model does not have to extract features of o; and u, for the BOED as they are readily
available. Second, Partial VAE does not have to produce unnecessary details that may later
be thrown away by the feature extractor, such as the exact color of a pixel. Recall that
the features f1.; and the hidden state /4, calculated by our attention model correspond to the
glimpses observed up to ¢, which is equivalent to o;, the set of observed regions. Hence, we
write ¢(z|o;) as q(z|h,) and p(o;|z) as p(fi+|z) in the ELBO of Partial VAE.

Lpvag(t) = —ELBO = 7{Eq(z\o,) log(p(or]z)) *DKL[Q(ZIOr)Hp(Z)]}
= —{Byenloe(p(fial0) - Dulazlm)lIp@]} @)

In equation 2, the prior p(z) is a Gaussian distribution with zero mean and unit variance.
To obtain expressive posterior g(z|h; ), we use normalizing flows in Partial VAE [32]. Specif-
ically, we use auto-regressive Neural Spline Flows (NSF) [15]. Between the two flow layers,
we flip the input [14] and normalize it using ActNorm [31]. Refer to supp. material for brief
overview of NSF. In Figure 1, the flow-based encoder S infers the posterior g¢(z|h;) = S(h;).

In a Partial VAE, p(f|z) = p(fi.|z)p(f{,|z); where f}. are the features of the glimpses
other than the ones observed up to ¢ and f = fi., U f{,,. We implement a decoder D that
synthesizes a feature map containing features of all glimpses in an image given the sample
z~q(z|h), i.e. f=D(z). Let m; be a binary mask with value 1 for the glimpses observed
by the model up to ¢ and 0 otherwise; hence, fi.; = m; © f, where © is an element-wise mul-
tiplication. We assume a Gaussian likelihood and evaluate the log-likelihood in equation 2
using the mask m; as follows.

7 2
~tog(plfuak)) o s LTI g o) ®

Where o is a model parameter. The BOED uses f to find an optimal location to attend.

3.2 Bayesian Optimal Experiment Design (BOED)

The BOED evaluates the optimality of a set of experiments by measuring information gain in
the interest parameter due to the experimental outcome [10]. In the context of hard attention,
an experiment is to attend a location / and observe a corresponding glimpse g = g(x,/). An
experiment of attending a location / is optimal if it gains maximum information about the
class label y. We can evaluate optimality of attending a specific location by measuring several
metrics such as feature variance [22], uncertainty in the prediction [40], expected Shannon
information [38]. For a sequential model, information gain Dxy [p(y|g, I, h—1)||p(y|hi—1)] is
an ideal metric. It measures the change in the entropy of the class distribution from one time
step to the next due to observation of a glimpse g at location / [6, 39].
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The model has to find an optimal location to attend at time ¢ before observing the corre-
sponding glimpse. Hence, we consider an expected information gain (EIG) over the gener-
ating distribution of g. An EIG is also a measure of Bayesian surprise [25, 50].

EIG(I) = Ep(giup, ) Pxr[pO8: L he-1)l[P(1Ae-1)] @)
=E, sy P [pOLF (1) he—1) || (3] Be—1))] (5)

Where f(I) are features of a glimpse located at /, i.e. f(I) = F(g,/). Inspired by [21],
we define p(f(I)|h—1) as follows.

p(fDlhi—1) = Eqegn,_p(f(1)|2) = Eqn,_8(D()(1)) = Eqgn,_S(F(1))  (6)

Here, &(-) is a delta distribution. As discussed in the section 3.1, the flow-based encoder
S predicts the posterior ¢(z|i;—1) and the decoder D predicts the feature map containing
features of all glimpses in an image, f = D(z). Combining equation 5 and equation 6 yields,

EIG(I) = Eyipn, ) Dxe [pO1F (1), b))l p(ylhe—1)] @)

To find an optimal location to attend at time #, the model compares various candidates for
I;. Tt predicts EIG(I) for each candidate / and selects an optimal candidate as I, i.e. [, =
argmax; EIG(I). When the model is considering a candidate I, it uses f(I) to calculate
h, = R(h,—1, f(1)) and p(y|h;) = C(h,). It uses the distribution p(y|i;) = p(y|f(1),h:—1) to
calculate EIG in equation 7. We refer to p(y|h, ) as the lookahead class distribution computed
by anticipating the content at the location / ahead of time. In Figure 1, the dashed arrows
show a lookahead step. Furthermore, to compute E/G for all locations simultaneously, we
implement all modules of our model with convolution layers. The model computes EIG for
all locations as a single activation map in a single forward pass. An optimal location is equal
to the coordinates of the pixel with maximum value in the EIG map.

4 Experiments

Datasets. We evaluate our model on SVHN [42], CINIC-10 [12], CIFAR-10 [34], CIFAR-
100 [34], and TinyImageNet [36] datasets. These datasets consist of real-world images cat-
egorized into 10, 10, 10, 100 and 200 classes respectively. Images in TinyImageNet are of
size 64 x 64 and images in the remaining dataset are of size 32 x 32.

Training and Testing. We train our model in three phases. In the first phase, we pre-
train modules F, R, and C with a random sequence of 7" glimpses using ):tTZ_Ol Lcg(t) as a
training objective. In the second phase, we introduce S and D. We pre-train S and D while
keeping F, R, C frozen. Again, we use a random sequence of 7 glimpses and train S and D
using ZZ:()] Lpyag(t) training criterion. To produce the target f used in equation 3, we feed a
complete image and a grid of all locations to the pretrained F', which computes features of all
glimpses as a single feature map. Pre-training (F,R,C) and (S, D) separately ensures that the
Partial VAE receives a stable target feature map f in equation 3. Finally, in the third phase,
we fine-tune all modules end-to-end using the training objective £ = ZZT:_Ol o Lpyag(t) +
BLcg(t), where o and 3 are hyperparameters. In the finetuning stage, we sample an optimal
sequence of glimpses using the BOED framework. We use only one sample z ~ ¢(z|h,) to
estimate the £/G map during the training, which leads to exploration. In the test phase,
we achieve exploitation by using P samples of z to estimate the E/G accurately. The test
procedure is shown in Algorithm 1. Refer to supp. material (SM) for more details.
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Algorithm 1 Test procedure for the model shown in Figure 1

Randomly sample ly; Capture g¢ at ly, compute fy, i and p(y|ho)

1:

2: forr € {1,...,T—1} do > T is the time budget
3 Sample z; ~ q(z|h;—1) and predict f';i € {0,...,P—1} > Pis the sample budget
4: Compute %, p(y|R}) and EIG = ¥, Dxr[p(y|7}) || p (] e—1)] > equation 7
5 I, = argmax{EIG}

6 Capture g; at /;; Compute f;, h, and p(y|h)

7: end for

Hyperparameters. We implement our model with a small number of parameters, and it
runs for T =7 time steps. It senses glimpses of size 16 x 16 overlapping with stride n = 8
for TinylmageNet and senses glimpses of size 8 x 8 overlapping with stride n = 4 for the
remaining datasets. The Partial VAE predicts f and EIG for a set of glimpses separated with
stride equal to n. We do not allow our model to revisit glimpses attended in the past. We
choose the hyperparameters o and 3 such that the two loss-terms contribute equally. The
sample budget P is 20 for all experiments. Refer to SM for more details.

4.1 Baseline Comparison

We compare our model with four baselines in Figure 2(a-e). RAM is a state-of-the-art hard
attention model that observes images partially and sequentially to predict the class labels
[41]. We implement RAM using the same structure as our model. Instead of the Partial VAE,
RAM has a controller that learns a Gaussian attention policy. Mnih et al. [41] minimize Lcg
at the end of T steps. Following [37], we improve RAM by minimizing Lcg at all T steps.
We refer to this baseline as RAM+. We also consider a baseline model that attends glimpses
on random locations. The Random baseline does not have a controller or a Partial VAE.
Our model and the three baselines described so far observe the image only partially through
a series of glimpses. Additionally, we train a feed-forward CNN that observes the entire
image to predict the class label.

For the SVHN dataset, the Random baseline outperforms RAM for initial time steps.
However, with time, RAM outperforms the Random baseline by attending more useful
glimpses. RAM+ outperforms RAM and the Random baselines at all time steps. We ob-
serve a different trend for non-digit datasets. RAM+ consistently outperforms RAM on
non-digit datasets; however, RAM+ falls behind the Random baseline. In RAM and RAM+,
the classifier shares latent space h; with the controller, while the Random baseline dedicates
an entire latent space to the classifier. We speculate that the dedicated latent space in the
Random baseline is one of the reasons for its superior performance on complex datasets.

Our model consistently outperforms all attention baselines on all datasets. The per-
formance gap between the highest performing baseline and our model reduces with many
glimpses, as one can expect. Predicting an optimal glimpse-location is difficult for early
time-steps as the models have access to minimal information about the scene so far. Com-
pared to the highest performing baseline at # = 1, our model achieves around 10% higher
accuracy on SVHN, around 5-6% higher accuracy on CIFAR-10 and CINIC-10, and around
2-3% higher accuracy on CIFAR-100 and TinyImageNet. Note that CIFAR-100 and Tiny-
ImageNet are more challenging datasets compared to SVHN, CINIC-10, and CIFAR-10.
Similar to RAM and RAMH+, the classifier and the Partial VAE share a common latent space
in our model. Hence, our model achieves a lower gain over the Random baseline for com-
plex datasets. We attribute the small but definite gain in the accuracy of our model to a better
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Figure 2: Basgli)ne Comparison on (a) SVH1\§ ()b) CIFAR-10 (c) CINIC-10 (d) CIFAR-100 (e)
TinylmageNet. Ablation study on normalizing flows on (f) TinyImageNet. (a-e) We compare
various methods for # = 0 to 6. All results are averaged over ten different runs. Accuracy of
a CNN and chance accuracy, displayed on top of each plot, serve as upper and lower bounds
for the accuracy of glimpse-based methods. A CNN observes an entire image, whereas
glimpse-based methods observe < 43.75% area of the image by t = 6. When compared with
baseline methods, our method achieves the highest accuracy. (f) The use of normalizing
flows improves accuracy.
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Figure 3: Accuracy of a CNN when only the attended glimpses are observed. (a) Experiment

setup: we train a CNN using complete images and test it on masked images with only the
glimpses attended by various methods made visible. Results on (b) SVHN (c) CIFAR-10 (d)
CINIC-10 (e) CIFAR-100 (f) TinyImageNet. All results are averaged over three runs.
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Figure 4: Visualization of the EIG maps and the glimpses observed by our model on CIFAR-

Automobile  Truck Truck AutomoblleAutomobMe B\rd Blrd
10 images. The top rows in each plot show the entire image and the E/G maps for t =1 to
6. The bottom rows in each plot show glimpses attended by our model. The model observes
the first glimpse at a random location. Our model observes a glimpse of size 8 x 8. The
glimpses overlap with the stride of 4, resulting in a 7 x 7 grid of glimpses. The EIG maps are
of size 7 x 7 and are upsampled for the display. We display the entire image for reference;
our model never observes the whole image. (a-c) success cases (d) failure case.
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selection of glimpses.

The CNN has the highest accuracy as it observes a complete image. The accuracy of
the CNN serves as the upper bound for the hard attention methods. Unlike CNN, the hard
attention methods observe less than half of the image through small glimpses, each uncov-
ering only 6.25% area of an image. On the CIFAR-10 dataset, the CNN predicts correct
class labels for approximately 9 out of 10 images after observing each image completely.
Remarkably, our model predicts correct class labels for 8 out of 10 images after observing
less than half of the total area in each image.

4.1.1 Comparison of Attention Policies using a common CNN

Above, we compared the attention policies of various methods using their respective classi-
fiers. However, each model attains different discriminative power due to different training
objectives. While RAM, RAM+, and our model are trained jointly for two different tasks,
i.e., classification and glimpse-location prediction or feature-synthesis, the Random baseline
is trained for only one task, i.e., classification. Consequently, the Random baseline attains
higher discriminative power than others and achieves high accuracy despite using a sub-
optimal attention policy. To make a fair comparison of the attention policies irrespective of
the discriminative power of the models, we perform the following experiment.

We mask all image regions except for the ones observed by the attention model so far and
let the baseline CNN predict a class label from this masked image (see Figure 3). RAM+
consistently outperforms RAM, suggesting that the former has learned a better attention
policy than the latter. As RAM+ is trained using Lcg at all time-steps, it achieves higher
accuracy, and ultimately, higher reward during training with REINFORCE [41]. RAM and
RAM+ outperform the Random baseline for the SVHN dataset. However, they fall short
on natural image datasets. In contrast, our method outperforms all baselines with a signif-
icant margin on all datasets, suggesting that the glimpses selected by our model are more
informative about the image class than the ones chosen by the baselines.
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RAM and RAM+ struggle on images with many objects and repeated structure [51],
as often the case with natural image datasets. For example, TinylmageNet includes many
images with multiple objects (e.g. beer bottle), repeated patterns (e.g. spider web), and
dispersed items (e.g. altar). Note that a random policy can perform competitively in such
scenarios, especially when the location of various objects in an image is unknown due to
partial observability. Yet, our method can learn policies that are superior to the Random
baseline. Refer to SM for additional analyses.

4.2 Ablation study on Normalizing Flows

We inspect the necessity of a flexible distribution for the posterior ¢(z|h;) and, therefore, the
necessity of normalizing flows in the encoder S. To this end, we model the posterior with a
unimodal Gaussian distribution and let S output mean and diagonal covariance of a Gaussian.
We do not use flow layers in this case. Figure 2(f) shows the result for TinyImageNet dataset.
We observe that modeling a complex posterior using normalizing flows improves accuracy.
Ideally, the Partial VAE should predict all possibilities of f consistent with the observed
region o,. When the model observes a small region, a complex posterior helps determine
multiple plausible feature maps. A unimodal posterior fails to cover all possibilities. Hence,
the EIG estimated with the former is more accurate, leading to higher performance. Refer to
SM for visualization of ¢(z|4,) estimated with and without normalizing flows.

4.3 Visualization

We visualize a few interesting examples of sequential recognition from the CIFAR-10 dataset
in Figure 4. Refer to SM for additional examples. In Figure 4(a), activity in the E/G map
reduces as the model settles on a class ‘Bird’. In Figure 4(b), the model takes a long time
to decide the true class of the image. Though incorrect, it predicts classes that are types of
vehicles. After discovering parts like headlight and rear-view mirror, it predicts the true class
‘Automobile’ at r = 6. Figure 4(c) shows a difficult example. The model decides the true
class ‘Bird’ after covering parts of the bird at r = 5. Notice a high amount of activity in the
EIG maps up to t =5 and reduced activity at = 6. Figure 4(d) shows a failure case with
enduring activity in EIG maps. Finally, observe that the EIG maps are often multimodal.

5 Conclusions

We presented a hard attention model that uses BOED to find the optimal locations to attend
when the image is observed only partially. To find an optimal location without observing the
corresponding glimpse, the model uses Partial VAE to synthesize the content of the glimpse
in the feature space. Synthesizing features of unobserved regions is an ill-posed problem
with multiple solutions. We use normalizing flows in Partial VAE to capture a complex
distribution of unobserved glimpse features, which leads to improved performance. The
synthesized features enable the model to evaluate and compare the expected information gain
(EIG) of various candidate locations, from which the model selects a candidate with optimal
EIG. The predicted EIG maps are often multimodal. Consequentially, the attention policy
used by our model is multimodal. Our model achieves superior performance compared to the
baseline methods that use unimodal attention policy, proving the effectiveness of multimodal
policies in hard attention. When all models have seen only a couple of glimpses, our model
achieves 2-10% higher accuracy than the baselines.
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