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Abstract
Recently, many notable convolutional neural networks have powerful performance

with compact and efficient structure. To further pursue performance improvement, pre-
vious methods either introduce more computation or design complex modules. In this
paper, we propose an elegant weight-sharing based ensemble network embedded knowl-
edge distillation (EKD-FWSNet) to enhance the generalization ability of baseline models
with no increase of computation and complex modules. Specifically, we first design an
auxiliary branch alongside with baseline model, then set branch points and shortcut con-
nections between two branches to construct different forward paths. In this way, we form
a weight-sharing ensemble network with multiple output predictions. Furthermore, we
integrate the information from diverse posterior probabilities and intermediate feature
maps, which are then transferred to baseline model through knowledge distillation strat-
egy. Extensive image classification experiments on CIFAR-10/100 and tiny-ImageNet
datasets demonstrate that our proposed EKD-FWSNet can help numerous baseline mod-
els improve the accuracy by large margin (sometimes more than 4%). We also con-
duct extended experiments on remote sensing datasets (AID, NWPU-RESISC45, UC-
Merced) and achieve state-of-the-art results.

1 Introduction
Recent years have witnessed significant progress in various computer vision tasks [15, 21,
36, 48, 51, 52, 61] using deep convolutional neural networks. In practical tasks, many de-
vices strictly require networks to have high accuracy with limited memory and computation
resource. To address this issue, various methods have been proposed including efficient
network design [26, 29, 43, 54], network pruning [17, 19] and knowledge distillation [25].

As a recent popular and powerful method, knowledge distillation (KD) is widely ap-
plied in practical application to enhance the generalization ability of baseline models. With
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Figure 1: The diagram of previous knowledge distillation based networks and our pro-
posed EKD-FWSNet: left: teacher-student network, middle: student-classmate ensemble
network, right: EKD-FWSNet

the help of well-trained “teacher” model, student model can gain performance boost with-
out adding more parameters and complex modules. As shown in Fig.1, there are two main
types of KD based networks. In the left network, student model is trained to inherit the
knowledge of large and high-efficiency teacher model. However, the problem of offline
”teacher-student” mechanism is that the dependence of accompanying cumbersome teacher
models complicates the training process and increases memory and computation cost. The
middle network constructs multi-branch ensemble network and integrates KD methods to
optimize baseline model in an end-to-end manner. Some recent novel works [1, 3, 56] show
the power of this kind of KD based ensemble network. However, with the increase of class-
mate branches, the training burden increase obviously. In addition, distillation loss functions
also increase rapidly when more branches are added, which will also complicate training
process.

The above-mentioned issues from the two typical types of KD based networks motivate
us to propose a novel and easy-optimized end-to-end training framework (EKD-FWSNet)
to make the baseline model (student model) stronger. As shown in Fig. 1 right, we first
respectively set branch points on student and classmate branch. Then we create connec-
tions between two neighboring branch points from different branches to construct multiple
forward paths. To enhance the generalization ability of baseline model, we first integrate
the multiple predicted posterior probabilities and intermediate feature maps from different
forward paths. Then, we apply knowledge distillation to transfer the integrated information
to baseline model. Particularly, we do not distill integrated knowledge to classmate branch
because the weight-sharing blocks have been optimized once in baseline model. With this
ingenious design, EKD-FWSNet has simple yet efficient distillation loss functions. The
number of loss functions will not increase with more branches involved. Compared to previ-
ous KD based ensemble networks (Fig. 1 middle), EKD-FWSNet has much more efficient
training process. Moreover, according to the theory of ensemble learning, the final predicted
posterior probabilities and intermediate feature maps should have diversity to make voting
(soft voting) meaningful. However, the diversity may decrease caused by weight-sharing
blocks. To compensate diversity decrease, we insert feature augmentation modules including
SE (squeeze-and-excitation) [29], CAM (channel attention module) [14] and Dropout [53]
after weight-sharing blocks of baseline model.

To verify the effectiveness of EKD-FWSNet, we conduct extensive experiments on mul-
tiple benchmark classification datasets (CIFAR-10/100 [35] and tiny-ImageNet1) using cur-

1https://tiny-imagenet.herokuapp.com
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rent notable baseline models (e.g., ResNet [20, 21] and EfficientNet [54]). Baseline mod-
els optimizing in EKD-FWSNet perform much better. Some baseline models, especially
lightweight models (e.g., ResNet-20/32) gain more than 4% classification accuracy improve-
ment, which achieves the new state-of-the-art results. We also extend our experiments on
remote sensing classification datasets (AID [13], NWPU-RESISC45 [9], UC-Merced [62])
and also achieve state-of-the-art results. The main contributions are listed as follows.

• We propose a novel and efficient KD embedded weight-sharing based ensemble net-
work to improve the performance of baseline model without adding extra structures
and modules, so no extra memory and computation cost are introduced during infer-
ence.

• EKD-FWSNet maximally explores the potential of weight-sharing blocks, which eases
the training burden and provides an insight of designing high-efficiency KD based
ensemble training framework.

• We propose online feature augmentation blocks to compensate knowledge diversity
decrease caused by large number of weight-sharing blocks.

• Baseline models training in EKD-FWSNet perform much better (sometimes improve
over 4%) than individually training. On some benchmark datasets, our proposed
method achieves state-of-the-art classification results.

2 Related Work
Efficient convolutional neural networks. In recent years, researchers have introduced
many high-accuracy efficient networks for embedded devices with limited computing re-
source. Some networks like SqueezeNet [33], MobileNet [27, 28, 50], ShuffleNet [66] and
EfficientNet [54] utilize elegant structures to make the model compact and efficient. To com-
press networks, some researchers also apply low-bit quantization technique [18, 32, 40, 47],
low-rank decomposition [12, 34] and network pruning [2, 41, 46].
Knowledge distillation. KD is a notable method [25] to transfer knowledge from a larger
teacher model to a small student model. It is now widely used in various computer vi-
sion tasks such as classification [49, 55, 64], detection [4, 42], segmentation [44, 58], and
re-identification [7]. Recently, many notable works apply online knowledge distillation to
improve the generalization performance in an end-to-end manner without using pretrained
teacher models. [59, 60] propose an elegant KD based training framework to obtain high-
accuracy lightweight models by exploiting the data representation invariance within student
network itself. [31, 63, 65] dynamically generate several student networks from a full-size
network in depth-level or width-level. Some recent excellent works integrate ensemble
learning method into KD embedded frameworks [1, 68]. [30, 38] construct ensemble KD
from snapshots of iterative pruning, which achieves competitive performance. [3, 56] design
student-classmate network (Fig.1 middle) to obtain ensemble knowledge as teacher knowl-
edge, which can guide student and classmate efficiently.
Unsupervised representation learning methods. Our proposed method also has close re-
lation with some famous unsupervised representation learning methods, such as MoCo [22],
simCLR/simCLRv2 [5, 6] and BYOL [16] in terms of ”knowledge transferring” and self-
supervision among different branches. The difference can be summarized as follows. 1)
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Figure 2: The architecture of EKD-FWSNet. We set four branch points (bp1_cm,
bp2_cm, bp1_ms, bp2_ms) on main student and classmate branch to form three-
branch ensemble network. CM_layer2 and CM_layer3 are convolutional blocks, which
respectively have same structure as layer1 and layer2. With four branch points
and classmate branch, we form three forward paths (“conv1→layer1→layer2→layer3”,
“conv1→layer1→CM_layer2→CM_layer3” and “conv1→layer1→layer2→CM_layer3”.)
To transfer knowledge to baseline model (“main student”), We adopt ensemble attention
distillation and class probability distillation respectively on intermediate feature maps and
posterior class probabilities. Meanwhile, all branches are optimized with hard labels.

Unsupervised representation learning methods always employ contrastive learning to trans-
fer knowledge between feature embeddings of two transformed images, which can enhance
the representation capacity by maximally exploring the intra-class similarity and inter-class
variation in latent space. In our proposed method, we adopt ”knowledge distillation” mainly
for transferring more mature knowledge from stronger ensemble model to naive baseline
model. 2) The motivation of constructing multiple branches is different. Unsupervised rep-
resentation learning methods construct two branches to provide two transformations of input
images, which enriches the representation of each category in latent space. We construct
multiple branches for providing diverse predictions to obtain a stronger ensemble prediction.

3 Methodology

3.1 Architecture of EKD-FWSNet

To enhance the generalization ability of baseline model without adding extra parameters
and modules, we propose EKD-FWSNet with simple and efficient KD embedded training
process. As shown in Fig. 2, we respectively set two branch points on main student and
classmate branch and create connections to construct three-branch ensemble network. In
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EKD-FWSNet, “conv1 layer1”, “layer2” and “CM_layer3” are weight-sharing blocks. If
more diverse output predictions are required, we can flexibly set more branch points and
construct more forward paths. During training, images are first fed into “conv1 layer1”. And
then the feature maps respectively pass through layers of main student and classmate branch
to generate different predictions. During inference, we prune classmate branch and only
leave main student branch. With this architecture, EKD-FWSNet saves more training cost
and maximally explores the representation potential of weight-sharing blocks.

3.2 Online Feature Augmentation
Our proposed EKD-FWSNet utilizes weight-sharing blocks to save memory cost. However,
when more weight-sharing blocks involve, each forward path will get similar representation,
which will harm the diversity of different predictions. To solve this problem, we propose on-
line feature augmentation blocks (FA) to enrich the representation of each path. As shown in
Fig. 2, FA blocks are set between the two neighboring branch points of main student branch
and classmate branch. In this paper, we mainly employ SE [29], CAM [14] and Dropout [53]
blocks as FA blocks. Among them, SE and CAM blocks provide channel-wise attention re-
spectively utilizing global receptive field and relation among channels. Dropout can enrich
feature through random occupation and improve the representation ability of architecture.

3.3 Knowledge Distillation in EKD-FWSNet
Designing easy-optimized KD mechanism is important to better optimize baseline model. In
previous “student-classmate” ensemble networks [3, 56], distillation loss functions of previ-
ous works will rapidly increase when integrating more classmate branches. Too many aux-
iliary distillation loss functions complicates the training process and makes the optimization
become harder. To ease the training burden, only two distillation loss functions are designed
and the number of loss functions which will not increase with more forward paths involved.

Distillation on class probabilities. Generally, we use temperature-scaled softmax op-
eration to generate the posterior class probability p(ŷ = yi|xxx) for input sample xxx. The for-
mulation can be expressed as p(ŷ = yi|xxx) = e(zi/T )

∑
M
j=1 e(z j/T ) . Here, z denotes the logits, which is

the output feature vector of last fully-connected layer. M is total number of classes. T is the
temperature value, which is set to 3 in this paper. Then, we formulate the predicted class
probability vector of main student branch as pppms(xxx) = {pms(ŷ = 1|xxx), · · · , pms(ŷ = M|xxx)}.
Similarly, the predicted probability vector of kth forward path is defined as pppk

cm(xxx).
If the number of forward paths is set as K, we first average the class probabilities of all

student branches to generate an ensemble teacher class probability pppet(((xxx))), which shows in
Eq. 1. Then we adopt Kullback-Leibler (KL) divergence as distillation loss to guide main
student. The formulation is shown in Eq. 2, where N is the number of samples of a mini-
batch.

pet(ŷ = yi|xxx) =
e(

1
K+1 ∑

K+1
k=1 zki)/T

∑
M
j=1 e(

1
K+1 ∑

K+1
k=1 zk j)/T

, pppet(xxx) = {pet(ŷ = 1|xxx), . . . , pet(ŷ = M|xxx)} (1)

KLms =
1
N

N

∑
n=1

KL
(

pppms(xxxn)‖pppet(xxxn)
)
=− 1

N

N

∑
n=1

pppet(xxxn)log
pppms(xxxn)

pppet(xxxn)
(2)
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Trained by distillation on class probabilities, main student can “discuss” with classmates
and learn from each other. In addition, with the involvement of more forward paths, no extra
loss items will be added. Training in this concise way, main student will benefit from mature
class probability and get huge enhancement.

Ensemble attention distillation on feature map. To further guide main student in in-
termediate feature map, we introduce ensemble-attention distillation. As shown in Fig. 2,
main branch will be guided by an ensemble attention teacher. We utilize the channel-wise
joint information of feature maps to represent attention. We formulate attention generation
process in Eq. 3.

AAAms =
C

∑
c=1

(((FFFms)))ccc, AAAkkk
cm =

C

∑
c=1

(FFFkkk
cm)))c⇒ AAAt =

1
K +1

(norm(AAAms)))+
K

∑
k=1

norm(AAAkkk
cm)) (3)

Note that, C denotes the total number of channels. norm(·) is spatial-wise normalization
operation to keep the value consistency of attention maps from different branches. Moreover,
FFFms,FFFk

cm ∈ RC×H×W indicate feature maps of main student and classmates at same stage
of each branch. AAAms,AAAk

cm ∈ R1×H×W indicate attention map, which will be fused to form
ensemble attention teacher (AAAt ). To distill knowledge from AAAt to AAAms, we design mean-
squared-error (MSE) loss to implement online ensemble attention learning, which can be
denoted as Eq. 4.

MSEms =
1
N

N

∑
n=1

MSE
(
AAAms(xxxn)‖AAAttt(xxxn)

)
=

1
N

N

∑
n=1

H

∑
h=1

W

∑
w=1

(
(ams(xxxn))hw− (at(xxxn))hw

)2 (4)

Here, H and W are height and width of the attention map and ((ams)(xxxn))hw denotes the
pixel value at position (h,w) on attention map of nth batch image.

Models layer combination

ResNet-20/32/44/56 [3, 3, 3]/[5, 5, 5]/[7, 7, 7]/[9, 9, 9]

ResNet-18/34 [2, 2, 2, 2]/[3, 4, 6, 3]

EfficientNet-b0 [1, 2, 2, 3, 3, 4, 1]

EfficientNet-b2 [2, 3, 3, 4, 4, 5, 2]

EfficientNet-b4 [2, 4, 4, 6, 6, 8, 2]

Table 1: The structure configuration of
baseline models [21, 54]. Layer combina-
tion represents the network layer structure.
E.g. ResNet-34 has four stages. The num-
ber of basic blocks in each layer are re-
spectively 3, 4, 6, 3. In addition, the block
types of ResNet and EfficientNet are re-
spectively basic block and MBConv block.

3.4 Optimizing EKD-FWSNet
To optimize EKD-FWSNet, we apply conventional cross-entropy loss (Lms for main student
and Lk

cm for kth classmates) to train network with hard labels. We also apply the above
mentioned two types of distillation loss functions (Eq. 2, Eq. 4). Finally, the total loss of
EKD-FWSNet (L) is defined in Eq. 5.

L = Lms +
1
K

K

∑
k=1

Lk
cm︸ ︷︷ ︸

cross-entropy

+ w ·KLms︸ ︷︷ ︸
KL distillation

+ α ·MSEms︸ ︷︷ ︸
ensemble attention

(5)
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Models CIFAR-10 CIFAR-100

BL EKD-FWSNet BL EKD-FWSNet

ResNet-20 8.37 6.69 32.66 28.54

ResNet-32 7.35 6.03 30.73 26.46

ResNet-44 6.78 5.83 29.43 25.74

ResNet-56 6.13 5.49 28.91 25.63

Table 2: Top-1 error rate (%) of
lightweight models on CIFAR-10/100.
“BL” means individually training base-
line model.

Models CIFAR-100 tiny-ImageNet

BL EKD-FWSNet BL EKD-FWSNet

ResNet-18 23.71 20.49 30.91 26.81

ResNet-34 22.16 19.94 23.83 21.74

EfficientNet-b0 12.64 11.33 18.91 17.73

EfficientNet-b2 11.34 10.21 16.41 15.02

EfficientNet-b4 10.03 8.90 13.78 12.59

Table 3: Top-1 error rate (%) of high-
efficiency models on CIFAR-100/tiny-
ImageNet.

Here, we use w and α as hyper-parameters to adjust the proportions of KL distillation loss
and ensemble attention loss respectively. Usually, w and α are respectively set to 60 and 1.
In addition, we always apply ensemble attention distillation only at the position before fully-
connected layers. Because low-level features naturally have very different attention regions.
Forcing main student to learn in early stage may obtain more noise than useful knowledge.
In supplementary materials, we will elaborate on the principle of hyper-parameter adjusting
though experiments.

4 Experiments

4.1 Datasets and Implementation Details
In this paper, we mainly evaluate our method on CIFAR-10/100 [35] and tiny-ImageNet.
CIFAR-10/100 contains 50000 training samples and 10000 testing samples which are tiny
RGB images with 32×32 pixels. Tiny-ImageNet dataset consists of a subset of ImageNet
images [11]. It contains 200 classes, each of which has 500 RGB images for training and
50 RGB images for validation. The size of image is 64×64. Recently, remote sensing (RS)
scene classification task becomes popular. To prove the generalization of our method, we
also make experiments on some notable RS scene classification benchmark datasets includ-
ing AID [13], NWPU-RESISC45 [9] and UC-Merced [62].

In this paper, we select ResNet [21] and EfficientNet [54] as baseline models. The de-
tailed structure of baseline models are shown in Tab.1. Moreover, some baseline models like
DenseNet-121 are only designed for RS scene classification task to make fair comparison
with previous RS works. On CIFAR-10/100, we use Stochastic Gradient Descent (SGD)
with momentum of 0.9 and weight decay of 0.0001. The initial learning rate is set to 0.1 and
the mini-batch size is set to 128. The total number of training epochs is 300 and learning
rate will be divided by 10 at epoch 150 and 250. On tiny-ImageNet, we follow the optimizer
setting of CIFAR. Differently, every networks are trained 100 epochs. The learning rate is
set to 0.01 initially and decreases by 10 times at epoch 50 and 75. Specifically, followed the
setting of [38], we load ImageNet pretrained parameters when training on tiny-ImageNet.

4.2 Experimental Results
Classification on lightweight baseline models. In real applications, lightweight baseline
models are always required. Lightweight models indicate those models with few parame-
ters and computation cost, which sacrifice the performance to meet the demand of limited
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computation resource. Therefore, we conduct experiments on ResNet20/32/44/56, which are
notable lightweight model series. Followed [21], we evaluate lightweight ResNet series on
CIFAR-10/100. The results are shown in Tab. 2. In EKD-FWSNet, the first branch point
is set at layer1. We construct a three-forward-paths structure using Dropout as FA block.
From the results, we observe that baseline models training in EKD-FWSNet make huge
improvement. On CIFAR-10 classification experiments, ResNet-20 and ResNet-32 respec-
tively get improved by 1.68% and 1.32% training in EKD-FWSNet. Larger baseline models
ResNet-44/56 also improve by large margin. On a more challenging task CIFAR-100, our
proposed EKD-FWSNet also shows encouraging performance. Compared to individually
training baseline models, the average accuracy improvement of ResNet-20/32/44/56 training
with EKD-FWSNet is 3.89%.

Models CIFAR-10 CIFAR-100

SD OEM EKD-FWSNet SD OEM EKD-FWSNet

ResNet-20 6.89 7.87 6.69±0.10 30.05 - 28.54±0.08

ResNet-32 6.10 7.05 6.03±0.08 28.22 29.03 26.46±0.14

ResNet-44 - 6.55 5.83±0.05 - 28.24 25.74±0.13

ResNet-56 6.02 - 5.49±0.05 26.78 27.84 25.63±0.17

Table 4: Top-1 error rate (%) lightweight
model comparison on CIFAR-10/100.
All results are “average value ± stan-
dard deviation” of three runs. In addi-
tion, “SD” and “OEM” respectively indi-
cate method of [60] and [56].

Figure 3: Top-1 error rate (%) high-efficiency
model comparison on CIFAR-100 and tiny-
ImageNet. All results are “average value ±
standard deviation” of three runs. In addition,
“SD”, “OEM” and “KESI” respectively indi-
cate method of [60], [56] and [38]

Classification on high-efficiency baseline models. Recently, some high-efficiency base-
line models have shown strong performance with compact structure. High-efficiency models
denote some recent notable compact models, which can achieve high performance with fewer
cost using high-efficiency design. Therefore, further enhancing their generalization ability
is hard. In this paper, we conduct experiments to show that training with EKD-FWSNet,
high-efficiency models can also get improved. As shown in Tab.3, ResNet-18/34 training
in EKD-FWSNet achieve surprising improvement. Especially on tiny-ImageNet, ResNet18
in EKD-FWSNet surpasses baseline model by 4.10%! Experiments on EfficientNet fur-
ther prove the effectiveness of EKD-FWSNet. Even though EfficientNet series have already
achieved very competitive results, they can still be improved by more than 1%.

Comparison of KD based networks. [60] and [56] are two recent notable methods
which have similar motivation as our work. [60] proposes a typical KD based training frame-
work to enhance the capability of baseline models. [56] uses KD based student-classmate
network (Fig. 2 middle) to explore the potential of student and each classmate. Tab. 4 shows
the comparison results on lightweight model. It is clear that baseline models training in
EKD-FWSNet perform better. Especially on CIFAR-100, our networks can surpass [60]
and [56] by more than 1%. On high-efficiency models, EKD-FWSNet is also more com-
petitive. As shown in Fig. 3, after optimizing with EKD-FWSNet, high-efficiency baseline
models obviously obtain much lower error rate on CIFAR-100. On tiny-ImageNet, we com-
pare the classification results of main student with the ensemble results of KESI (Knowledge
Distillation from Ensembles of Snapshots of Iterative Pruning) [38]. EKD-FWSNet has
much better performance (Fig. 3), Since we reinplement baseline models with higher accu-
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Models CIFAR-10 CIFAR-100

KD-ONE DML OEM EKD-FWSNet KD-ONE DML OEM EKD-FWSNet

ResNet-32 5.99 6.68 7.05 6.03±0.08 26.61 28.90 29.03 26.46±0.14

ResNet-32-E - - 5.73 5.14±0.07 24.63 - 26.06 24.15±0.09

Table 5: Comparison of KD and ensemble based networks. We select ResNet-32 as baseline
model and respectively compare the “main student”(ResNet-32: baseline model after distill-
ing) and “ensemble teacher”(ResNet-32-E: ensemble teacher) results with previous notable
KD and ensemble based networks, KD-ONE [37], DML [67] and OEM [56].

Methods AID NWPU-RESISC45 UC-Merced

T.R.=20% T.R.=50% T.R.=10% T.R.=20% T.R.=80%

MSCP [23] 92.21±0.17 96.56±0.18 88.07±0.18 90.81±0.13 98.40±0.34

DCNN [10] 90.82±0.16 96.89±0.10 89.22±0.50 91.89±0.22 98.93±0.10

RTN [8] 92.44 - 89.90 92.71 98.96

SCCov [24] 93.12±0.25 96.10±0.16 89.30±0.35 92.10±0.25 99.05±0.25

MG-CAP [57] 93.34±0.18 96.12±0.12 90.83±0.12 92.95±0.13 99.0±0.10

Hydra [45] - - 92.44±0.34 94.51±0.21 -

KFBNet [39] 95.50±0.27 97.40±0.10 93.08±0.14 95.11±0.10 99.88±0.12

EKD-FWSNet 95.89±0.14 97.60±0.16 93.24±0.15 95.17±0.07 99.81±0.10

Table 6: Comparison of classification results (%) on UC-Merced, AID and NWPU-
RESISC45 datasets.

racy, it is unfair to directly compare the accuracy. Therefore, we also compare the margin
of improvement. On ResNet-18, EKD-FWSNet and KESI respectively improve by 4.10%
and 2.08%. On ResNet-34, EKD-FWSNet and KESI respectively improve by 2.09% and
2.50%. Obviously, on ResNet-18, EKD-FWSNet has huge advantage while on ResNet-34,
EKD-FWSNet has minor inferiority.

Comparison of KD and ensemble based networks. KD-ONE [37], DML [67] and
OEM [56] are three recent notable methods which integrate knowledge distillation and en-
semble learning. All this three methods can be regarded as typical student-classmate net-
works (Fig. 2 middle). As shown in Tab. 5, when using ensemble teacher to teach “main
student”, EKD-FWSNet achieves comparable results (0.04% less on CIFAR-10 while 0.15%
better on CIFAR-100) with KD-ONE. We also compare the accuracy of our ensemble teacher
to other ensemble knowledge distillation based methods to prove the overall superiority of
EKD-FWSNet. From Tab. 5, we observe that EKD-FWSNet has obvious better ensemble
teacher, which proves the effectiveness of our method (better teacher, better student).

Classification comparison on RS datasets. As shown in Tab.6, we list recent notable
methods of RS scene classification task. The baseline network is DenseNet-121 (same set-
ting as SOTA method, KFBNet [39]). It is clear that training in EKD-FWSNet, DenseNet-
121 achieves SOTA results on RS datasets. Specifically, UC-Merced dataset only has 2100
images with 21 categories. The training rate is 80%, which means only 420 images are
served as test data. Our models training in EKD-FWSNet achieve high accuracy close to full
marks. We run every experiments five times and calculate the mean and standard deviation
of average accuracy. On UC-Merced dataset, EKD-FWSNet obtains twice 100% accuracy
and three times 99.76%. From comparison results, we can observe that our networks and
KFBNet both reach the ultimate limit and have obvious advantage against other methods.
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Models CIFAR-100

EKD-FWSNet(w/o) EKD-FWSNet

ResNet-20 29.39 28.54

ResNet-32 26.91 26.46

ResNet-44 26.03 25.74

ResNet-56 25.78 25.63

ResNet-18 21.09 20.49

ResNet-34 20.22 19.94

Table 7: Top-1 error rate (%) comparison
on CIFAR-100. “(w/o)” means ensemble
attention distillation is not applied.

Networks Dropout [53] SE [29] CAM [14] Branch-num

ResNet-20@layer1 28.54 28.76 29.20 3

ResNet-32@layer1 26.46 26.69 27.07 3

ResNet-44@layer1 25.74 25.69 26.03 3

ResNet-56@layer1 25.63 25.93 26.21 3

ResNet-18@layer1 20.49 20.95 21.59 4

ResNet-34@layer1 19.94 20.55 20.92 4

Table 8: Effectiveness of different
feature augmentation blocks on EKD-
FWSNet. We set first branch point af-
ter “layer1” (@layer1). Therefore, the
branch number of lightweight networks
(ResNet20/32/44/56) and high-efficiency
networks (ResNet18/34) is respectively 3
and 4.

4.3 Ablation Study
Effectiveness of ensemble attention distillation. To show the separate effectiveness of en-
semble attention distillation on intermediate feature maps. We conduct experiments shown
in Tab. 7. When adding ensemble attention distillation, baseline models improve by aver-
age 0.41%. Although some baseline models improve little, it still works at most situations.
Theoretically, [60] and [56] employ distillation approach in intermediate feature maps by
constructing distillation loss between two 3-dimension feature maps (tensor-level), i.e., they
construct high-dimension approximation, which will imposes an extra load on optimizing
(Curse of Dimensionality). Moreover, with the increasing of branches, distillation loss terms
increase. Our proposed EKD-FWSNet avoids the above problems. No matter how many
forward paths are added, we only apply 2-dimension (matrix-level) ensemble attention dis-
tillation with only one loss terms, which can easily optimize baseline models.

Effectiveness of different FA blocks. In our paper, we apply feature augmentation
blocks to prevent the diversity loss of each branch’s final logits caused by weight-sharing
layers. To analyze the effectiveness of online feature augmentation blocks, we compare the
influence of different FA blocks. We use ResNet series and run classification experiments on
CIFAR-100. Results in Tab. 8 shows that Dropout performs better in most cases.

5 Conclusion
In this paper, we propose EKD-FWSNet to explore the generalization ability of baseline
models. Baseline models training in EKD-FWSNet gain improvement by ensemble distil-
lation on class probabilities and attention maps. To ease training burden when involving
knowledge distillation, we design flexible weight-sharing mechanism and concise distilla-
tion loss. Experiments prove that EKD-FWSNet is more competitive than previous methods
on improving both lightweight and high-efficiency models. All in all, we provide a novel
ensemble training framework with easy-optimized knowledge distillation strategy, which
makes baseline model stronger without adding extra parameters and computation costs.
Acknowledgment This work was supported in part by the National Natural Science Foun-
dation of China under Grant 62072021 and in part by the Fundamental Research Funds for
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