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Abstract

Refraction is a common physical phenomenon and has long been researched in com-
puter vision. Objects imaged through a refractive object appear distorted in the image
as a function of the shape of the interface between the media. This hinders many com-
puter vision applications, but can be utilized for obtaining the geometry of the refractive
interface. Previous approaches for refractive surface recovery largely relied on various
priors or additional information like multiple images of the analyzed surface. In contrast,
we claim that a simple energy function based on Snell’s law enables the reconstruction
of an arbitrary refractive surface geometry using just a single image and known back-
ground texture and geometry. In the case of a single point, Snell’s law has two degrees
of freedom, therefore to estimate a surface depth, we need additional information. We
show that solving for an entire surface at once introduces implicit parameter-free spatial
regularization and yields convincing results when an intelligent initial guess is provided.
We demonstrate our approach through simulations and real-world experiments, where
the reconstruction shows encouraging results in the single-frame monocular setting.

1 Introduction
When we look at objects through a refractive surface like water or glass, the object changes
appearance, and its image is distorted (see Fig. 1). This distortion is caused by refraction that
happens when light propagates to a medium that transmits light at a different speed. When
the ray’s path is obstructed with a refractive material, it causes a change of the light ray’s
trajectory on the interface based on its surface geometry.

This situation happens, for example, when looking into a body of water from above with
a drone, or as a lifeguard at a pool. Reconstructing the surface can help compensate for its
effects to see through it, and several applications can exploit the surface shape itself, such as
sea condition monitoring or refractive object inspection.

While refraction can confuse many computer vision algorithms, the bending of the light
also provides hints towards the shape of the surface. In the problem of reconstruction of
such surfaces, each surface point has two unknowns: its location and its normal. Previously
it was mostly solved in settings with multiple views [13, 16, 18] or multiple frames [21].
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Figure 1: [Left] A simulated scene with a refractive surface. We can observe a significant
distortion of the background from the refraction, which is a function of the surface geometry.
We exploit this relation and estimate the 3D geometry of the refractive surface from its image,
knowing the background. [Right] An example of reconstruction using our approach.

We consider a simpler setup with a single frame monocular camera with a known arbitrary
background.

We ask, given an object point and its refracted image, can we determine the light path
between them without knowing anything about the surface or its location? While for a
single point this problem is ill-posed, we show that solving this problem for all points at
once imposes implicit spatial regularization and yields reconstruction of the full 3D of the
refractive surface.

We propose an energy formulation such that we seek a surface that explains the refracted
projection of the background object using Snell’s law. To overcome the ambiguity, we op-
timize the whole surface in a single energy, which allows us a calculation of the necessary
normal field. Furthermore, our energy works directly in world coordinates and minimizes
the geometric errors such that we can obtain a full 3D reconstruction of the sought surface.

Our contributions are:
– We present a method that can estimate a complete 3D geometry of a refractive surface

from a single distorted image with knowledge of its background texture and arbitrary
depth using a standard off-the-shelf camera.

– Our method relies only on the physics of refraction, and the energy formulation is
parameter-free.

The rest of the paper is organized as follows: In Sec. 2 we summarize existing works.
In Sec. 3, we show the preliminaries necessary to understand our approach. In Sec. 4 we
show how we optimize the unknown refractive surface via our proposed energy and in Sec. 5
we demonstrate several experiments and evaluations on synthetic and real-world scenes.

2 Related Work
A comprehensive analysis of the problem of refractive geometry in computer vision can be
found in [11]. Here we review works related to our method.
Multi-view Approaches. Ben-Ezra et al. [4] presented a parametric method for shape and
pose recovery of transparent objects from a known observer’s motion. The seminal work of
Kutulakos et al. [13] formulates conditions about the number of views and reference points
under which an arbitrarily shaped specular or refractive scene can be reconstructed. They
show that a surface of a refractive object can be retrieved from two viewpoints and one
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reference point. Chang et al. [7] model the distortion from refraction as a depth-dependent
function and reconstruct a refracted scene from multiple views. Han et al. [9] showed a shape
estimation method based on altering a background pattern of an object immersed in water.
The work of Morris et al. [14] introduces the reconstruction of dynamic refractive surfaces
with an unknown refractive index by exploiting the refractive disparity in the multi-frame
stereo setting. In [1] refraction through a dynamic surface was treated as a random event
happening between the object of interest and the camera. An optimization framework for
3D reconstruction of a transparent object viewed from different viewpoints on a turntable is
shown in [23].

A multi-view position-normal consistency was suggested in [16, 17, 18]. The constraint
imposes consistency on the normal field between the different views. In [17] this constraint
was used to estimate a refractive surface in a stereo setting with a known background texture
and depth. In [18] this constraint was used for 3D shape reconstruction of a wavy water
surface together with the refracted underwater scene from multiple views.
Radiometric Approaches. Chari et al. [8] showed that radiometric clues in addition to the
geometric distortion can help for refractive object reconstruction. The method of Ihrke et
al. [10] used a level set approach to reconstruct a dynamic dyed liquid using a fluorescent
substance. In [2] spectral dependency of water is used to reveal object geometry immersed
in water from the absorption coefficient by applying Beer-Lambert law.
Monocular Reconstruction. Pioneering work in monocular refractive surface reconstruc-
tion was introduced in [15]. They presented an approach for non-rigid transparent shape
reconstruction by statistical and geometrical clues from surface motion over a known pattern
using tens of frames. The work of Wetzstein et al. [22] uses specially designed patterns that
can encode angular information of the scene and estimate surface geometry from a single
image with the additional angular information provided by the pattern.

A recent learning-based method [20] uses a large set of synthetic images to train a model
which can reconstruct complex refractive objects from a single image with a known distant
background. Our method recovers the surface using the physics of refraction and does not
rely on any training data. Thapa et al. [21] use a series of images under orthographic pro-
jection to learn the fluid dynamics of water and estimate a height map of a dynamic surface
from images with a known background.

Similarly to our method, [19] they present an optimization approach in a monocular set-
ting. However, they reconstruct height-field under an orthographic projection and require a
known flat-patterned background. The parallel viewpoint direction in the orthographic pro-
jection eliminates the need to estimate the absolute distance of the surface, since moving
the surface away from the camera does not influence refraction. Unlike [19], our method
estimates the absolute surface depth directly by optimizing reconstruction error on refracted
light paths. Our energy optimizes over world coordinates instead of reprojection error in
the image plane. This enables us to cope with the realistic setup of an arbitrary background
shape, unlike the formulation of [19] which is limited solely to the flat background. Further-
more, optimization in world coordinates allows us to exploit the perspective projection of
the refracted rays and therefore avoid the height-ambiguity present in [19, 21].

3 Refraction Through a Surface
Consider a camera whose reference frame is in the origin and pointing towards a positive Z
coordinate. The matrix of the intrinsic parameters K of the camera is known. Furthermore,
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Figure 2: The geometry of monocular imaging through a surface. [Left] Imaging without
refraction. A background point at B is projected on an image plane at xxxB to an image plane
with color I(xxxB). [Center] Imaging through a homogeneous refractive material between B
and the camera. The light emanating from the background point B is refracted and projected
to the coordinate xxx. In this case, the light path consists of two line segments that go from
xxx through X and meet with the background point B. [Right] Light path when the estimated
refractive surface (red) is different from the correct one (blue). We measure the energy of
a proposed solution E as the shortest distance between the estimated light path (X̂+ tŝss, see
Eq. (2)) and B which should (ideally) be intersected and then E = 0. The direction of the
refracted ray ŝss is calculated from the normal n̂nn and the line-of-sight lll and we know that the
correct refracted surface point lies on lll .

consider a known background point B, see Fig. 2 [left]. When the medium between point B
and the camera is homogeneous, the path of the ray from the point to the observer (camera)
forms a straight line, as is usually assumed in computer vision. Then we denote the image
coordinate of B as xxxB.

The situation changes when an object with a different refraction index is placed between
the camera and the background. Light passing through the interface between the two media
is refracted and the image of the background is distorted. We denote image coordinates of
the refracted ray as xxx, which is a projection of the 3D point surface point X located on the
refractive surface, see Fig. 2 [center].

In our setting, we assume only two homogeneous media, one medium where the observer
is located with an index of refraction (IOR) n1, the other where is the background with IOR
n2. With known IORs, we can apply Snell’s law [12] which defines how refraction happens
between two media. Formally, let us denote in lll the direction of the ray coming out of the
camera and hitting the refractive surface at a point that has a normal nnn. Then, a ray exits the
interface at direction sss, given by Snell’s law [12]

sss = snell(lll ,nnn,µ) :=−µlll +nnn ·
(

µα−
√

1−µ2 (1−α2)

)
, (1)

where µ = n1/n2 is the ratio of the IORs and α = lllT nnn. By knowing the point xxx, we can
calculate the line-of-sight (LOS) on which the point X must lie. The LOS is an unprojection
of a point xxx,

lll =̂ K+xxx . (2)

The critical yet straightforward fact is that the point X must lie on its corresponding
observed LOS lll . Given lll we know that for a distance d we can calculate a point X

X(d) = dlll , (3)

i.e., X lies on the ray lll at a distance of d from the camera origin where X = [x,y,z]T is a
surface point with a depth z. Combining Eq. (1) and Eq. (3) yields the expression for the
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Figure 3: A minimal synthetic example of the proposed energy E for a two-point surface
d1,d2. The background plane is placed at Bz = 3 and the shown surfaces are energies of
different combinations of d1,d2 with their ground truth location shown above. The values
are the logarithm of E for better visibility. All energies show that the ground truth solution
yields a global minimum. However, notice that the magnitude of the gradient gets very small
around the location of the correct solution. Similarly, there is a ridge along a scalar multiple
of the depth. The peak in the energy slightly deviated from the ground truth, because the
normals are calculated from the numerical approximation of surface derivatives.

ray’s light path that connects X and B

B = X+ tsss , (4)

where t is the distance from X to the background point B =
[
xB,yB,zB

]T , see Fig. 2 [center].

4 Optimization
The input to the method is IB, an image of the background object acquired through a ho-
mogeneous medium (i.e. air) including its depth B for each pixel, and IR, an image of the
background object acquired through the refractive surface from the same viewpoint. Then,
dense matches are found between these two images, which is done by estimating the flow
field uuu such that IB(xxx) = IR(xxxB +uuu).

Once the dense matches uuu matches are found, the optimization solves for the refractive
surface by finding the ddd along the known LOS lll for each object point. The optimization aims
to find the values ddd for all points such that their light paths will pass through their respective
background points B (see Fig. 2 [center]).

In each iteration of the optimization, we perform the following steps: 1) Calculating the
surface point cloud (PC) using Eq. (3) with the current estimate of the distances ddd . 2) Cal-
culating the normals nnn from the entire PC. 3) Calculating sss using Eq. (1) and reconstructing
the estimated light path in Eq. (4).

The steps are performed in each update of ddd until a stop criterion on the value of the
energy is met.

4.1 The Energy
In this part, we describe the energy we optimize to obtain surface geometry. We first show
how we measure the error of the depth map when it does not form a correct light path.

In Sec. 3 we said that B has to lie on the trajectory defined in Eq. (4) (see Fig. 2 [center]).
During the estimation of the surface, we reconstruct light paths using Eq. (4), which should
ideally intersect with B. For an incorrect d, the path does not intersect with its B, and we
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penalize the estimate by its smallest distance of the light path to its B. Note that we have to
reconstruct light paths for the entire image since normals are needed to calculate sss in Eq. (1).

The situation is schematically shown in Fig. 2 [right], where the light path does not
intersect with the background point B. In this case, the energy of a point is calculated as the
shortest distance between a light path in Eq. (2) and its background point, B. This point-line
distance has a following closed form,

E(X,sss,B) := ‖B− [X+[sss · (B−X)]sss]‖2 (5)

where · is a dot product and X is given by Eq. (3). The total energy we optimize for all points
jointly is

ddd∗ = argmin
ddd

∑
i∈Ω

E(Xi,sss (llli,nnni,µ) ,Bi)+max{0,zi− zB
i } , (6)

where individual normals nnni are calculated from all points in PC Ω of all surface points Xi(ddd)
in Eq. (3). The second term prevents estimated depth zi to fall behind the background depth
zB

i . Note that the normals and PC are calculated in the iteration of the optimization step, but
only ddd is updated.

Fig. 3 shows a simple example of our energy Eq. (5) with three different combinations
of point distances of two adjacent points. The energies are calculated on a grid of distances.
Each image shows that even when only one of the points is correct, the energy is negatively
affected as the points are spatially linked by normals. This link imposed by normals affects
neighbouring points, and the lower energy is always at the location which matches the true
value for both points. The spatial linking through normals introduces the only regularization
in our energy. It imposes physical correctness on the entire depth map because it is linked to
other surface points through normals which are input for Snell’s law. Moreover, the figure
reveals that there is a significant drop in the gradient magnitude when a solution is either
close to a correct solution or its scalar multiple of depth, which corresponds to the ridge in
the energy surface shown in Fig. 3.
Initialization. The energy is non-convex and relies on a good initial guess, like coarse
information about the surface distance. For this purpose, we developed an initialization
scheme where we optimize a location of a plane perpendicular to the camera’s principal
axis. The plane location from the observer is defined by a single variable, a shift, which
we can easily and quickly optimize with the energy, i.e., we optimize for c after plugging
dddflat = c as the depth to the energy in Eq. (6). With the initial estimate, the location of the
plane is usually roughly located around the mean position of the ground truth surface and
serves as a good initial guess.

5 Experiments
To showcase our method, we compare it quantitatively to benchmarks with available ground
truth [18, 21] and make a series of real-world experiments to estimate a surface of a liquid
with a standard off-the-shelf camera. We have chosen a CPU Matlab implementation of
L-BFGS [24] which does not require the calculation of the memory-prohibitive Jacobian or
Hessian as the number of the variables equals the number of surface points. Run time of one
energy evaluation is on average 2.06 ms for 64× 64 px images, 7.26 ms for 128×128 px and
25.32 ms for 256× 256 px images. For dense matches between background and refracted
surface uuu we used the optical flow [6]. We optimize the energy for the entire input surface

Citation
Citation
{Qian, Zheng, Gong, and Yang} 2018

Citation
Citation
{Thapa, Li, and Ye} 2020

Citation
Citation
{Zhu, Byrd, Lu, and Nocedal} 1997

Citation
Citation
{Brox and Malik} 2010



SULC A. ET AL.: TOWARDS MONOCULAR SHAPE FROM REFRACTION 7

Perspective
Ours - indep. init Ours - seq. init Ours - ddd0 = 2 9 Cameras [18] 4 Cameras [18]

RMSE [unit] MAE [◦] RMSE [unit] MAE [◦] RMSE [unit] MAE [◦] RMSE [unit] MAE [◦] RMSE [unit] MAE [◦]
wave1-zflat 0.15 5.89◦ 0.11 4.29◦ 0.05 5.06◦ 0.006 0.76◦ 0.014 4◦
wave1-zfunc 0.14 6.06◦ 0.10 4.79◦ 0.05 4.80◦

wave2-zflat 0.23 11.16◦ 0.45 13.28◦ 0.04 5.89◦ 0.002 0.37◦ - -
wave2-zfunc 0.23 10.85◦ 0.43 13.18◦ 0.04 5.92◦

Ortographic
Ours - indep. init Full [21] Single-input [21]

RMSE MAE [◦] RMSE MAE [◦] RMSE MAE [◦]
ocean 0.230 1.301◦

0.126 - 0.262 -ripple 0.217 0.649◦

tian 0.248 1.364◦

Table 1: Quantitative comparison of reconstructed surfaces with a multi-view [18] and
a monocular method [21] . The upper part of the table shows results on two benchmark
functions wave1 and wave2 in perspective setting. To demonstrate that our method can han-
dle different background depths, we conducted experiments with two different background
depths defined by zflat and zfunc. The table shows three different initialization schemes, the
first column shows results when each frame is initialized separately, the second the sequential
initialization when only a first frame is initialized and consecutive frames use the previous
result and the third is where all frames use the same initial ddd0 = 2. The lower part shows
evaluation of three different surfaces (ocean, ripple and tian) compared to [21] (monocu-
lar setting under orthographic projection). Each of these surfaces consists of a ten-frame
sequence generated with the code provided by [21].

simultaneously, but alternatively, the optimization step can be performed patch-wisely. The
patch-wise computation can however hurt the quality in non-overlapping regions.
Synthetic Experiments. We compare our method to two methods, a multiview method [18]
and a monocular method [21].

In the first experiment, we use the same benchmark functions presented in [18] with a
perspective projection. The benchmarks are denoted wave1 and wave2. The surface wave1
is defined as z1(x,y, t) = 2+0.1cos[π(t +50)

√
(x−1)2 +(y−0.5)2/80]. It can be intu-

itively seen as a diagonally rolling wave. The second benchmark wave2, z2(x,y, t) = 2−
0.1cos[π(t +60)

√
(x+0.05)2 +(y+0.05)2/75] can be seen as a wave growing in the cen-

ter. Since surfaces are smooth, a resolution of 64×64 px is sufficient to represent the surface.
Scenes are rendered with Blender [5] with Cycles Engine. The rendering scripts and input
images will be made available with the paper. Both functions are evaluated on 100 surfaces
in t ∈ (0,99). We tested both benchmark functions with two background shapes to show that
background geometry can be arbitrary. The first, a plane at zflat = 2.5 and the second, a more
complex shape, zfunc(x,y) = 2.5+0.05[sin(2πx)+ cos(2πy)].

The results of the first experiment are shown upper part of Tab. 1 and Fig. 4. We show
results for three initialization schemes, the independent initialization is done for each frame
t independently and sequential initialization uses the previous estimate as the initial value,
which is similar to the technique used in [18]. Lastly, to demonstrate that our method works
well when an initial surface location is provided, we initialized the method with the surface
location at ddd0 = 2, which roughly corresponds to a mean location of the sought surface.
Error is reported in both Root Mean Square Error (RMSE) of the reconstructed depth map
and Mean Angular Error (MAE) of the estimated normals. We used the same calibration
as [18] therefore the RMSE is measured in the same (arbitrary) units.

The errors vary with time as the surfaces become more complex, but the shape of the
background surface has little influence on the results. We see that our method is sensitive to
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faces [middle] with colour-coded [3] optical flow [6]. The bottom row shows a colour coded
error of the estimated depth map.

es
tim

at
ed

-0.2
5050

0

0 0

0.2

-50 -50

0.4

ocean t = 1

-0.2
5050

0

0 0

0.2

-50-50

0.4

ocean t = 10

-0.2
50 50

00

0

-50 -50

0.2

ripple t = 1

-0.2
5050

-0.1

00

0

-50 -50

0.1

ripple t = 10

-0.05
5050

0

00
-50 -50

0.05

tian t = 1

50 50

-0.20

00

0.2

-50 -50

0.4

tian t = 10

gr
ou

nd
tr

ut
h

-0.5
50 50

0

00

0.5

-50-50

1

-0.5

50 50

0

00

0.5

-50-50

1

-0.5
5050

0 0

0

-50-50

0.5

-1
50 50

-0.5

00

0

-50 -50

0.5

-0.1

50 50

0

00

0.1

-50 -50

0.2

-2
50 50

0 0

0

-50 -50

2

R
M

SE

0
50 50

0.5

00
-50-50

1

0
5050

0.5

0 0
-50-50

1

0
50 50

0.5

00
-50 -50

1

0
5050

0.5

0 0
-50 -50

1

0
50 50

0.5

0 0
-50 -50

1

0
50 50

0.5

00
-50 -50

1

Figure 5: Estimated surfaces of ocean, ripple, tian of surfaces generated from [21] un-
der an ortogtraphic projection. Estimated [top] and ground truth surfaces [middle] with
colour-coded [3] given optical flow [6]. The bottom row shows a colour coded error of the
estimated depth map. Due to the height-ambiguity imposed by the problem, the comparison
is performed with surfaces normalized to have a zero mean.

initialization. There is a noticeable difference in RMSE when a good initial value is provided
(ddd0 = 2, roughly the location of the correct surface). Results differ particularly on wave2,
where RMSE is approximately six times better when a good initialization is used. A less
noticeable gap in results is apparent on wave1 where MAE is even better when sequential
initialization is used than in the case of the good initial guess (ddd0 = 2) but still worse in
RMSE. Note that we rely on a monocular setting with just a predefined background. In
comparison with the nine-camera setting of [18], our method performs worse both in RMSE
and MAE. Since the benchmark surfaces are largely non-flat, our method sometimes esti-
mated the mean location of the surface slightly off but recovered the normals comparatively
accurately to the four camera settings in [18] on wave1 benchmark. However, in the reduced
setting with four cameras [18], our method is on par in MAE, but is still worse in RMSE.

The second experiment compares our method to [21] in a monocular setting with ortho-
graphic projection. We used the code provided by [21] to generate the surfaces and their
optical flow. We rendered ten frames of the three available scenarios ocean, ripple and tian
with 128×128 px under orthographic projection. Note that there is a height-ambiguity im-
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Figure 6: [Left] The input background texture we used in our real-world experiment. [Cen-
ter] One of the input images of a refracted surface (denoted as Frame 6 in Fig. 7). [Right] Op-
tical flow between these frames.

posed by the orthographic projection, as a shift of the entire surface does not change the
refracted ray sss since the angle subtended between lll and nnn does not change with by moving
the surface in Z coordinate, therefore the estimated surfaces are normalized to have zero
mean before their RMSE is calculated. For the same reason, all frames were initialized
identically with an arbitrary flat surface at ddd0 = 1.

Our method quantitatively performs better in RMSE than [21] in a single frame set-
ting. For the full multi-frame FSRN-RNN [21] the RMSE error is half compared to ours
but this method takes into account fluid dynamics between subsequent frames, unlike our
method which works independently on each frame. It is important to stress that in [21] a flat
background at z = 0 is required, while in our case the background depth can be arbitrary.
Furthermore, [19, 21] are limited only to orthographic projection and thus can only estimate
height-field, while our approach is more general and can estimate a 3D surface under the
perspective setting.

In both experimental setups, our method is efficient in finding the correct surface shape
as is evident in the low MAE. Most of the RMSE error stems from errors in the shift and
scale of the surface, as discussed in Sec. 4.

Real-World Experiments. We further evaluated our approach on real-world scenes using
a water tank and a flat surface with a printed complex texture as the background (shown
in Fig. 6 [left]). We used a Nikon D810 camera with a Nikon AF-S Nikkor 105 mm lens.
Camera calibration was performed with the MATLAB Camera Calibration Toolbox. We
also used the results of the depth of the intrinsic calibration marker to measure the depth of
the flat background surface. The optical flow was estimated with [6]. We fixed the camera
to a steel custom-made structure approximately 630 mm away from the background (an
averaged distance of the flat calibration pattern) where the background is perpendicularly
aligned to the principal axis of the camera. The textures contain many fine details, which
are particularly good for finding the dense matches between the background image and the
images distorted by refraction. We show the background and one refracted input image
in Fig. 6 [left] and the estimated surfaces in Fig. 7.

We perturbed the surface by hand to make different types of waves with varying smooth-
ness. Frames 1 and 2 in Fig. 7 show reconstructions of smooth surfaces with rather larger
waves. Frame 4 showcases a situation with a slightly larger depth range where we shook
the surface. Lastly, frames 5 and 6, in contrast, show waves with rather sharper edges of
smaller depths. Since the real-world surface is mostly flat, the initial estimate is often accu-
rate enough and produces convincing depths.
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Figure 7: Estimated surfaces of our real-world water experiment. Fig. 6 shows input images.
Surfaces are shown with their corresponding colour-coded [3] optical flow [6]. The experi-
ment was made with a water tank with a fixed camera acquiring the scene from above. Apart
from making artificial waves on the surface, the amount of liquid was also changed to vary
the overall depth. Because the magnitude of depth is significantly smaller than surface width
and height, the shown surface depths are re-scaled 20 times for better visibility.

6 Conclusions
A refractive object can hinder many conventional computer vision methods. Nevertheless,
refraction can teach us about the physics of the scene and pose interesting challenges. Here
we looked at the task of reconstructing a refractive surface over a known background using
just a single view. This setup was never tackled before in the general setup of a perspective
camera and an arbitrary background shape.

Unlike previous papers that used multiple views, frames, or additional constraints, we
showed that a simple energy function based on Snell’s law can estimate a surface under a
monocular setup when background depth is given. Working directly at world coordinates,
we express our energy as a distance between the original background point and the expected
ray’s trajectory. The energy looks for the surface that best explains the refracted image
altogether. By optimizing for the entire surface, implicit smoothness is imposed, and the
surface shape can be reconstructed.

We demonstrate our method on numerous synthetic and real-world scenes with varying
complexity. We achieve errors that are on par in MAE with a previous method that used four
views and similarly accurate in RMSE with a deep learning single-frame monocular setup
under orthographic projection.

Since our method is indirectly optimizing the depth through normal fields, it is highly
sensitive to the initial depth and performs better in reconstructing surface normals than re-
constructing absolute depth. For initialization, we developed a simple initialization scheme,
which works robustly on mostly flat surfaces. Our method is based on calculating the optical
flow between the refracted image to the original one. Therefore, it is limited to scenarios
where the optical flow can be reliably calculated, i.e., enough texture and moderate distor-
tions from the refraction.
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