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Abstract

Recent researches on medical image segmentation resort to the combination of natu-
ral image segmentation models and medical domain knowledge. However, prior methods
only focus on single image segmentation or 3D convolutional operation based volume
segmentation, and overlook the spatial correlations of inter-slice and temporal correla-
tions of the inter-sequence in DCE-MRI images. In this paper, we propose a novel end-to-
end temporal-spatial graph attention network (TSGAN), which precisely segments tumor
of 4D (volume space, time) DCE-MRI images by conjointly exploiting the spatial con-
textual dependency of inter-slice and temporal contextual dependency of inter-sequence.
Specially, we design a graph temporal attention module to integrate the temporal-spatial
representations hidden in 4D data into deep segmentation. The spatial dependency is
learnt by graph attention operation, which attends over its neighbourhoods’ features for
each vertex. Meanwhile, the spatial representations learnt by the graph attention layer are
combined with the temporal representations by a temporal attention operator. Then the
temporal dependency is exploited by spreading on the graph. We also design a tumour
structural similarity (TSS) loss used to exploit the tumour structural dependency and en-
hance inter-voxel similarity within the same tissue for segmentation. We demonstrate that
the proposed model outperforms recent state-of-the-art methods through comprehensive
experiments.

1 Introduction

Breast cancer [8] is the primary cause of death from cancer among women. Dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) can non-invasively uncover both
temporal and spatial properties of the physiological tissue, which plays an important role in
diagnosis and staging of breast tumors [23] [43]. For treatment selection and therapy evalu-
ation, it is a vital process to precisely segment breast tumor in DCE-MRI images. However,
it is not only challenging but also time-consuming to segment breast tumor manually. So
many automatic breast tumor segmentation methods have been proposed.

The classical methods of breast tumor segmentation consist of three types: threshold
based methods [15, 47], graph partitioning methods [13, 25] and cluster based methods
[2, 3, 33]. Threshold based methods tried to automatically select an optimal threshold for
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Figure 1: DCE-MRI images and tumor segmentation of breast cancer of one patient. The
left displays the breast tissue and the right is the corresponding tumor segmentation.

identifying differences between background and tumors. Graph partitioning methods were
proposed to take advantage of the similarity between the neighborhood pixels. The image
can be seen as a graph, in which each pixel was regarded as a node and the similarity be-
tween pixels were seen as the edges. Breast tumor was segmented by partitioning the graph
according to a specific criterion. Cluster based methods was utilized to learn statistical in-
formation between background and tumors. However, these methods are difficult to obtain
accurate breast tumor segmentation due to the complexity of tumor texture characteristics
[1, 34] and intensity similarity between background and tumors.

To overcome these difficulties, deep learning based segmentation approaches have been
proposed. Many segmentation models based on Convolutional neural networks have achieved
remarkable performance. U-Net [35] with a contracting path and a symmetric expanding
path was proposed for accurate semantic segmentation. Inspired by U-Net, V-Net [30] was
proposed for using volumetric convolutions to process 3D images. Pixel deconvolutional
layer (PixelDCL) [11] tried to focus on the intrinsic relations among neighboring pixels
during the up-sample process. However, these models did not take into account non-local
information for a limited receptive field. Several methods have been presented to deal with
this issue. Yu et al. [45] integrated multi-scale contextual information and enlarge the re-
ceptive field within dilated convolutions. In addition, multi-scale self-guided attention [38]
and criss-cross attention [17] modules were proposed to capture rich contextual dependen-
cies and yield discriminative features. More recently, several spatio-temporal architectures
[7, 21] were presented to capture spatio-temporal information for segmentation. Volumetric
Spatio-temporal memory networks [21] were deployed to exploit spatio-temporal informa-
tion from CT scans to improve the performance. Although the aforementioned methods
enforce global contextual dependencies, they are generic and are not optimal for specific
applications. Particularly, a core challenge for DCE-MRI image segmentation is how to
effectively model spatial and temporal relations.

In this paper, we focus on addressing the following segmentation challenges raised by
DCE-MRI images. First, inter-slices of medical images contain spatial contextual depen-
dency. Although 3D convolutional operation was used to exploit it, the computational cost is
high. Second, the imaging of the same position in different time sequences contain temporal
contextual dependency, which is not yet used for tumor segmentation.

To tackle the above challenges, we propose a novel end-to-end DCE-MRI image segmen-
tation framework called Temporal-Spatial Graph Attention Network (TSGAN) that exploits
spatial and temporal contextual dependencies. First, we encode the input volume data as a
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spatial graph, where vertexes represent slices and edges measure spatial relations between
them. In order to effectively exploit the spatial contextual dependency, we introduce graph
attention mechanism to exploit the correlations between each pair of vertexes. Second, we
design a temporal attention operator, which is applied to representations of different time
points, to implicitly incorporate temporal relations into the graph. In addition, we deploy
a tumour structural similarity (TSS) loss to exploit the tumour structural information for
segmentation.

In summary, we make the following contributions: (1) We design a novel end-to-end
temporal-spatial graph attention network to perform DCE-MRI image segmentation by ex-
ploiting spatial and temporal contextual dependencies. To the best of our current knowledge,
this is the first time that spatial and temporal contextual dependencies are simultaneously
leveraged for 4D breast tumour segmentation. (2) We propose a graph temporal attention
module, which integrates temporal attention with graph attention, to jointly consider the spa-
tial and temporal relations. TSS loss is introduced to exploit tumour structural information.
(3) Comprehensive experiments show that the proposed model outperforms the state-of-the-
art methods. Further experiments verify the contribution of different temporal volumes for
segmentation.

2 Related Work

2.1 Tumor Segmentation

Recently, convolutional neural networks (CNNs)-based architecture has achieved great re-
sults in the domain of tumor segmentation. Fully convolutional networks (FCNs) [27] and
U-Net [35] have been widely used for semantic segmentation. Both networks adopt the
encoder-decoder architectures to promote the accuracy and speed of segmentation. Havaei
et al. [14] proposed a two-pathway CNNs model for exploiting local details and contextual
information. However, the above methods focus on 2D slices obtained from 3D volume data,
leading to the spatial contextual information missing. To handle this issue, 3D convolutional
kernels are performed on 3D origin volume data. For instance, Myronenko [31] introduced
a 3D encoder-decoder structure with a variational auto-encoder branch for tumor segmen-
tation. V-Net [30] utilized volumetric convolutions and a dice coefficient based objective
function to segment the volume data at once. In addition, other methods that exploit spatial
context consist of formulating anisotropic and dilated convolution operations [4], combin-
ing conditional random field (CRF) [48], and employing attention mechanisms [26, 49].
While the aforementioned methods show promising consequences, it requires further efforts
to explore how to jointly exploit spatial and temporal contextual dependencies for tumor
segmentation in DCE-MRI images.

2.2 Graph Neural Networks (GNNs)

GNNs were introduced in Gori et al. [12] and Scarselli et al. [36] to effectively handle
general graphs like undirected and directed graphs. Graph convolutional networks (GCNs)
[20] were proposed for learning hidden layer representations using a first-order approxi-
mation of graph spectral convolutions. GCNs and its variants [16, 22, 44] have attracted a
surge of interest. However, the graph convolution operation requires specific graph structure.
Velickovi€ et al. [39] proposed graph attention networks that deal with graphs using self-
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Figure 2: Overview of the proposed model. The input DCE-MRI images have T sequences
and every sequence has k slices. We use a weight-sharing encoder to extract the feature
map for each slice. Then, feature maps are projected to obtain the useful representations,
which are corresponding to the slices. The representations at the first time are employed to
construct a original graph, whose vertexes represent slices and edges indicate the correlation
between slices. Following, the temporal-spatial contextual dependencies are extracted by
graph temporal attention module. Ultimately, The temporal-spatial graph is reprojected into
Decoder to obtain the tumor segmentation.

attentional layers, in which nodes can attend over the features of their neighbourhoods. In
recent years, GNNs have been applied to tackle computer vision tasks, such as hand-object
pose estimation [9], 3D object detection [5, 37], video-based person re-identification [42]
and visual relationship detection [29].

Graph-based methods have been paid more attention in segmentation. Specifically, Li et
al. [24] proposed spatial pyramid based graph reasoning networks to exploit multiple long-
range contextual patterns through graph reasoning in the feature space. A sparse layered
graph [19] was proposed for graph cut segmentation by adding explicit object interactions.
Wu et al. [41] explored intra-modular and inter-modular relationships between background
and foreground things for panoptic segmentation. Although these methods explore spatial
information, the spatial and temporal contextual dependencies are not fully exploited.

3 Proposed Methods

3.1 Overview

As shown in Figure 2, the proposed model consists of three key components: (a) Encoder,
(b) Graph temporal attention module (GTAM), and (c) Decoder. Particularly, given DCE-
MRI images, we represent it as U = {V},V,, ...,V }, where T is the number of samples after
the contrast injection. Meanwhile, for each volume of DCE-MRI images, we denote it as
V; ={81,82,...,8k }, where K is the number of slices in each volume. Firstly, we apply a
weight-sharing encoder to extract their feature maps y = {X/ }ZT:1 as the multi-temporal fea-
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Figure 3: The computation procedures of the temporal attention mechanism. Fy means
the origin features of each vertex, Fy; represents the temporal features of the corresponding
vertex and Fyo represents the output features.

ture representations of U. And each X! € y consists of K feature maps: X' = F,F, ...Fx,
where F; is the feature map of j-th slice in the volume, F; € RI>wXe where h,w,c repre-
sents the height, width and channel number. The whole encoder is based on 2D convolution
operation to reduce the computation complexity. Secondly, for each X' € y, we design a
spatial projection by 1 x 1 convolution kernel operation, which is used to transform the fea-
ture map into vertex-based feature map while preserving the spatial consistency. Afterwards,
to effectively capture spatial contextual dependency, the vertex-based features of V; are ap-
plied to the construction of a origin graph G. Then, for the graph G, we design a temporal
attention operation that is adaptive to our DCE-MRI image segmentation task, which can
well exploit inter-sequence correspondence while preserving the temporal contextual depen-
dency. Therefore, the G is fed into temporal attention operation, producing a temporal graph
G, which preserves temporal contextual dependency. Thirdly, G is integrated into a graph
attention layer, updating vertexes by attending over their neighbourhoods’ features and gen-

erating the temporal-spatial graph G. Finally, the concatenated features x@é are fed into a
decoder, generating the predicted DCE-MRI tumor segmentation.

3.2 Spatial Graph Construction

As aforementioned, to exploit and utilize the spatial contextual dependency of inter-slices,
we employ graph attention layer (GAT) to model the spatial relations between slices. We
define the constructed spatial graph as G(V,E) of K vertexes with vertexes v; € V and edges
e;j = (vi,vj) € E. Each slice is considered as a vertex and the edges represent the spatial
relations between slices. To reduce the computation complexity, we select g slices as its
neighbours to construct an undirected graph.

The spatial relations between every two slices in the graph are initialized as follows:

. ep(ReLU(vi—v;))
elvivj) = Y ek, exp(ReLU (vi —vj)) "
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3.3 Graph temporal attention Module

To effectively explore the temporal contextual dependency of inter-sequences, we introduce
a temporal attention operation to model the temporal relations between sequences. We use
Fy to represent the origin feature of each vertex and F; to represent the temporal feature of the
corresponding vertex. After temporal attention operation, we can obtain the output features
Fo, which learns the temporal contextual dependency. First, we calculate the attention map
I:“;,- by Fp and F;. The computational process of f,i is shown as Fig.3, and the formula is as
follows:

Fi = ¢(Fo;Wy)So ftmax(9T (Fo) ¢ (Fyi)) ()

where W is a learnable parameter.Then, the final temporal attention is defined as :
Fo = atFsi+ Fo 3)

where « is a trainable parameter and F,; focuses on temporal relations of inter-sequence.

Therefore, after temporal attention operation, we can obtain a temporal graph G(V,E )
with vertexes v; € V. The next step is to excavate the spatial contextual dependency. We
employ a learnable parameters W € R "*M for linear transformation, in which M represents
the dimension of v;. The spatial graph attention coefficients are computed as follows:

ejj = o(Wv;, Wvj) 4

where v; is a neighbor of v;, e;; indicates the significance of slice j-th features to slice i and
« is a trainable parameter. For reducing the computation complexity, we select ¢ neighbours
of each vertex i, which are defined as: {V;_,/2,-,Vi—1,Vit1,--;Viyq/2}- In our experiments,
the ¢ is usually set as 4. Following, to make the attention coefficients simply comparable
with every vertex, we normalize the acquired spatial graph attention by softmax operation.
The final spatial graph attention coefficients are calculated as follows:

_ eplf(a | W)
U Tyex exp(f(al Wi | Wog]))

&)

where f represents LeakyRelu function, || represents concatenation operation and a’ is a
learnable weight. And we can get the final temporal-spatial representation of each vertex by
a linear combination:

5= F(Y eqWi) ©)

JeK;

in which f signifies LeakyRelu function. Then the learnt temporal-spatial representation v;
is passed through a decoder to produce the final tumour segmentation results.

3.4 Loss Function

Breast tumour contains abundant structural information, which is useful to calculate for seg-
mentation. However, most traditional segmentation loss functions overlook this point. Struc-
tural Similarity is an indicator to measure image similarity, which is often used in image
restoration and enhancement domain. Hence, we intuitively employ it to exploit the tumour
structural information. Formally, we denote P; as the prediction map of i-th slice and T; as
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the target map of i-th slice. Then we compute the tumour structural similarity loss Lrgs as
the following equation:

(2upuz; +¢1)(20R7; + ¢2)
Wp, + 1z, +c1)(0p, + 0F +2)

(7

Lrss = —
(

where Lp. is the mean of P,, Uz, is the mean of T;, 612)’_ is the variance of P, 0'%, is the variance
of T;, ¢1 and ¢, is constant to maintain stability, and opr; is the covariance of P; and 7;.

By integrating the tumour structural similarity minimization principle with TSGAN model,
we can obtain the objective function:

Lrscan = Ls+ AsLtss (8

in which Lg is the dice loss to evaluate the segmentation performance, Lrgs measures the
tumour structural similarity and A, is the regularization parameter to balance the trade-off.

4 Experiments

4.1 Datasets and Implementation Details

We conduct experiments on the publicly available Breast-MRI-NACT-Pilot dataset [32] to
evaluate our proposed TSGAN. The Breast-MRI-NACT-Pilot dataset includes DCE-MRI
data of 64 patients with breast cancer, which are obtained on a 1.5-T scanner (Signa, GE
Healthcare, Milwaukee, WI) using a bilateral phased array breast coil, high spatial resolu-
tion and low temporal resolution. The section thickness is 2 mm and the size of MR matrix
is 256256 x60. Each DCE-MRI data contains three time points, including initial moment,
2.5 minutes and 7.5 minutes from the start of the contrast injection. We randomly select 80%
patient data for training and the other 20% patient data for testing to maintain the consistency
of data distribution.

The proposed model was implemented with Pytorch and the training was executed on
double NVIDIA RTX 2080Ti GPUs. We utilize the Adam optimizer to optimize the model,
whose hyper-parameter is set as ; = 0.5, B, = 0.999 empirically. The initial learning rate
is set as & = 2x 107> and is decreased with a weight decay of 2x107°. For the hyper-
parameters in the proposed method, A is set as 0.2 empirically. In all the experiments, we
use 256256 original size with batch size of 9 and training is stopped when the learning rate
drops below 10~ or 2000 epochs are exceeded. We do not use any data augmentation.

The PA (Pixel Accuracy), Fl-score, mloU (mean intersection over union), RVD (Relative
volume Difference) and DSC (Dice Similarity Coefficient) metrics are adopted for evalua-
tion. PA measures the match between ground truth and predicted segmentation in simple
pixel level. FI-score measures the harmonic average of the precision and recall to balance
the difference between precision and recall. mean-IoU measures the match between ground
truth and predicted segmentation by calculating the ratio of intersection and union. RVD
measures the volume difference between predicted segmentation and ground truth. DSC
is used to evaluate the similarity between predicted results and ground truth by computing
intersection area and total area. A better segmentation method has a larger value of PA,
Fl-score, mean-IoU and DSC while a smaller value of RVD.
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Table 1: Quantitative comparison with other methods (Mean=std).

Method PA(%) | F1(%) mloU(%) | RVD(voxel) | DSC(%)

3D-Unet [6] 942+1.6 | 385433 | 52.843.8 | 8.7+1.4 48.5+3.5
Vnet [30] 97.4+1.1 | 459429 | 65.14£3.4 | 3.441.0 52.943.2
NINet [40] 96.8-20.9 | 45.642.6 | 64.6+£3.7 | 3.9£1.1 52243.1
DuANet [10] 96.5+£1.3 | 45.142.9 | 63.442.9 | 6.3£1.6 52.343.1
MultiResUNet [18] | 98.04£0.9 | 55.442.8 | 70.242.7 | 2.4£1.0 55.6:£2.8
LNet [7] 97.61.2 | 48.142.4 | 65.143.1 | 2.7£1.3 52.342.9
DCUNet [28] 98.140.9 | 49.142.5 | 67.7+£2.7 | 2.1£0.9 53.142.6
TSGAN 98.540.7 | 63.2+2.0 | 74.742.5 | 2.240.8 63.5+2.5

4.2 Experimental Results

We compare our TSGAN with other methods for tumor segmentation on Breast-MRI-NACT-
Pilot dataset, including 3D-Unet [6], Vnet [30], Non-local Network (NINet) [40], Dual
Attention Network (DuANet) [10], MultiResUNet (MRUNet) [18], Longitudinal Network
(LNet) [7] and DCUNet [28]. 3D-Unet and Vnet are designed to solve the 3D volume
segmentation, and has been applied to many medical image segmentation works [46] [6].
NINet and DuANet are presented to exploit global information by non-local block or at-
tention mechanism. MultiResUNet and DCUNet are the work of improvement of U-Net.
LNet is proposed to learn from spatio-temporal changes to guide the network for Multiple
Sclerosis Lesion Segmentation. To make a fair comparison, we not only use the same data
preprocessing for all methods, but retrain all models using unified implementation.

Table 1 shows the quantitative comparison with other methods. We report the mean value
and standard deviation of repeat experiments for each method. Table 1 reveals that the pro-
posed model can achieve the improved performance on most evaluation metrics compared
with other methods. These deep learning methods including 3D-Unet, Vnet, Non-local Net-
work, Dual Attention Network, MultiResUNet and DCUNet only extract the spatial features
based on 3D convolutional operation or attention mechanism. Due to DCE-MRI images are
four-dimensional data containing spatial and temporary information, it is the most appreciate
to take full advantage of spatial and temporal features simultaneously. The proposed TSGAN
can exploit both spatial and temporal features based on graph temporal attention module,
which can guide the tumour segmentation. We note that DCUNet can achieve better results
on RVD metric. However, the proposed model can outperform the DCUNet by 0.4%, 14.1%,
7.0% and 10.4% in PA, F1, mloU and DSC. In comparison with the results of LNet learning
spatio-temporal changes, the mean PA, FI, mloU, RVD and DSC increase by approximately
by 0.9%, 15.1%, 9.6%, 0.5 and 11.2%, respectively. In general, the proposed method can
achieve improvements among most metrics (PA: 0.4%, Fl-score: 7.8%, mean-loU: 4.5%

Table 2: Time of each epoch in training.

Method | 3D-Unet | Vnet | NINet | DuANet | MRUNet | LNet | DCUNet | Ours

Time(s) | 70.3 325 | 293 52.0 42.0 39.8 | 51.8 204
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Table 3: Quantitative comparison of different temporal volumes. (Mean=std)

PA(%) FI1(%) mloU(%) | RVD(voxel) | DSC(%)

TO+T1 95.6+£0.8 | 33.6£3.8 | 59.1+3.6 | 9.8+1.3 50.1£3.1
TO+T2 96.1£0.8 | 32.1£3.4 | 58.4£3.7 | 5.94+0.9 49.2+2.8
TI1+T2 97.7£0.6 | 55.6£2.1 | 70.8£2.2 | 4.1+1.1 58.9+2.8

TO+T1+T2 | 98.5+0.7 | 63.2+£2.0 | 74.7£2.5 | 2.1+0.8 63.5£2.5

Table 4: Mean pixel intensity of different temporal volume subtraction.
T1-TO T2-TO T2-T1
Mean pixel intensity | 164.89884 | 159.57919 | 25.49661

and DSC: 7.9%).

We also compare running speed comparison with other methods. Table 2 shows the run-
ning time of each epoch. All the experiments are implemented on a device with a 3.60GHz
Intel(R) Core(TM) i9-9900K CPU, 16GB RAM, and two NVIDIA RTX 2080Ti GPUs. It
is distinct that the proposed model is faster than other methods. We attribute this to that the
proposed model is based on 2D operation, which can avoid complex computations.

4.3 Ablation Study

To further verify the contribution of different temporal volumes, we design ablation experi-
ments to figure out the effect. The ablation experiments include three kinds of combination
of temporal volumes (T0+T1, TO+T2 and T1+T2) for that the dataset have three time points.
Table 3 shows the quantitative results of different temporal volumes. From Table 3, we can
see that the segmentation performance of TO+T1 and TO+T2 are inferior to the TO+T1+T2
on all evaluation metrics. We can also find that the segmentation results of T1+T2 outper-
form TO+T1 and TO+T2. We attribute this to that different temporal volumes contain diverse
temporal-spatial contextual information and play different roles for tumour segmentation. In
addition, the segmentation results of TO+T14+T2 excels other three combinations by 0.8%,
7.6%, 3.9%, 2.0 voxels and 4.6% in PA, F1, mloU, RVD and DSC. We attribute it to that
three temporal volumes own more abundant temporal-spatial contextual information. From
Table 3, we can deduce that T1+T2 temporal volumes account for the major contribution
for tumour segmentation. To confirm the above assumption, for two temporal volumes, we
utilize the subtraction and then compute the mean pixel value to represent the temporal char-
acteristic value. We calculate mean pixel intensity of different temporal volume subtraction
to seek the potential relationship. Table 4 shows the value of mean pixel intensity. From
Table 4, we can see that the mean pixel intensity of T1-TO and T2-TO is quite similar, and
both are different from T2-T1. Thus, this is a element influencing the segmentation results
for it has different temporal contextual information.

In addition, we conduct an ablation study to identify the impact of the proposed loss
function. The qualitative comparison of different components is shown in Figure 4. We ob-
serve that the segmentation details achieve significant improvement when compared to the
baseline model. Table 5 reports the quantitative comparison of different components. It is
clearly that the tumour structural similarity loss brings overall performance improvement
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(a)

Figure 4: Visualization comparison of different components. (a) MR image. (b) ground
truth. (c) Baseline. (d) Baseline+Lygg

Table 5: Ablation analysis of different components in the proposed method. (Mean4std)
PA(%) F1(%) mloU(%) | RVD(voxel) | DSC(%)
Baseline 98.0+0.8 | 49.2+2.5 | 68.1+2.7 | 2.4+0.9 58.5+2.6
Baseline+Lyss | 98.5+0.7 | 63.2+2.0 | 74.7+2.5 | 2.2+0.8 63.5+£2.5

(DSC: 0.5%, FI: 14.0%, mloU: 6.6%, RVD: 0.2 voxel and DSC: 5%) compared with base-
line, which is implemented with only dice loss. This indicates that the proposed Lrgs can
contribute to the learning of breast tumor structural information for better segmentation.

5 Conclusion

In this paper, we propose a novel temporal-spatial graph attention network (7SGAN) to per-
form 4D DCE-MRI tumor segmentation. We explore the spatial contextual dependency of
inter-slice and temporal contextual dependency of inter-sequence. We design a graph tempo-
ral attention module to integrate the temporal-spatial information hidden in DCE-MRI im-
ages into tumor segmentation. The whole network is based on 2D operations, so it can avoid
complex and expensive computations. The experimental results demonstrate the superiority
of our TSGAN, which achieves competitive performance both in accuracy and efficiency.
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