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Abstract

Algorithms for the action segmentation task typically use temporal models to predict
what action is occurring at each frame for a minute-long daily activity. Recent stud-
ies have shown the potential of Transformer in modeling the relations among elements
in sequential data. However, there are several major concerns when directly applying
the Transformer to the action segmentation task, such as the lack of inductive biases
with small training sets, the deficit in processing long input sequence, and the limita-
tion of the decoder architecture to utilize temporal relations among multiple action seg-
ments to refine the initial predictions. To address these concerns, we design an efficient
Transformer-based model for the action segmentation task, named ASFormer, with three
distinctive characteristics: (i) We explicitly bring in the local connectivity inductive pri-
ors because of the high locality of features. It constrains the hypothesis space within a
reliable scope, and is beneficial for the action segmentation task to learn a proper target
function with small training sets. (ii) We apply a pre-defined hierarchical representa-
tion pattern that efficiently handles long input sequences. (iii) We carefully design the
decoder to refine the initial predictions from the encoder. Extensive experiments on
three public datasets demonstrate the effectiveness of our methods. Code is available at
https://github.com/ChinaYi/ASFormer.

1 Introduction
Algorithms for automatic detection and segmentation of human activities are crucial for ap-
plications such as home security, healthcare, and robot automatic. Different from the action
classification task that tries to classify a short trimmed video into a single action label, the
goal of the action segmentation task is to assign an action label for each frame for a minutes-
long untrimmed video. Instead of using raw RGB video sequences as the input, action
segmentation methods operate on pre-extracted frame-wise feature sequences and focus on
modeling the temporal relations among frames. Transformers, originally designed for the
machine translation task [41], have achieved great performance for almost all natural lan-
guage processing(NLP) tasks over the past years. Very recently, many researchers also show
the potential of pure or hybrid Transformer models for many vision tasks, including image
classification [4, 10, 40, 45, 50], action classification [1], segmentation [44, 46, 52], et al.
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The task of action segmentation is similar to NLP tasks, since both of them are sequence-
to-sequence prediction tasks. With the success of Transformer-based models in modeling
the relations among elements in sequential data, one would expect the Transformer-based
models to be highly effective for the action segmentation task as well.

However, there are three major concerns when solving the action segmentation task by
the vanilla Transformer [41] :

1. Due to the small size of training sets, the lack of inductive biases of the vanilla
Transformer becomes the bottleneck of applying it to the action segmentation problem.
The lack of inductive biases broadens the family of functions they can represent [6].
However, it requires a large amount of training data. Compared to the NLP task and
other vision tasks, the training set of the action segmentation task is relatively small,
making it difficult to learn a target function from a large hypothesis space.

2. Due to the deficit of self-attention for the long input video, the Transformer is
hard to form an effective representation. At initialization, the self-attention layer
cast nearly uniform attention weights to all the elements in the sequence. However,
the input video for the action segmentation task usually lasts for thousands of frames,
much longer than the image-patch sequences in other vision tasks. Due to the length
of videos, it is challenging for the self-attention layer to learn appropriate weights that
focus on meaningful locations [53]. The deficit of each self-attention layer further
raises a serious issue: it is hard for those self-attention layers in one Transformer
model to cooperate with each other to form an effective representation for the input.

3. The original encoder-decoder architecture of the Transformer does not meet the
refinement demand of the action segmentation task. Temporal relations among
multiple action segments play an important role in the action segmentation task, e.g.
the action after take bottle and pour water usually to be drink water. Given an initial
prediction, previous works usually apply additional TCNs [11, 47] or GCNs [15, 43]
over the initial prediction to perform a refinement process to boost the performance.
However, the decoder in the vanilla encoder-decoder architecture is not designed for
such usage.

In this paper, we will address the above three concerns in our proposed ASFormer, as
shown in Fig. 1. For the first concern, we observe that one property of the action segmenta-
tion task is the high locality of features because every action occupies continued timestamps.
Thus, the local connectivity inductive bias is important to the action segmentation task.
It constrains the hypothesis space within a reliable scope, and is beneficial to learn a proper
target function with small training sets. We bring in such strong inductive priors by applying
additional temporal convolutions in each layer. For the second concern that the Transformer
with serials of self-attention layers is hard to form an effective representation over the long
input sequence, we constrain each self-attention layer with a pre-defined hierarchical rep-
resentation pattern, which forces the low-level self-attention layers to focus on the local
relations at first and then gradually enlarges their footprints to capture longer dependencies
in high-level layers. The local-to-global process assigns specific responsibilities to each
self-attention layer, so that they can cooperate better to achieve faster convergence speed and
higher performance. Such a hierarchical representation pattern also reduces the total space
and time complexity to make our model scalable. Finally, we propose a new design of the
decoder to acquire the refined predictions. The cross-attention mechanism in the decoder
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Figure 1: (b). An overview of the ASFormer model which consists of an encoder and several
decoders to perform an iterative refinement. For the encoder, it receives video sequences and
outputs initial predictions. Encoder consists of serials of encoder blocks with pre-defined
hierarchical representation patterns. For the decoder, it receives predictions as the input and
has similar architecture with encoder. (a). Each encoder block consists of a feed-forward
layer (dilated temporal convolution) and a self-attention layer with residual connections. (c).
The decoder block uses cross-attention mechanism to bring in information from the encoder.

allows every position in the encoder to attend over all positions in the refinement process,
simultaneously avoiding the disturbance of the encoder to the learned feature space in the
refinement phase.

Experiments are conducted on three common public datasets, including the 50Salads [37],
Breakfast [19] and GTEA [12]. The experimental results demonstrate the proposed solution
is capable of dealing with small training datasets and long videos with thousands of frames.
The design of decoders also takes advantage of temporal relations among multiple action
segments to help get smoother and accurate predictions. To summarize, the main contribu-
tions of this work include: 1) An exploration for Transformer on action segmentation task
with three distinctive characteristics: the explicitly introduced local connectivity inductive
bias, pre-defined hierarchical representation pattern, and new design of the decoder; 2) state-
of-the-art action segmentation results on three public datasets.

2 Related Work
Action Segmentation. Earlier approaches detect action segments using a sliding window
and filter out redundant hypotheses with non-maximum suppression [18, 33]. Other ap-
proaches model the temporal action sequence with Conditional Random Fields [30, 34, 39],
Markov model [20, 38] and RNN [9, 29, 35, 42, 49] to classify framewise actions. In re-
cent years, motivated by the success of temporal convolution in speech synthesis, most of
the works try to apply various temporal convolution networks for the action segmentation
task, such as the encoder-decoder temporal convolution [8, 23], deformable temporal con-
volution [24], or dilated temporal convolution [11, 16]. Other works build on top of these
TCNs. Wang et al. [47] reuse the structure of [11] as cascade stages. Huang et al. [15] and
Wang et al. [43] propose a graph-based temporal reasoning module, which can be added to
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the top of action segmentation models. Chen et al. [5] propose to exploit unlabeled auxil-
iary videos by shaping this problem as a domain adaptation (DA) problem. Very recently,
Ishikawa1et al. [17] alleviate over-segmentation errors by detecting action boundaries. Sing-
haniaet al. [36] follow a coarse-to-fine structure with an implicit ensemble of multiple tem-
poral resolutions. However, a single convolutional layer does not connect all pairs of input
and output positions, which remains room for improvement.
Transformer. Transformer [41] is originally designed for natural language processing tasks,
which relies on the self-attention mechanism to build dependencies among elements. Due
to the strong capability of capturing global information, hybrid Transformer models have
also been successfully applied to a variety of vision problems, including image classifica-
tion [4, 10, 40, 45, 50], action classification [1], segmentation [44, 46, 52], et al. More
recently, some researches study the efficient version of Transformer models, which explore
attention restrictions to local windows, such as Swin [28], BigBird [51]. In this paper, we
explore the application of Transformer based models on the action segmentation task.
Action Detection. Different from action segmentation task, the action detection task aims
at localizing the start/end of the action and recognizing it in an untrimmed video. The One-
stage methods [25, 26] draw on the SSD [27] method in object detection and design end-
to-end action detection networks with the similar feature pyramid structures. Two-stage
methods [3, 48] adopt the Faster-RCNN [31] architecture, including proposal generation and
proposal classification.

3 Methods
In this work, we propose ASFormer to tackle the action segmentation task, as shown in
Fig. 1. Our ASFormer adapts an encoder-decoder structured Transformer. Given the pre-
extracted frame-wise video feature sequence, the encoder will first predict the initial action
probability for each frame. Then the initial predictions will be passed to multiple successive
decoders to perform an incremental refinement. In Sec. 3.1, we first illustrate the structure of
encoder, showing how we deal with small training datasets and long videos with thousands
of frames. After that, we introduce the design of decoders and our way to take advantage
of temporal relations among multiple action segments for refinement in Sec. 3.2. Finally, in
Sec. 3.3, we introduce the implementation and training details of our ASFormer.

3.1 Encoder
The input for the encoder is the pre-extracted feature sequences of size T ×D, where T is the
video length and D is the feature dimension. The first layer of the encoder is a fully connected
layer that adjusts the dimension of the input feature. Then, this layer is followed by serials
of encoder blocks. After that, a fully connected layer will output predictions ye ∈ RT×C from
the last encoder block, where C denotes the number of action classes.

Each encoder block contains two sub-layers. The first is a feed-forward layer, and the
second is a single-head self-attention layer. We employ a residual connection around each
of the two sub-layers, followed by instance normalization and ReLU activation, as shown in
Fig. 1(a). Different from the vanilla Transformer, we use a dilated temporal convolution as
the feed-forward layer instead of a point-wise fully connected layer. This design is inspired
by the properties of the action segmentation task, which are a) lack of the large training
dataset for completely free inductive bias. b) high locality of features since every action
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occupies continued timestamps in the input video. In contrast to the fully connected layer,
the temporal convolution layer can bring beneficial local inductive bias to our model.

The self-attention layer is hard to be learned to focus on meaningful locations over thou-
sands of frames. For an input video, those self-attention layers are difficult to cooperate
with each other to form an effective representation. To mitigate this issue, we pre-define a
hierarchical representation pattern. Such a hierarchical pattern is inspired by modern neural
network design: one would first focus on the local feature and then gradually enlarge the
receptive field to capture the global information. For example, CNNs achieve such patterns
with serials of pooling layers to enlarge the receptive field in higher layers; or use dilated
convolutions with a gradually increasing dilation rate. Motivated by the success of such a
hierarchical pattern, we constrain the receptive fields of each self-attention layer within a
local window with size w (e.g. for a frame t, we only calculate the attention weights with
the frames that within its local window). The size of the local window is then doubled at
each layer i (i.e., w = 2i, i = 1,2...). Meanwhile, we also double the dilation rate of the
temporal convolution layer with the encoder depth increasing, keeping consistent with the
self-attention layer.

For an encoder with J blocks, the whole approximate memory usage for a vanilla Trans-
former is O(J ·T ·T ), where T is the video length. With the hierarchical representation pat-
tern, we reduce the total space complexity to O((2− ε) ·2J ·T ), where ε is a small number.
In our settings, we use J = 9, where 2J = 512 is almost 10 times smaller than T . Compared
to the vanilla Transformer, our ASFormer is applicable to receiving long input sequences.

3.2 Decoders

Temporal relations among multiple action segments play an important role in the action
segmentation task. There are some prior relationship between actions segments, e.g. the
action after take bottle and pour water usually to be drink water. As previous works showed,
applying additional TCNs [11, 47] or GCNs [15, 43] over the initial prediction to perform a
refinement process can boost the performance. In this section, we illustrate how the newly
designed decoder carries out the refinement task for the initial predictions by the encoder in
one-forward-pass. For a better explanation, we first introduce a single decoder, and naturally
extend it to a multiple version to perform iterative refinement.
A Single Decoder. The input for the decoder is the initial output by the encoder. The first
layer of the decoder is a fully connected layer to adjust the dimension, and then followed by a
serial of decoder blocks. The architecture of each decoder block is shown in Fig. 1(c). Simi-
lar to the encoder, we use temporal convolution as the feed-forward layer and the hierarchical
pattern is also applied for the cross-attention layer.

Compared to the self-attention layer, the cross-attention has the following difference:
The query Q and key K are obtained from the concatenation of the output from the encoder
and previous layer, while the value V is only obtained from the output of the previous layer.
The cross-attention mechanism allows every position in the encoder to attend overall posi-
tions in the refinement process by generating the attention weights. The feature space V is
completely transformed from the input predictions, and will not be disturbed with the par-
ticipant of the encoder, because the generated attention weights are only used to perform a
linear combination within V . Such design is inspired by the previous work [11], where they
show the refinement process is very sensitive to the disturbance of the learned feature space
from the predictions.
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Multiple Decoders. One would naturally expand the single decoder to a multiple version
to perform iterative refinement. In the multiple version, the input of each decoder is from the
previous one, as shown in Fig. 1(b).

The cross-attention mechanism allows to bring in external information to guide the re-
finement process. We hope to gradually reduce the weight of external information to avoid
the problem of error accumulation. For the input x in each decoder block, we use a weighted
residual connection for the output of the feed-forward layer and the cross-attention layer:

out = f eed_ f orward(x)

out = α ∗ cross_att(out)+out
(1)

We set α = 1 for the first decoder and then exponentially decrease α for rest decoders.

3.3 Loss Function & Implementation details
The loss function is a combination of classification loss Lcls for each frame and smooth loss
Lsmo [11]. The classification loss is a cross-entropy loss, while the smooth loss calculates
the mean squared error over the frame-wise probabilities. The final loss function L is,

L= Lcls +λLsmo =
1
T ∑

t
−log(yt,ĉ)+λ

1
TC ∑

t
∑
c
(yt−1,c− yt,c)

2

where yt,ĉ is the the predicted probability for the ground truth label ĉ at time t. λ is a balance
weight that is set to 0.25 in our experiments. Finally to train the complete model, the sum of
the losses over the encoder and all decoders is minimized.

The final ASFormer consists of one encoder and three decoders, while each encoder and
the decoder contains nine blocks. The dimension of the first fully connected layer in the en-
coder and decoder is set to 64, as well as the feature dimension in each encoder and decoder
block. Moreover, a special dropout layer is applied to the input feature of the encoder, which
randomly drops the entire feature channel with a dropout rate of 0.3. In all experiments, we
train the model for 120 epochs through Adam optimizer with a learning rate 0.0005.

4 Dataset
50Salads [37] dataset contains 50 videos with 17 action classes of users making a salad and
has been used for both action segmentation and detection. On average, each video contains
20 action instances and is about 6.4 minutes long. These activities were performed by 25
actors where each actor prepared two different salads. For evaluation, we perform 5-fold
cross-validation and report the average results.
GTEA [12] dataset contains 28 videos of 11 action classes of daily activities in a kitchen,
like take or pour, performed by four subjects. On average, each video has 20 action instances
and is about half-minute long on average. We use the standard four different train-test splits
as previous works by leaving one subject out. Similar to 50Salads, the average results of four
splits are reported.
Breakfast [19] dataset is the largest and the most challenging dataset among the three
datasets with 1712 videos. The videos were recorded in 18 different kitchens, showing
breakfast preparation-related activities. Overall, there are 48 different actions, and each
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video contains six action instances on average. We use the standard 4-fold cross-validation
for evaluation and report the average results.
For all the three datasets, we use the I3D [2] model, which is trained on kinetics [2] dataset,
to pre-extract feature sequences as in previous works [7, 11, 15, 23, 43, 47]. The dimension
of the I3D feature for each frame is 2048-d. The following three evaluation metrics are used
to evaluate the performance: frame-wise accuracy(Acc.), segmental edit score (Edit), and
segmental overlap F1 score with threshold k/100, denoted as F1@k.

5 Experiments

5.1 Impact of position encoding and multi-head self-attention
In terms of implementation details, our ASFormer has two differences compared to the
vanilla Transformer. First, the position encoding is not applied for the input of both en-
coder and decoders. Second, vanilla Transformer usually adapts multi-head attention that
concatenates the output from multiple single-head attention to enhance the feature transfor-
mation ability. Instead, we only use one single-head attention in each encoder/decoder block.
We conduct the following two experiments to demonstrate the introduction of temporal con-
volution makes our model free from position encoding and multi-head self-attention.

The first experiment studies whether position encoding is still needed for ASFormer.
The results on 50Salads dataset are shown in Table 1. For the temporal convolution, the
position encoding is even counterproductive. When the position encoding is only applied
for the encoder, the performance already drops a lot. Further, when the position encoding
is applied for both encoder and decoders, the performance is even worse. The possible
reason is that the temporal convolution already has the ability to model the relative positional
relationships. The redundant absolute position encoding might be harmful to the temporal
convolutions to learn the feature embedding. Thus, we drop the position encoding from
our model. The second experiment studies the impact of multi-head self-attention. Table 2
shows the comparison of multi-head self-attention with the different numbers of heads on
50Salads. For each head in the multi-head attention, the feature dimension is the same as the
single-head attention. We can observe that the single head self-attention achieves comparable
performance with the multiple ones. This is because the convolution operation has a similar
form with the multi-head self-attention operation (e.g. a 64-filters convolution operator also
concatenates the output from 64 1-filter convolutions). Considering the extra computation
and memory budgets brought by the multi-head self-attention, we use the single-head self-
attention by default.

Table 1: Comparison of whether us-
ing position encoding on 50Salads.

F1@{10, 25, 50} Edit Acc.
w/o pe (ours) 85.1 83.4 76.0 79.6 85.6
+ pe encoder 80.2 78.0 70.0 73.0 83.6

+ pe decoder 78.1 76.7 69.4 72.0 84.1

Table 2: Comparison of multi-head self-
attention with different number of heads
on 50Salads.

F1@{10, 25, 50} Edit Acc.
single head (ours) 85.1 83.4 76.0 79.6 85.6

two heads 85.0 83.0 75.9 78.2 85.9
three heads 85.2 83.2 76.8 78.1 85.3

5.2 Effect of the local connective inductive bias
In this section, we study the effect of bringing in local connective inductive bias with the
temporal convolution. For comparison, we use an MLP as the feed-forward layer as the same
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8 ASFORMER: TRANSFORMER FOR ACTION SEGMENTATION

as the vanilla Transformer. It is worth noting that when removing the temporal convolution
from our model, the position encoding is needed to bring in position information as the
vanilla transformer does. In order to directly compare the two solutions, we only use the
encoder part for the experiments to avoid the impact of the refinement process. Results
on the 50Salads dataset are shown in Table 3. We can observe that when MLP is used
as the feed-forward layer, the performance drops greatly, especially on F1 scores and Edit
score, which denotes that the model fails to model the temporal relationship among frames
to produce smoother and consistent predictions. This also demonstrates that the fusion of
neighboring local information plays an important role in the performance.

Table 3: Comparison of MLP with position encoding and temporal convolution as the feed-
forward layer on 50Salads. Results on the the encoder are reported.

F1@{10, 25, 50} Edit Acc.
MLP+PE 27.6 25.3 19.9 20.0 74.2
Conv (ours) 53.1 51.4 47.0 43.3 85.7

5.3 Effect of the hierarchical representation pattern

The hierarchical representation pattern plays an important role in our ASFormer. To demon-
strate its effectiveness, we conduct a non-hierarchical version by setting the size of the lo-
cal window in all attention layers to 512, which is the largest window size in the last en-
coder/decoder block (out of memory if we directly set the size of the local window in all
attention layers to the video length). The non-hierarchical version allows each self-attention
layer to span their attention weights ‘freely’. Experiments on the 50Salads dataset are shown
in Table 4. The performance of the non-hierarchical version drops significantly.

To better understand why there is such a huge performance gap, we show some visual-
ization results in Fig. 2. For an anchor query frame, we plot its attention weights in each
self-attention layer in the encoder (The attention weights are normalized with min-max1.).
Fig. 2(a) shows the non-hierarchical version, while Fig. 2(b) shows the case that with the
pre-defined hierarchical pattern. We have two observations. First, for the high-level blocks
(e.g. block #9) that have the same window size, there is much more activation (blue ribbon)
in the non-hierarchical version after the min-max normalization. This means that the atten-
tion weights in many locations have close values and are more similar to a trivial uniform
distribution. In contrast, self-attention trained with the hierarchical pattern tends to focus
on several meaningful locations. Secondly, the ‘freely’ attention cannot automatically learn
a hierarchical pattern from data. As shown in Fig. 2(a), the low-level blocks do not cast
attention on their neighbors when the self-attention layer is not constrained.

5.4 Effect of the multiple decoders

To demonstrate that our decoder takes advantage of temporal relations among multiple action
segments for refinement, we conduct an ablation study about stacking the different numbers
of decoders. Results on the 50Salads dataset are shown in Table 5. The decoders largely
boost the performance compared to the encoder, and we achieve the best results when stack-

1x = (x−min)/(max−min)
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Table 4: Comparison of hierarchical representation pattern and the non-hierarchical pattern
(by setting the size of local window in all attention layers to 512) on 50Salads.

F1@{10, 25, 50} Edit Acc.
non-hierarchical 64.2 61.5 55.1 59.5 76.8
hierarchical (ours) 85.1 83.4 76.0 79.6 85.6

+
Block #1

Block #9

(a)  non-hierarchical

Block #1

Block #9

+

(b) hierarchical

512 512

Figure 2: The visualization of attention weights for an anchor frame (red +) in each en-
coder block, more visualization can be found in the supplementary material. (a) The non-
hierarchical (by setting the window size to 512 in all blocks). (b) With the hierarchical
pattern.

ing three decoders. To show the iterative refinement process, we further plot the predictions
in the encoder and all decoders, as shown in the supplementary material.

5.5 Ablations of the number of blocks
The number of blocks J in the encoder/decoder is an important hyper-parameter, where more
blocks bring larger receptive fields but also lead to higher memory costs as introduced in
Sec. 3.1. We conduct an ablation study about the different number of blocks in the en-
coder/decoder on the 50Salads dataset and report the peak value of the GPU memory cost
for batch size 1 during training. Results are shown in Table 6. We achieve higher perfor-
mance with the increasing number of blocks until J = 9. Using more than 9 blocks (J = 10)
slightly improves the frame-wise accuracy but does not increases the F1 scores. Meanwhile,
the GPU memory cost increase dramatically with the large J. Thus, we choose J = 9 for all
our experiments.

Table 5: Comparison of stacking different
number of decoders on 50Salads.

F1@{10, 25, 50} Edit Acc.
Encoder Only 53.1 51.4 47.0 43.3 85.7
One Decoder 79.5 77.4 , 71.6 71.5 86.8
Two Decoders 83.9 82.8 76.8 76.7 86.8

Three Decoders (ours) 85.1 83.4 76.0 79.6 85.6
Four Decoders 84.0 82.2 75.8 76.5 84.3

Table 6: Comparison of different number of
blocks J on 50Salads.

J F1@{10, 25, 50} Edit Acc. GPU Mem.
7 82.9 81.5 74.0 76.0 84.5 ∼2.1G
8 84.4 82.8 75.4 78.2 85.4 ∼2.5G
9 85.1 83.4 76.0 79.6 85.6 ∼3.5G
10 84.7 83.6 76.5 79.5 86.4 ∼6.1G

5.6 Comparison with SOTA
This section compares the proposed ASFormer to the state-of-the-art methods on three datasets:
50Salads, GTEA, and Breakfast datasets. The results are presented in Table 7. Our model
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achieves the state-of-the-art methods on the three datasets compared to previous work. The
results on three metrics highlight the ability of our ASFormer to obtain accurate and smooth
predictions.

Table 7: Comparison with the state-of-the-art on 50Salads, GTEA and the Breakfast datasets.
Bold and underlined denote the highest and the second value in each column.

50Salads GTEA Breakfast
F1@{10,25,50} Edit Acc. F1@{10,25,50} Edit Acc. F1@{10,25,50} Edit Acc.

IDT+LM [32] 44.4 38.9 27.8 45.8 48.7 - - - - - -
ST-CNN [22] 55.9 49.6 37.1 45.9 59.4 58.7 54.4 41.9 - 60.6 - - -
Bi-LSTM [35] 62.6 58.3 47.0 55.6 55.7 66.5 59.0 43.6 - 55.5 - -
ED-TCN [23] 68.0 63.9 52.6 59.8 64.7 72.2 69.3 56.0 - 64.0 - - 43.3
HTK [21] - - - - - - - - 50.7
TCFPN [8] - - - - - - - - 52.0
SA-TCN [7] - - - - - - - - 50.0
HTK(64) [20] - - - - - - - - 56.3
TDRN [24] 72.9 68.5 57.2 66.0 68.1 79.2 74.4 62.7 74.1 70.1 - - -
SSA-GAN [13] 74.9 71.7 67.0 69.8 73.3 80.6 79.1 74.2 76.0 74.4 - - -
MS-TCN [11] 76.3 74.0 64.5 67.9 80.7 85.8 83.4 69.8 79.0 76.3 52.6 48.1 37.9 61.7 66.3
DTGRM [43] 79.1 75.9 66.1 72.0 80.0 87.8 86.6 72.9 83.0 77.6 68.7 61.9 46.6 68.9 68.3
BCN [47] 82.3 81.3 74.0 74.3 84.4 88.5 87.1 77.3 84.4 79.8 68.7 65.5 55.0 66.2 70.4
Gao et al. [14] 80.3 78.0 69.8 73.4 82.2 89.9 87.3 75.8 84.6 78.5 74.9 69.0 55.2 73.3 70.7
ASRF [17] 84.9 83.5 77.3 79.3 84.5 89.4 87.8 79.8 83.7 77.3 74.3 68.9 56.1 72.4 67.6
ASFormer 85.1 83.4 76.0 79.6 85.6 90.1 88.8 79.2 84.6 79.7 76.0 70.6 57.4 75.0 73.5

Table 8: Comparison of ASRF(build upon
MS-TCN) and ASRF*(build upon our AS-
Former) on 50Salads dataset.

F1@{10, 25, 50} Edit Acc.
ASRF(MS-TCN) 84.9 83.5 77.3 79.3 84.5

ASRF*(ASFormer) 86.8 85.4 79.3 81.9 85.9

Table 9: Comparison of ASFormer and MS-
TCN on number of parameters, FLOPs and
GPU memory cost on 50Salads dataset.

#params (M) FLOPs(G) GPU Mem.
MS-TCN 0.799 4.79 ∼1.7G
ASFormer 1.134 6.80 ∼3.5G

It is worth noting that our ASFormer can serve as a strong backbone model and thus
can be easily adapted by other works. To demonstrate that, we replace the original TCN-
based backbone model MS-TCN [11] in ASRF [17] with our ASFormer. The new model,
denoted as ASRF*, achieves even higher results on the 50Salads dataset than the original
ASRF [17], as shown in Table 8. Besides the performance, we further compare with the
popular TCN-based backbone MS-TCN [11] in terms of the computation cost, as shown in
Table 9. The additional computational burden of our ASFormer is acceptable with the mod-
ern chips. Thus, our ASFormer provides an alternative backbone choice for the community
to build new models.

6 Conclusion

In this paper, we explore the application of Transformer-based models on the action segmen-
tation task. We propose three major concerns and respective solutions in our ASFormer. The
superior results on three public datasets demonstrate the effectiveness of our method, and
provide a new solution for the community to address the action segmentation task.
Acknowledgement. This work was partially supported by the Natural Science Foundation of
China under contracts 62088102. We also acknowledge the High-Performance Computing
Platform of Peking University for providing computational resources.
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