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Abstract

Most of us are not experts in specific fields, such as ornithology. Nonetheless, we
do have general image and language understanding capabilities that we use to match
what we see to expert resources. This allows us to expand our knowledge and perform
novel tasks without ad-hoc external supervision. On the contrary, machines have a much
harder time consulting expert-curated knowledge bases unless trained specifically with
that knowledge in mind. Thus, in this paper we consider a new problem: fine-grained
image recognition without expert annotations, which we address by leveraging the vast
knowledge available in web encyclopedias. First, we learn a model to describe the
visual appearance of objects using non-expert image descriptions. We then train a fine-
grained textual similarity model that matches image descriptions with documents on a
sentence-level basis. We evaluate the method on two datasets and compare with several
strong baselines and the state of the art in cross-modal retrieval. Code is available at:
https://github.com/subhc/clever.

1 Introduction

Deep learning and the availability of large-scale labelled datasets have led to remarkable
advances in image recognition tasks, including fine-grained recognition [21, 36, 57]. The
problem of fine-grained image recognition amounts to identifying subordinate-level categories,
such as different species of birds, dogs or plants. Thus, the supervised learning regime in this
case requires annotations provided by domain experts or citizen scientists [52].

While most people, unless professionally trained or enthusiasts, do not have knowledge
in such specific domains, they are generally capable of consulting existing expert resources
such as books or online encyclopedias, e.g. Wikipedia. As an example, let us consider bird
identification. Amateur bird watchers typically rely on field guides to identify observed
species. As a general instruction, one has to answer the question “what is most noticeable
about this bird?” before skimming through the guide to find the best match to their observation.
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Figure 1: Fine-Grained Image Recognition without Expert Labels. We propose a novel
task that enables fine-grained classification without using expert class information (e.g. bird
species) during training. We frame the problem as document retrieval from general image
descriptions by leveraging existing textual knowledge bases, such as Wikipedia.

The answer to this question is typically a detailed description of the bird’s shape, size, plumage
colors and patterns. Indeed, in Fig. 1, the non-expert observer might not be able to directly
identify a bird as a “Vermillion Flycatcher”, but they can simply describe the appearance
of the bird: “this is a bright red bird with black wings and tail and a pointed beak”. This
description can be matched to an expert corpus to obtain the species and other expert-level
information.

On the other hand, machines have a much harder time consulting off-the-shelf expert-
curated knowledge bases. In particular, most algorithmic solutions are designed to address a
specific task with datasets constructed ad-hoc to serve precisely this purpose. Our goal, instead,
is to investigate whether it is possible to re-purpose general image and text understanding
capabilities to allow machines to consult already existing fextual knowledge bases to address
a new task, such as recognizing a bird.

We introduce a novel task inspired by the way a layperson would tackle fine-grained
recognition from visual input; we name this CLEVER, i.e. Curious Layperson-to-Expert
Visual Entity Recognition. Given an image of a subordinate-level object category, the task is
to retrieve the relevant document from a large, expertly-curated text corpus; to this end, we
only allow non-expert supervision for learning to describe the image. We assume that: (1) the
corpus dedicates a separate entry to each category, as is, for example, the case in encyclopedia
entries for bird or plant species, etc., (2) there exist no paired data of images and documents
or expert labels during training, and (3) to model a layperson’s capabilities, we have access to
general image and text understanding tools that do not use expert knowledge, such as image
descriptions or language models.

Given this definition, the task classifies as weakly-supervised in the taxonomy of learning
problems. We note that there are fundamental differences to related topics, such as image-
to-text retrieval and unsupervised image classification. Despite a significant amount of prior
work in image-to-text or text-to-image retrieval [20, 22, 41, 58, 72], the general assumption
is that images and corresponding documents are paired for training a model. In contrast to
unsupervised image classification, the difference is that here we are interested in semantically
labelling images using a secondary modality, instead of grouping similar images [5, 8, 51].

To the best of our knowledge, we are the first to tackle the task of fine-grained image
recognition without expert supervision. Since the target corpus is not required during training,
the search domain is easily extendable to any number of categories/species—an ideal use case
when retrieving documents from dynamic knowledge bases, such as Wikipedia. We provide
extensive evaluation of our method and also compare to approaches in cross-modal retrieval,
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despite using significantly reduced supervision.

2 Related Work

In this paper, we address a novel problem (CLEVER). Next we describe in detail how it differs
from related problems in the computer vision and natural language processing literature and
summarise the differences with respect to how class information is used in Table 1.

Fine-Grained Recognition. The goal of fine-grained
visual recognition (FGVR) is categorising objects at sub-
ordinate level, such as species of animals or plants [29,

Class Information

37,52, 53, 57]. Large-scale annotated datasets require Task Train Test
domain experts and are thus difficult to collect. FGVR is FGVR K K
more challenging than coarse-level image classification ZSL K U
as it involves categories with fewer discriminative cues GZSL K K+U
and fewer labeled samples. To address this problem, =~ CLEVER U U

supervised methods exploit side information such as
part annotations [71], attributes [55], natural language
descriptions [19], noisy web data [18, 28, 69] or humans
in the loop [7, 9, 10]. Attempts to reduce supervision in FGVR are mostly targeted towards
eliminating auxiliary labels, e.g. part annotations [17, 24, 49, 73]. In contrast, our goal is
fine-grained recognition without access to categorical labels during training. Our approach
only relies on side information (captions) provided by laymen and is thus unsupervised from
the perspective of “expert knowledge”.

Table 1: Overview of related topics
(K: known, U: unknown).

Zero/Few Shot Learning. Zero-shot learning (ZSL) is the task of learning a classifier
for unseen classes [65]. A classifier is generated from a description of an object in a sec-
ondary modality, mapping semantic representations to class space in order to recognize
said object in images [50]. Various modalities have been used as auxiliary information:
word embeddings [16, 64], hierarchical embeddings [26], attributes [3, 14] or Wikipedia
articles [12, 13, 44, 74]. Most recent work uses generative models conditioned on class
descriptions to synthesize training examples for unseen categories [15, 27, 32, 56, 66, 67].
The multi-modal and often fine-grained nature of the standard and generalised (G)ZSL task
renders it related to our problem. However, different from the (G)ZSL settings our method
uses neither class supervision during training nor image-document pairs as in [12, 13, 44, 74].

Cross-Modal and Information Retrieval. While information retrieval deals with extract-
ing information from document collections [35], cross-modal retrieval aims at retrieving
relevant information across various modalities, e.g. image-to-text or vice versa. One of the
core problems in information retrieval is ranking documents given some query, with a classi-
cal example being Okapi BM25 [48]. With the advent of transformers [54] and BERT [11],
state-of-the-art document retrieval is achieved in two-steps; an initial ranking based on key-
words followed by computationally intensive BERT-based re-ranking [34, 38, 39, 70]. In
cross-modal retrieval, the common approach is to learn a shared representation space for
multiple modalities [4, 20, 22, 40, 41, 42, 58, 62, 72]. In addition to paired data in various
domains, some methods also exploit auxiliary semantic labels; for example, the Wikipedia
benchmark [43] provides broad category labels such as history, music, sport, etc.

We depart substantially from the typical assumptions made in this area. Notably, with the
exception of [20, 60], this setting has not been explored in fine-grained domains, but generally
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targets higher-level content association between images and documents. Furthermore, one
major difference between our approach and cross-modal retrieval, including [20, 60], is that
we do not assume paired data between the input domain (images) and the target domain
(documents). We address the lack of such pairs using an intermediary modality (captions)
that allows us to perform retrieval directly in the text domain.

Natural Language Inference (NLI) and Semantic Textual Similarity (STS). Also re-
lated to our work, in natural language processing, the goal of the NLI task is to recognize
textual entailment, i.e. given a pair of sentences (premise and hypothesis), the goal is to
label the hypothesis as entailment (true), contradiction (false) or neutral (undetermined) with
respect to the premise [6, 63]. STS measures the degree of semantic similarity between two
sentences [ 1, 2]. Both tasks play an important role in semantic search and information retrieval
and are currently dominated by the transformer architecture [11, 31, 47, 54]. Inspired by
these tasks, we propose a sentence similarity regime that is domain-specific, paying attention
to fine-grained semantics.

3 Method

We introduce the problem of layperson-to-expert visual entity recognition (CLEVER), which
we address via image-based document retrieval. Formally, we are given a set of images x; € Z
to be labelled given a corpus of expert documents D; € D, where each document corresponds
to a fine-grained image category and there exist K = |D| categories in total. As a concrete
example, Z can be a set of images of various bird species and D a bird identification corpus
constructed from specialized websites (with one article per species). Crucially, the pairing of
x; and D; is not known, i.e. no expert task supervision is available during training. Therefore,
the mapping from images to documents cannot be learned directly but can be discovered
through the use of non-expert image descriptions C; for image x;.

Our method consists of three distinct parts. First, we learn, using “layperson’s supervi-
sion”, an image captioning model that uses simple color, shape and part descriptions. Second,
we train a model for Fine-Grained Sentence Matching (FGSM). The FGSM model takes as
input a pair of sentences and predicts whether they are descriptions of the same object. Finally,
we use the FGSM to score the documents in the expert corpus via voting. As there is one
document per class, the species corresponding to the highest-scoring document is returned as
the final class prediction for the image. The overall inference process is illustrated in Fig. 2.

3.1 Fine-grained Sentence Matching

The overall goal of our method is to match images to expert documents — however, in absence
of paired training data, learning a cross-domain mapping is not possible. On the other hand,
describing an image is an easy task for most humans, as it usually does not require domain
knowledge. It is therefore possible to leverage image descriptions as an intermediary for
learning to map images to an expert corpus.

To that end, the core component of our approach is the FGSM model f(c;,c2) € R that
scores the visual similarity of two descriptions ¢ and c;. We propose to train f in a manner
similar to the textual entailment (NLI) task in natural language processing. The difference to
NLI is that the information that needs to be extracted here is fine-grained and domain-specific
e.g. “a bird with blue wings” vs. “this is a uniformly yellow bird”. Since we do not have
annotated sentence pairs for this task, we have to create them synthetically. Instead of the
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Figure 2: Overview. We train a model for fine-grained sentence matching (FGSM) using
layerperson’s annotations, i.e. class-agnostic image descriptions. At test time, we score
documents from a relevant corpus and use the top-ranked document to label the image.

terms entailment and contradiction, here we use positive and negative to
emphasize that the goal is to find matches (or mismatches) between image descriptions.

We propose to model f as a sentence encoder, performing the semantic comparison of
c1,c2 in embedding space. Despite their widespread success in downstream tasks, most
transformer-based language models are notoriously bad at producing semantically meaningful
sentence embeddings [30, 47]. We thus follow [47] in learning an appropriate textual similarity
model with a Siamese architecture built on a pre-trained language transformer. This also
allows us to leverage the power of large language models while maintaining efficiency
by computing an embedding for each input independently and only compare embeddings
as a last step. To this end, we compute a similarity score for ¢; and ¢, as f(c1,c2) =
h([@1; 925 |@1 — ¢2]]), where [-] denotes concatenation, and 4 and ¢ are lightweight MLPs
operating on the average-pooled output of a large language model T(-) with the shorthand
notation ¢; = ¢(T(cy)).

Training. One requirement is that the FGSM model should be able to identify fine-grained
similarities between pairs of sentences. This is in contrast to the standard STS and NLI tasks
in natural language understanding which determine the relationship (or degree of similarity)
of a sentence pair on a coarser semantic level. Since our end-goal is visual recognition, we
instead train the model to emphasize visual cues and nuanced appearance differences.

Let C; be the set of human-annotated descriptions for a given image x;. Positive training
pairs are generated by exploiting the fact that, commonly, each image has been described
by multiple annotators; for example in CUB-200 [57] there are |C;| = 10 captions per image.
Thus, each pair (from C; x C;) of descriptions of the same image can be used as a positive pair.
The negative counterparts are then sampled from the complement C; = Ui Ci, i.e. among the
available descriptions for all other images in the dataset. We construct this dataset with an
equal amount of samples for both classes and train f with a binary cross entropy loss.

Inference. During inference the sentence embeddings ¢ for each sentence in each document
can be precomputed and only /4 needs to be evaluated dynamically given an image and its
corresponding captions, as described in the next section. This greatly reduces the memory
and time requirements.

3.2 Document Scoring

Although trained from image descriptions alone, the FGSM model can take any sentence as
input and, at test time, we use the trained model to score sentences from an expert corpus
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against image descriptions. Specifically, we assign a score z;; € R to each expert document
D; given a set of descriptions for the i-th image:

1

=Dyl Y fles) M

()] €C><D

Zij =

Since there are several descriptions in C; and sentences in D, we compute the final document
score as an average of individual predictions (scores) of all pairs of descriptions and sen-
tences. Aggregating scores across the whole corpus D, we can then compute the probability

p(Dj|xi) = 5 ;{,k of a document D; € D given image x; and assign the document (and
consequently class) with the highest probability to the image.

3.3 Bridging the Domain Gap

While training the FGSM model, we have so far only used laypersons’ descriptions, disregard-
ing the expert corpus. However, we can expect the documents to contain significantly more
information than visual descriptions. In the case of bird species, encyclopedia entries usually
also describe behavior, migration, conservation status, etc. In this section, we thus employ
two mechanisms to bridge the gap between the image descriptions and the documents.

Neutral Sentences. We introduce a third, neutral class to the classification problem,
designed to capture sentences that do not provide relevant (visual) information. We generate
neutral training examples by pairing an image description with sentences from the documents
(or other descriptions) that do not have any nouns in common. Instead of binary cross entropy,
we train the three-class model (positive/neutral/negative) with softmax cross entropy.

Score Distribution Prior. Despite the absence of paired training data, we can still impose
priors on the document scoring. To this end, we consider the probability distribution p(D |x)
over the entire corpus D given an image x in a training batch 3. We can then derive a
regularizer R(B) that operates at batch-level:

RB) =Y (= (D10, p(Dx)+ ¥ (p(D]2), p(D[¥)) @

xeB X' eB\x

where (-,-) denotes the inner product of two vectors. The intuition of the two terms of the
regularizer is as follows. (p(D|x), p(D|x)) is maximal when the distribution assigns all
mass to a single document. Since the score z;; is averaged over all captions of one image,
this additionally has the side effect of encouraging all captions of one image to vote for the
same document. The second term of R(B3) then encourages the distributions of two different
images to be orthogonal, favoring the assignment of images uniformly across all documents.
Since R(B) requires evaluation over the whole document corpus for every image, we first
pre-train f, including the large transformer model 7, (c.f. Section 3.1). After convergence, we
extract sentence features for all documents and image descriptions and train only the MLPs ¢
and i with £+ AR, where A balances the 3-class cross entropy loss £ and the regularizer.

4 Experiments

We validate our method empirically for bird and plant identification. To the best of our
knowledge, we are the first to consider this task, thus in absence of state-of-the-art methods,
we ablate the different components of our model and compare to several strong baselines.
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CUB-200 FLO
Method top-17 top-51 MR| top-11 top-51 MR|
random guess 0.5 2.5 100.0 0.9 49 51.0
SRoBERTa-STSb [47] (no-ft) 1.3 64 734 1.1 7.7 452
SRoBERTa-NLI [31] (no-ft) 1.9 53 813 0.9 57 482
Okapi BM25 [48] 1.0 75 1782 1.6 8.0 439
TF-IDF [25] 2.2 9.7 1721 1.4 50 452
RoBERTa [31] 4.3 16.6 44.6 1.1 9.6 42.6
ours 7.9 28.6 319 6.2 142 39.7

Table 2: Comparison to baselines. We report the retrieval performance of our method on
CUB-200 and Oxford-102 Flowers (FLO) and compare to various strong baselines.

4.1 Datasets and Experimental Setup

Datasets. We evaluate our method on Caltech-UCSD Birds-200-2011 (CUB-200) [57]
and the Oxford-102 Flowers (FLO) dataset [36]. For both datasets, Reed et al. [46] have
collected several visual descriptions per image by crowd-sourcing to non-experts on Amazon
Mechanical Turk (AMT). We further collect for each class a corresponding expert document
from specialised websites, such as AllAboutBirds' (AAB) and Wikipedia.

Setup. We use the image-caption pairs to train two image captioning models: “Show,
Attend and Tell” (SAT) [68] and AoANet [23]. Unless otherwise specified, we report the
performance of our model based on their ensemble, i.e. combining predictions from both
models. As the backbone T of our sentence transformer model, we use RoBERTa-large [31]
fine-tuned on NLI and STS datasets using the setup of [47]. Please see the appendix for
further implementation, architecture, dataset and training details.

We use three metrics to evaluate the performance on the benchmark datasets. We compute
top-1 and top-5 per-class retrieval accuracy and report the overall average. Additionally, we
compute the mean rank (MR) of the target document for each class. Here, retrieval accuracy
is identical to classification accuracy, since there is only a single relevant article per category.

4.2 Baseline Comparisons

Since this work is the first to explore the mapping of images to expert documents without
expert supervision, we compare our method to several strong baselines (Table 2).

Our FGSM performs text-based retrieval, we evaluate current text retrieval systems. TF-
IDF: Term frequency-inverse document frequency (TF-IDF) is widely used for unsupervised
document retrieval [25]. For each image, we use the predicted captions as queries and
use the TF-IDF textual representation for document ranking instead of our model. We
empirically found the cosine distance and n-grams with n = 2,3 to perform best for TF-IDF.
BM25: Similar to TF-IDF, BM25 [48] is another common measure for document ranking
based on n-gram frequencies. We use the BM25 Okapi implementation from the python
package rank—bm25 with default settings. ROBERTa: One advantage of processing caption-
sentence pairs with a Siamese architecture, such as SBERT/SRoBERTa [47], is the reduced
complexity. Nonetheless, we have trained a transformer baseline for text classification, using

Ihttps://allaboutbirds.com
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Method top-11 top-57 MR| Method sup. top-11 top-57 MR]|
user interaction 119 375 248 random guess X 20 100 250

ViLBERT [33] X 35 148 202
FGSM + cosine 45 178 355 TF-IDF [25] X 72 286 189
FGSM w/ SAT 43 150 429 CLIP [45] 4 100 329 14.0
FGSM w/ AoANet 57 208 383 DSCMR [72] v 135 347 152
FGSM w/ ensemble 5.9 20.0 36.1 ours X 20.9 50.7 926

FGSM + R(B) [2-cls] 74 246 299
FGSM + R(B) [3-cls] 79 286 319 Table 4: Comparison to cross-media re-
trieval. We evaluate the performance of
Table 3: Ablation and user study. On methods on the ZSL split of CUB-200. Our
CUB-200 we evaluate scoring functions, method performs favorably against existing
captioning models and the regularizer R(B). approaches trained with more supervision.

the same backbone [31], concatenating each sentence pair with a SEP token and training
as a binary classification problem. We apply this model to score documents, instead of
FGSM, aggregating scores at sentence-level. SROBERTa-NLI/STSb: Finally, to evaluate the
importance of learning fine-grained sentence similarities, we also measure the performance
of the same model trained only on the NLI and STSb benchmarks [47], without further
fine-tuning. Following [47] we rank documents based on the cosine similarity between the
caption and sentence embeddings.

Our method outperforms all bag-of-words and learned baselines. Approaches such as
TF-IDF and BM25 are very efficient, albeit less performant than learned models. Notably, the
closest in performance to our model is the transformer baseline (RoBERTa), which comes at
a large computational cost (347 sec vs. 0.55 sec for our model per image on CUB-200).

4.3 Ablation & User Interaction

We ablate the different components of our approach in Table 3. We first investigate the use of
a different scoring mechanism, i.e. the cosine similarity between the embeddings of ¢ and s
as in [47]; we found this to perform worse (FGSM + cosine). We also study the influence
of the captioning model on the final performance. We evaluate captions obtained by two
methods, SAT [68] and AoANet [23], as well as their ensemble. The ensemble improves
performance thanks to higher variability in the image descriptions. Next, we evaluate the
performance of our model after the final training phase, with the proposed regularizer and the
inclusion of neutral pairs (Section 3.3). R(B) imposes prior knowledge about the expected
class distribution over the dataset and thus stabilizes the training, resulting in improved
performance ([2-cls]). Further, through the regularizer and neutral sentences ([3-cls]), FGSM
is exposed to the target corpus during training, which helps reduce the domain shift during
inference compared to training on image descriptions alone (FGSM w/ ensemble).

Finally, our method enables user interaction, i.e. allowing a user to directly enter own
descriptions, replacing the automatic description model. In Table 3 we have simulated this by
evaluating with ground-truth instead of predicted descriptions. Naturally, we find that human
descriptions indeed perform better, though the performance gap is small. We attribute this
gap to a much higher diversity in the human annotations. Current image captioning models
still have diversity issues, which also explains why our ensemble variant improves the results.
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Input Predicted descriptions Top 5 — retrieval results
Vermilion Flycatcher v/ Scarlet Tanager X Cardinal X Rufous Hummingbird X Summer Tanager X
©

this bird has wings that are black and has a red belly

this bird is red and black in color with a stubby red beak
the bird has a red crown and a black eyering that is round
this bird has wings that are black and has a red belly and
black bill

]

Caspian Tem +/ Atic Tern X Elegant Tern X Heermann Gull X

Pileated Woodpecker X Rose-breasted Grosbeak X

this bird has wings that are grey and has a white belly
this bird is white with grey and has a long pointy beak

- this bird has wings that are white and has a black crown

this bird has wings that are white and has a long orange

" beak
[

Red-! headed Woodpecker +/|

. this bird has wings that are black and has a red head
this bird is black and red in color with a skinny black beak
and black eye rings
asmall bird with a red breast and black and white feathers
and a short beak
this bird has wings that are black , white and has a red head
[

Black-footed Albatross X Western Grebe X Brown Pelican v

this bird has wings that are brown and has a long neck
this is a large grey bird with a large downward pointing

beak

this particular bird has a belly that is gray and white

Laysan Albatross X White Pelican X

this is a large grey bird with a long neck and a large beak
[

Hooded Warbler X Common Yellowthroat X
this is a small yellow bird with a grey head and a small it 1
pointy beak
this little bird has a yellow belly and breast with a gray
wing and white wingbar

Pririe Warbler X Prothonotary Warbler X Mourning Warbler X
8 this bird has a yellow crown as well as a yellow belly
this bird has wings that are black and has a yellow belly

= * Aﬂ‘&g

Figure 3: Qualitative Results (CUB-200). We show examples of input images and their
predicted captions, followed by the top-5 retrieved documents (classes). For illustration
purposes, we show a random image for each document; the image is not used for matching.

4.4 Comparison with Cross-Modal Retrieval

Since the nature of the problem presented here is in fact cross-modal, we adapt a representative
method, DSCMR [72], to our data to compare to the state of the art in cross-media retrieval.
We note that such an approach requires image-document pairs as training samples, thus using
more supervision than our method. Instead of using image descriptions as an intermediary for
retrieval, DSCMR thus performs retrieval monolithically, mapping the modalities in a shared
representation space. We argue that, although this is the go-to approach in broader category
domains, it may be sub-optimal in the context of fine-grained categorization.

Since in our setting each category (species) is represented by a single article, in the
scenario that a supervised model sees all available categories during training, the cross-modal
retrieval problem degenerates to a classification task. Hence, for a meaningful comparison,
we train both our model and DSCMR on the CUB-200 splits for ZSL [65] to evaluate on
50 unseen categories. We report the results in Table 4, including a TF-IDF baseline on the
same split. Despite using no image-documents pairs for training, our method still performs
significantly better.

Additionally, we compare to representative methods from the vision-and-language rep-
resentation learning space. VILBERT [33] is a multi-modal transformer model capable of
learning joint representations of visual content and natural language. It is pre-trained on 3.3M
image-caption pairs with two proxy tasks. We use their multi-modal alignment prediction
mechanism to compute the alignment of the sentences in a document to a target image, similar
to VILBERT’s zero-shot experiments. The sentence scores are averaged to get the document
alignment score and the document with the maximum score is chosen as the class. Finally, we
compare to CLIP [45], that learns a multimodal embedding space from 400M image-text pairs.
CLIP predicts image and sentence embeddings with separate encoders. For a target image
we score each sentence using cosine similarity and average across the document for the final
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score. CLIP’s training data is not public, but we find that there is a high possibility it does
indeed contain expert labels as removing class names from documents hurts its performance.

4.5 Qualitative Results

In Fig. 3, we show qualitative retrieval results. The input image is shown on the left followed
by the predicted descriptions. We then show the top-5 retrieved documents/classes together
with an example image for the reader. Note that the example images are not used for matching,
as the FGSM module operates on text only. We find that in most cases, even when the retrieved
document does not match the ground truth class, the visual appearance is still similar. This is
especially noticeable in families of birds for which discriminating among individual species
is considered to be particularly difficult even for humans, e.g. warblers (last row).

5 Discussion

Like with any method that aims to reduce supervision, our method is not perfect. There are
multiple avenues where our approach can be further optimized.

First, we observe that models trained for image captioning tend to produce short sentences
that lack distinctiveness, focusing on the major features of the object rather than providing
detailed fine-grained descriptions of the object’s unique aspects. We believe there is a scope
for improvement if the captioning models could extensively describe each different part
and attribute of the object. We have tried to mitigate this issue by using an ensemble of
two popular captioning networks. However, using multiple models and sampling multiple
descriptions may lead to redundancy. Devising image captioning models that produce diverse
and distinct fine-grained image descriptions may provide improved performance on CLEVER
task; there is an active area of research [59, 61] that is looking into this problem.

Second, the proposed approach to scoring a document given an image uses all the
sentences in the document classifying them as positive, negative or neutral with respect to
each input caption. Given that the information provided by an expert document might be
noisy, i.e. not necessarily related to the visual domain, it is likely worthwhile to develop a
filtering mechanism for relevancy, effectively using only a subset of the sentences for scoring.

Finally, in-domain regularization results in a significant performance boost (Table 3),
which implies that the CLEVER task is susceptible to the domain gap between laypeople’s
descriptions and the expert corpus. Language models such as BERT/RoBERTa partially
address this problem already by learning general vocabulary, semantics and grammar during
pre-training on large text corpora, enabling generalization to a new corpus without explicit
training. However, further research in reducing this domain gap seems worthwhile.

6 Conclusion

We have shown that it is possible to address fine-grained image recognition without the use of
expert training labels by leveraging existing knowledge bases, such as Wikipedia. This is the
first work to tackle this challenging problem, with performance gains over the state of the art
on cross-media retrieval, despite their training with image-document pairs. While humans
can easily access and retrieve information from such knowledge bases, CLEVER remains a
challenging learning problem that merits future research.
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