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Abstract
Differentiable Neural Architecture Search (DARTS) recently attracts a lot of research

attention because of its high efficiency. However, the competition of candidate operations
in DARTS introduces high uncertainty for selecting the truly important operation, thus
leading to serious performance collapse. In this work, we decrease the uncertainty of
differentiable architecture search (DU-DARTS) by enforcing the distribution of archi-
tecture parameters to approach the one-hot categorical distribution and by replacing the
zero operation with a gate switch. Without any extra search cost, our method achieves
state-of-the-art performance with 2.32%, 16.74%, and 24.1% test error on CIFAR-10,
CIFAR-100, and ImageNet datasets, respectively. Moreover, DU-DARTS can robustly
find an excellent architecture on NAS-Bench-1Shot1 and NAS-Bench-201, which fur-
ther demonstrates the effectiveness of our method. The source code is available at
https://github.com/ShunLu91/DU-DARTS.

1 Introduction
In recent years, neural architecture search (NAS) has demonstrated competitive to or even
better performance than hand-crafted neural architectures for various tasks, such as image
classification, semantic segmentation, and natural language processing. The purpose of NAS
is to automatically search high-performance network architectures in a pre-defined search
space. As the search space is extraordinarily huge, e.g. 1018 in DARTS [18], the search
process of NAS is very time- and resource-consuming.
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Lots of works have been proposed to improve the search efficiency for NAS. Among the
existing works, gradient-based methods such as DARTS successfully reduce the search time
to several GPU hours. DARTS[18] and its variants are very efficient because of end-to-end
optimization of network architectures and weights. In specific, these methods adopt a mixed
operation and utilize the Softmax function to relax architecture parameters from discrete to
be continuous, and back-propagate the gradients with the chain rule, which enables architec-
ture parameters to be efficiently trained by bi-level gradient descent optimization. However,
the Softmax function of the mixed operations unavoidably introduces competitions among
candidate operations, which results in high uncertainty for selecting the truly important op-
eration and consequently leads to serious performance collapse.

Some works [5, 7, 16, 29] have proposed to resolve the competition problem. GDAS [7]
proposed to sample a sub-graph at every training step to avoid the competition among can-
didate operations. FairDARTS [5] and PR-DARTS [29] both observed that the skip-connect
has an unfair advantage over other operations. While FairDARTS replaced the Softmax func-
tion with a Sigmoid function, PR-DARTS utilized a binary gate to avoid unfair competition.
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(c) DU-DARTS
Figure 1: Distribution of the architecture parameters in normal cells.

As architecture parameters for candidate operations are initialized to the same value,
the selection of operations has a maximum uncertainty at the beginning. During the search
process, architecture parameters are expected to be distinct for each candidate operation so
that an optimal architecture can be constructed, indicating the decrease of uncertainty at the
end of the search. However, as shown in Fig 1 (a), the values of architecture parameters
of candidate operations in DARTS are still very close after search due to the competition.
Under this circumstance, it is hard to distinguish which operation is the best for each edge.

Existing methods [5, 7, 16, 29] attempt to improve the fairness of the competition, which
can be considered as implicitly decreasing the search uncertainty. In this paper, we propose to
enforce the distribution of architecture parameters to approach the one-hot categorical distri-
bution so that the most important operation can have clear superiority. Therefore, our method
explicitly decreases the search uncertainty. Moreover, we substitute the zero operation with
a searchable gate switch to further decrease the uncertainty caused by the disturbance of the
zero operation. In this way, not only do we decrease the uncertainty of architecture parame-
ters after the search, but also we can easily select the most important operation for each edge
to construct a superb architecture.

Our contributions can be summarized as follows:
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• We propose a new perspective of differentiable NAS that the search process is to de-
crease the uncertainty of architecture parameters so that the operation with clear supe-
riority for each edge can be selected at the end of the search.

• We propose to enforce the distribution of architecture parameters to approach the one-
hot categorical distribution by adding distance regularization or by information en-
tropy in the loss function.

• A searchable gate switch is inserted behind each mixed operation to further eliminate
the uncertainty caused by the disturbance of the zero operation.

• Extensive experiments are conducted on three datasets and the results demonstrate
that our method achieves state-of-the-art performance on all of them. Furthermore,
evaluating DU-DARTS on NAS-Bench-1Shot1 [28] further shows its effectiveness.

2 Related Work
Neural architecture search In the past few years, NAS has achieved state-of-the-art per-
formance for many tasks. Reinforcement learning was firstly applied to NAS by [1, 30]
but required thousands of GPU days to search for an excellent architecture. Afterwards,
ENAS [20] and One-shot [2] proposed to share weights among child models, named weight
sharing mechanism, dramatically reducing the search time to only one GPU day. Recently,
gradient-based methods such as DARTS [18] and its variants apply the continuous-relaxation
to optimize architecture parameters by gradient descent and are able to search architectures
within several GPU hours.

DARTS variants Despite the high efficiency, DARTS[18] has difficulty in robustly finding
a superb architecture from the enormous search space. According to previous works, we can
summarize the main problems of DARTS as follows: the depth gap, the sharp minimum, the
high memory consumption, and the operation competition problem.

P-DARTS [4] and StacNAS [13] pointed out the depth gap between the supernet and
target model. P-DARTS progressively increased the depth of the supernet to mitigate the
depth gap and StacNAS used gradient confusion to select a proper depth for the supernet.
RobustDARTS [27] and SDARTS [3] observed that the search easily falls into the sharp min-
imum and thus is sensitive to the perturbations of architecture parameters. RobustDARTS
leverages eigenvalues of architecture parameters to monitor the search process and applied
stronger regularizations to improve the search performance. SDARTS enhanced the stability
of DARTS by adding noise or by using adversarial training to architectural parameters. PC-
DARTS [25] and SGAS [14] reduced the memory consumption, while the former employed
the partial channel connections and the latter gradually pruned unnecessary candidate op-
erations during the search process, both of which further boost the search efficiency and
performance. Some works have focused on the operation competition problem. DARTS+
[16] adopted the early stop strategy to solve the cooperation and competition problem. Fair-
DARTS [5] eliminated the unfair advantage of the skip-connect by a Sigmoid function. PR-
DARTS [29] introduced a binary gate for each operation to avoid unfair competition.

Our method also attempts to resolve the operation competition problem. But different
from previous methods, we consider the competition leads to large uncertainty, and the zero
operation further disturbs the operation selection. Addressing the two underlying factors
greatly improves the DARTS performance.
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3 Method
We first briefly introduce the preliminary of DARTS. Then the uncertainty of architecture pa-
rameters is illustrated. Next, we propose our method to decrease the uncertainty and improve
the stability of the search. Finally, we analyze the uncertainty caused by the disturbance of
the zero operation and solve this problem by replacing it with a simple Sigmoid function.

3.1 Preliminary of DARTS
Since NASNet [31] proposed to build the architecture with repeated cells, many follow-up
works adopt the same paradigm. DARTS [18] was the first to utilize the gradient descent for
cell-based NAS. Specifically, each cell contains several nodes and each edge between every
node is regarded as a mixed operation o(i, j) in DARTS, which can be formulated as:

o(i, j)(x) = ∑
o∈O

exp(α(i, j)
o )

∑o′∈O exp(α(i, j)
o′

)
o(x) (1)

where O denotes the candidate operation corpus and α
(i, j)
o is the corresponding architecture

parameter for the operation o between nodes (i, j). By replacing the categorical represen-
tation with continuous architecture parameters, DARTS is able to efficiently search the ar-
chitecture in a differentiable method. During the search, it adopts a bi-level optimization to
update the network weights and architecture parameters alternately as below:

min
α

Lval(w∗(α),α)

s.t. w∗(α) = argminwLtrain(w,α)
(2)

where Ltrain and Lval are the training and validation loss, respectively. The goal of the search
is to find the best architecture parameters α∗ by minimizing the validation lossLval(w∗(α),α).

3.2 The uncertainty of architecture parameters
The differentiable NAS method enjoys a substantially efficient search, but the uncertainty of
architecture parameters is still large after the search. As shown in Fig. 1 (a), we visualize the
architecture parameters of the normal cells searched by DARTS [18] and it is obvious that
most architecture parameters of candidate operations are very close. Since architecture pa-
rameters are too close to distinguish, the selection of the candidate operation with the largest
architecture parameter becomes uncertain. FairDARTS [5] eliminated the unfair advantage
of the skip-connect (as shown in Fig. 1(b), the number of dominant red dots are significantly
reduced), and improved the fairness of competition by adopting a Sigmoid function for each
operation. As shown in the figure, the dots are clearly separated into the high Sigmoid alpha
group and the low Sigmoid alpha group. However, using Sigmoid function can not prevent
architecture parameters from being close to each other, FairDARTS still has the uncertainty
issue. As shown in the figure, at Edge 1, 5, and 6, the dots with high Sigmoid alphas are still
entangled, indicating difficulties in distinguishing the most important operation.

3.3 Decrease the uncertainty of NAS
Based on the analysis above, we propose to decrease the uncertainty of the searched architec-
ture parameters for differentiable NAS by adding a regularization term to the loss function.
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Figure 2: (a) Architecture parameters of the zero operation on all edges obtained from DARTS [18].
The legend denotes indies of start nodes of edges and the start node gradually becomes deeper from
left to right. We place indies of target nodes of edges on the top of each bar. (b) Comparison of the
mixed operation from DARTS[18] and our method. The original mixed operation in DARTS[18] is
shown on the top of this figure and the zero operation is emphasized with red color. We replace the
zero operation with a gate switch, specifically a Sigmoid function.

The regularization term can either be the distance between the continuous architecture pa-
rameters and their one-hot counterpart or be the information entropy. Both regularization
techniques are effective for decreasing the uncertainty of NAS according to our experiments.

Distance regularization On the one hand, we can explicitly enforce the continuous dis-
tribution to approximate the one-hot categorical distribution. The motivation of continuous
relaxation in DARTS [18] is to approximate the one-hot representation with continuous val-
ues and thus can be optimized in an end-to-end differentiable manner. However, as the
architecture parameters of candidate operations are close to each other, the search result has
deviated from the original motivation. We add an additional loss term Lα to explicitly en-
force architecture parameters towards what we expect by measuring the distance between
the current architecture parameters and its one-hot counterpart, which can be formulated as:

Lα = Distance(α, α̂) (3)

where the α̂ is obtained according to the location of the largest value of each edge by
argmax(α). As for measuring the distance, there are many options for us to choose from,
such as MAE, MSE, RMSE, and amount of information (AoI). We adopt the widely used
metrics in our experiments and further analyze its effect in Section 4.3.

Information entropy regularization On the other hand, the large uncertainty of architec-
ture parameters after search indicates that the information entropy of the result is also great.
Hence, a more straightforward method is to directly reduce the information entropy of ar-
chitecture parameters during the search by adding the additional loss term Lα as follows:

Lα =−α log2 α (4)

When the search converges, the information entropy term included in the loss function will
gradually decline. Moreover, the Softmax function limits the sum of architecture parameters
of each edge to be 1, resulting in only one operation close to 1 and the others will be close to
0. As a result, only one operation of each edge obviously surpasses others and shows clear
superiority, so the uncertainty of architecture parameters will undoubtedly be minimized.
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Algorithm 1: Training of DU-DARTS using first-order approximation

Initialize a mixed operation o(i, j) parameterized by α(i, j) for each edge (i, j)
while not converged do

1. Update parameters α and β by descending ∇α,β (Lval(w,α,β )+Lα ∗Lβ )
2. Update architecture weights w by descending ∇wLtrain(w,α,β )

Derive the searched architecture according to the optimized architecture parameters
α and β

3.4 Decrease the disturbance of zero operation
From the experiments, we notice that the zero operation dominates most edges, making rest
candidate operations share the remaining small weight portion. Consequently, the weights
of the 7 candidate operations are all small and close to each other again. In fact, as the output
of the mixed operation is from the other candidate operations and the zero operation does not
convey any information at each forward pass, it is irrational to let the zero operation compete
with others. As the zero operation denotes whether there is an edge between two nodes, so we
can convert it to a soft gate switch to control whether or not to output the mixed operation.
Specifically, we propose to replace the zero operation with a Sigmoid function which is
located behind each mixed operation, as shown in Fig. 2(b). We denote the architecture
parameter of the zero operation as β . In this way, we can eliminate the uncertainty caused
by the disturbance of the zero operation and directly represent the importance of each edge
with β . We reformulate the output of the mixed operation between nodes (i, j) as:

o(i, j)(x) = σ(β (i, j))∗ ∑
o∈O′

exp(α(i, j)
o )

∑o′∈O′ exp(α(i, j)
o′

)
o(x) (5)

where σ denotes the Sigmoid function and O′ represents the candidate operation corpus
without the zero operation.

Furthermore, we observe that the dominance of the zero operation becomes more promi-
nent along with increasing the indexes of the target nodes, as shown in Fig. 2(a), which im-
plies that DARTS prefers to select the edge between shallow nodes, as also claimed in [22].
Therefore, we propose to enforce the edge importance β to become larger by formulating its
reciprocal as another loss term:

Lβ =
1
β

(6)

In this way, as the zero operations at deeper edges have higher values, so the deeper β has a
smaller value, corresponding to a larger loss Lβ , which helps to search deeper cells.

Overall, the training objective of our method can be reformulated as:

min
α,β

Lval(w∗(α,β ),α,β )+Lα ∗Lβ

s.t. w∗(α,β ) = argminwLtrain(w,α,β )
(7)

The optimization procedures are summarized in Alg. 1 and the visualization of architec-
ture parameters of the normal cell searched by DU-DARTS are shown in Fig. 1(c). We can
conclude that architecture parameters of operations with clear superiority are significantly
larger than the others, manifesting that DU-DARTS manages to decrease the uncertainty and
can easily pick out truly important operations as expected.
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4 Experiments
To validate the effectiveness of our method, we conduct extensive experiments on three
benchmark datasets of classification. In this section, we first briefly introduce each dataset
and provide the implementation details. Then we report and analyze the evaluation results.
Finally, we adopt our method to search on NAS-Bench-1Shot1 [28] and NAS-Bench-201 [8]
to further demonstrate its effectiveness.

4.1 Datasets
CIFAR-10 and CIFAR-100 Both datasets contain 60000 color images in total with 50000
training images and 10000 test images, and are widely used in image classification. CIFAR-
10 is a 10-classes dataset with 6000 images for each class while CIFAR-100 is divided into
100 classes, each of which only has 600 samples. During the search phase, we take half of
the training set as the validation set to optimize the architecture parameters. However, we
utilize the whole training set to retrain our searched models and evaluate them on the test set.

ImageNet ImageNet [12] is a widely used large-scale dataset for image classification.
There are 128 million training images and 50000 validation images, which are divided into
1000 classes. We adopt the total training images to retrain our searched architectures and
use the validation accuracy to measure the model performance.

4.2 Implementation details
We conduct architecture search on CIFAR-10 and CIFAR-100 datasets by constructing the
supernet with 8 and 5 cells respectively and adopt the first-order DARTS algorithm. We
employ the SGD optimizer and the initial learning rate is 0.025 for network parameters with
a cosine decay strategy, while architecture parameters are optimized by an Adam optimizer
with a fixed learning rate of 3e-4. The batch size is 64 and we search for 50 epochs in total.

As for evaluation, we adopt the same tricks as DARTS such as cutout and auxiliary loss.
The seed is fixed as 0 for all models retraining and other hyper-parameters are also kept the
same as DARTS. Moreover, we directly retrain the searched models in the last epoch without
any selection like DARTS, which further improves our search efficiency.

To test the transferability, we transfer our best searched architectures on CIFAR-10 to
ImageNet. We adopt the SGD optimizer with weight decay 3e-5 to retrain the model, and
the initial learning rate is 0.5 and decayed to 0 within 250 epochs. More experimental details
can be found in the supplementary material.

4.3 Results on CIFAR-10 and CIFAR-100
To explore which kind of regularization is the most effective for our method, we conduct
comparative experiments according to Eq. (3) and Eq. (4). To exclude the influence of acci-
dental factors, we search with three different random seeds (0, 1, 2 in our experiments) and
retrain the searched architectures with the same random seed=0 to get a fair comparison.

As shown in Tab. 1, all distance regularization and information entropy regularization
can achieve lower average test error and standard deviation than DARTS, which validates
the necessity of decreasing the uncertainty of NAS. Moreover, applying the entropy regu-
larization outperforms the other regularization by a large margin, showing that measuring
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Regularization Test Error (%)
#0 #1 #2

MAE 2.77 2.73 2.52
MSE 2.71 2.91 2.84

RMSE 2.76 2.93 2.66
AoI 2.69 2.81 2.68

Entropy 2.32 2.47 2.36

Table 1: Results on CIFAR-10 using vari-
ous regularization types. DARTS [18] has
no additional regularization for architecture
parameters and achieves 3.00±0.14 test er-
ror. However, from above results of dif-
ferent seeds, we can get better average re-
sults of 2.67±0.11, 2.82±0.08, 2.78±0.11,
2.73±0.06, 2.38±0.06 by above regulariza-
tion types respectively.

Method Test Error(%) #P
Top-1 Top-5 (M)

MobileNet [10] 29.4 10.5 4.2
ShuffleNet V2 [19] 25.1 - -

NASNet-A [31] 26.0 8.4 5.3
PNAS [17] 25.8 8.1 5.1

MnasNet-92 [23] 25.2 8.0 4.4

DARTS [18] 26.7 8.7 4.7
SNAS [24] 27.3 9.2 4.3

P-DARTS [4] 24.4 7.4 4.9
PC-DARTS [25] 25.1 7.8 5.3

GDAS [7] 26.0 8.5 5.3
SGAS [14] 24.1 7.3 5.4

FairDARTS [5] 24.9 7.5 4.8

DU-DARTS 24.1 7.3 5.3

Table 2: Comparison with other NAS methods on
ImageNet. #P: The number of model parameters.

the amount of information of architecture parameters is more effective than calculating the
distance between architecture parameters and their one-hot counterpart.

With the entropy regularization, we further compare our method with other state-of-the-
arts in Tab. 3. We report the best results and the average results by 3 independent runs
with different random seeds to test the effectiveness and stability of our method. Using the
same search cost as DARTS, our approach achieves the lowest test error 2.32% and 16.74%
on CIFAR-10 and CIFAR-100 datasets respectively, outperforming most previous methods.
Besides, through 3 independent runs, our method is very stable with the average error rate
2.38±0.06 and 17.04±0.23 on both datasets. We provide the visualization of our searched
cells and detailed explanations of the abbreviation operations in the supplementary material.

4.4 Results on ImageNet

Like previous methods, we directly retrain our best searched architecture on the large-scale
image classification dataset ImageNet [12] to test the transferability of our method. As
shown in Tab. 2, NAS methods generally perform better than the hand-crafted models such
as MobileNet [10] and ShuffleNet V2 [19]. Moreover, DU-DARTS achieves the lowest top-1
error 24.1% and top-5 error 7.3%, outperforming all the previous methods by a large margin.
The result shows the superior transferability of DU-DARTS.

4.5 Results on NAS-Bench-1Shot1

To verify the robustness of our method, we further conduct experiments on NAS-Bench-
1Shot1 [28] which splits the original search space in NAS-Bench-101 [26] into three parts,
named search space 1, search space 2 and search space 3. Architectures in various search
spaces consist of 9 cells and other basic layers. Each cell includes several nodes and NAS-
Bench-1Shot1 constrains the total number of parents of all nodes to be 9 in all search spaces.
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Method CIFAR-10 CIFAR-100 GPU
Test Err.(%) Params(M) Test Err.(%) Params(M) Days

NASNet [31] 2.65 3.3 - - 1800
AmoebaNet [21] 2.55±0.05 2.8 18.93? 3.1 3150

PNAS [17] 3.41±0.09 3.2 19.53? 3.2 225
ENAS [20] 2.89 4.6 19.43? 4.6 0.5

DARTS(1st order) [18] 3.00±0.14 3.3 20.58±0.44† - 1.5
DARTS(2nd order) [18] 2.76±0.09 3.3 - - 4

SNAS [24] 2.85±0.02 2.8 - - 1.5
P-DARTS [4] 2.5 3.4 15.92 3.6 0.3

PC-DARTS [25] 2.57±0.07 3.6 - - 0.1
GDAS [7] 2.93 3.4 18.38 3.4 0.17

RobustDARTS [27] 2.95±0.21 - 18.01±0.26 - 1.6
SGAS [14] 2.39 3.7 - - 0.25

SDARTS [3] 2.61±0.02 3.3 - - 1.3
CNAS[9] 2.60±0.06 3.7 - - 0.3

FairDARTS [5] 2.54±0.05 3.32±0.46 - - -

DU-DARTS (avg.) 2.38±0.06 3.69±0.06 17.04±0.23 3.14±0.14 0.4
DU-DARTS (best) 2.32 3.8 16.74 3.1 0.4

Table 3: Search results on CIFAR-10 and CIFAR-100. We report the average and the best performance
of DU-DARTS. ?: Reported by GDAS [7]. †: Reported by RobustDARTS [27].

Since NAS-Bench-1Shot1 provides a novel mapping between different search space repre-
sentations, we can easily query the performance of the searched architecture at each epoch.

We compare our method with others in Fig 3. We can see that DU-DARTS not only
robustly achieves comparable results but also converges faster than the other methods and
has a smaller variance after convergence, indicating that DU-DARTS is effective and robust.
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(c) Search space 3
Figure 3: Comparison of DU-DARTS with different NAS methods on three search spaces defined in
NAS-Bench-1Shot1 [28]. The solid lines show the anytime test regret (mean ± std), while the dashed
blurred lines represent validation error (Best viewed in color).

4.6 Results on NAS-Bench-201
Architectures in NAS-Bench-201 [8] are built with repeated cells, which comprise 4 nodes
and 6 edges. With 5 candidate operations for each edge, there are 15,625 distinct structures
in total. We further deployed our method on NAS-Bench-201 [8] and the results are shown
in Tab.4. Our method achieved the highest accuracy in different datasets and outperformed
others by a large margin, clearly demonstrating the effectiveness of DU-DARTS.
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Method CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test
Optimal 91.61 94.37 73.49 73.51 46.77 47.31
RSPS 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
DARTS 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98
SETN 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
ENAS 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
Ours 91.21±0.11 93.86±0.05 71.88±0.53 71.84±0.39 45.65±0.75 45.94±0.93

Table 4: The average search results from three independent runs on NAS-bench-201 [8]. Results of
RSPS [15], DARTS [18], GDAS [7], SETN [6] and ENAS [20] are also listed for comparison.

4.7 Discussion
Uncertainty In general, uncertainty means lack of sureness about something and here we
use it to represent the probability of selecting a candidate operation. We adopt the modified
version of the Shannon entropy HS′ =−∑ j c j logc2

j from [11] to measure the uncertainty of
searched architecture parameters in Tab.5. Some methods got even higher uncertainty than
DARTS, but DU-DARTS achieved significant uncertainty decrease as expected.

Ablation study We conducted detailed component analysis in Tab.6. Note that directly
applying the regularization to DARTS [18] managed to decrease the uncertainty and bring
the performance gain. Though deleting the candidate zero operation got worse results, it can
be improved a lot when equipped with a gate switch.

Method Normal Reduce

DARTS [18] 57.09 81.77
SNAS [24] 60.90 60.92

PC-DARTS [25] 82.22 83.44
GDAS [7] 83.89 83.92

SDARTS [3] 75.51 77.57

DU-DARTS 43.90 22.86

Table 5: Uncertainty measure.

DEL Zero REG Gate Test Err.(%)

× × × 3.00±0.14
×

√
× 2.62±0.05√ √
× 2.75±0.09√ √ √

2.38±0.06

Table 6: Ablation study. DEL Zero: delete the
candidate zero operation. REG: the entropy reg-
ularization. Gate: the soft gate switch.

5 Conclusion
In this paper, we discover that the competition of candidate operations leads to a large uncer-
tainty for the differentiable NAS, greatly disturbing the operation selection. We propose to
explicitly decrease the uncertainty by adding distance regularization or information entropy
loss to enforce the distribution of architecture parameters to approach the one-hot categorical
distribution and measure it by the Shannon entropy. Moreover, we replace the zero operation
with a searchable gate switch to further eliminate the disturbance. Extensive experiments on
benchmark datasets demonstrate the effectiveness and stability of our method.
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