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Abstract

State-of-the-art video deblurring methods often adopt recurrent neural networks to
model the temporal dependency between the frames. While the hidden states play key
role in delivering information to the next frame, abrupt motion blur tend to weaken the
relevance in the neighbor frames. In this paper, we propose recurrence-in-recurrence
network architecture to cope with the limitations of short-ranged memory. We employ
additional recurrent units inside the RNN cell. First, we employ inner-recurrence mod-
ule (IRM) to manage the long-ranged dependency in a sequence. IRM learns to keep
track of the cell memory and provides complementary information to find the deblurred
frames. Second, we adopt an attention-based temporal blending strategy to extract the
necessary part of the information in the local neighborhood. The adpative temporal
blending (ATB) can either attenuate or amplify the features by the spatial attention. Our
extensive experimental results and analysis validate the effectiveness of IRM and ATB
on various RNN architectures.

1 Introduction

Videos often suffer from motion blur caused by the relative motions between the camera and
the objects. From the motion blur that varies both spatially and temporally, recovering the
sharp and rich details is a challenging task. Such complex blur makes the scene hard to be
identified, hindering the following scene recognition algorithms to be applied in practice.
As motion blur is one of the most common artifacts in videos, many efforts were made to
address the video deblurring problem.

From the temporal variation of scenes, conventional video deblurring methods tried to
extract the motion information to remove it from the scenes. Motion flow was used to infer
the blur trajectories in the frames [6, 8] in the joint optimization process with the latent
frames. In [9, 17, 20], the displacement of the neighboring frames are modeled by optical
flow to help the learning of the following neural network models. The frames are aligned by
warping from the estimated flow so that the relevant information could be better aggregated
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Figure 1: Visual comparison of RNN-based video deblurring results (top) and our RIRN-
applied results (bottom). RIRN recovers the image details where the baseline methods fail.

in the learning process. However, trying to find such point-to-point correspondences from
blurry frames are prone to be erroneous and cause misalignment errors.

Recurrent neural networks, on the other hand, try to handle the temporal propagation of
scenes in an implicit manner. Rather than explicitly finding the motion flow, the hidden states
convey the information from the past frames to the future frames. Thus, the way to handle
hidden states has played key roles in designing recurrent networks for video deblurring [7,
16, 24, 29, 30].

As the hidden states are obtained from the past frame but blindly to the current frame,
the hidden state should be carefully used with the input frames. While [24] designed a
multi-scale architecture to deliver hierarchical information, [7, 16] modified the hidden states
adaptively to the input in order to better focus on the target frame. However, motion-blurred
sequences often suffer from abrupt change of scenes that loosens the correlation between the
adjacent frames. Extending the neighborhood from the single previous frame to a predeter-
mined range of past and future frames, [29] keeps a set of features and uses them to deblur
the center frame. Such an approach could look wider to find more relevant information from
the saved features but requires extra RAM proportional to the size of the neighborhood.
Also, the optimal number of frames to look could vary by the local blur dynamics and scene
contents.

Instead of saving multiple features or hidden states, we propose to model the long-range
information of video in an extra memory with our recurrence-in-recurrence network (RIRN).
On top of an RNN architecture, we design an inner-recurrence module (IRM) that generates
an auxiliary state with complementary information from the hidden state. Different from
[29], we do not drop the oldest memory but let IRM learn to keep necessary information.
Also, we propose an adaptive temporal blending (ATB) method that finds the relevant part
of the information from the local neighborhood. ATB generates attention maps on the image
features from the current and the previous frames. While we adopt the idea of temporal
blending from [7], we relax the attention constraint so that features could be either attenuated
or emphasized by the necessity in reconstructing the deblurred image via learning.

By conducting ablation study with a baseline method, we analyze the behavior of the
proposed IRM and ATB and show the effectiveness of the architectural designs. Furthermore,
we apply the RIRN architecture to various RNN-based video deblurring methods as well as
the gated architectures, LSTM [5] and GRU [1] that manipulates the update of hidden states.
Our extensive experimental results exhibit the consistent improvements from our method
both quantitatively and qualitatively.
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2 Related Works

Video Deblurring with Explicit Motion Modeling. While single image deblurring meth-
ods typically investigate the spatial information to handle the intrinsic blur trajectories [4,
14, 19, 22, 27], early studies on video deblurring tried to aggregate the sharper informa-
tion from the temporally neighboring frames [2, 13] by finding relevant patches. To cope
with complex blurry scenes, most of the optimization-based approaches estimated the blur
kernel and used it to find the deblurred frames [6, 8, 12, 25, 26] through the joint optimiza-
tion process. However, finding spatially non-uniform kernel for every pixel requires heavy
computational resources. In [20], learning-based method was introduced by feeding a set
of frames into CNN to deblur the center frame. However, optical flow had to be computed
from the blurry input frames to align them in the preprocessing. Due to the blurriness, it
is difficult to find the pixel-level correspondences and the error could cause inaccuracies in
restoring the frames. In [9], spatio-temporal flow estimation was adopted to selectively cap-
ture the temporal dependencies while alleviating the occlusion problems from optical flow.
Later, [17] proposed to improve the optical flow accuracy by estimating the flow and the la-
tent frames simultaneously with neural networks using temporal sharpness prior. In a recent
work [11], the proposed ARVo method first uses an optical flow to align the frames. Then,
they construct a correlation volume pyramid among all pixel pairs in the neighboring frames
to aggregate relevant information.

Video Deblurring with Implicit Motion Modeling. On the other hand, the motion infor-
mation is implicitly employed in the approaches using recurrent neural networks. Proposing
a recurrent neural network architecture, RDN [24] employed temporal skip connections in
multiple feature scales to transfer information to the next frames. In OVD [7], the inter-
mediate features were computed with dynamic temporal blending to improve the deblurring
performance. As such hidden states are generated from the past frames without knowing
the target blurry frame, IFI-RNN used intra-frame iteration using the recurrence archtiec-
ture to adapt the hidden states to better remove blur in the frame. In a different approach,
STFAN [30] proposed a filter-adaptive network to align the features from multiple inputs
within the neural network architecture from learning. While [7, 16, 30] tried to better use
the given hidden states generated from the previous time steps, ESTRNN [29] proposed to
use the features from both the past and the future frames. From a set of features that are kept
in memory, the spatio-temporal attention module fused the features to reconstruct the latent
frame. In recently proposed [21], attention-based aggregation modules were proposed. From
the reinforcement learning-based keyframe batch selection, the gated spatio-temporal atten-
tion block uses non-local attention to gather sharper information. By the attention-based ag-
gregation process, the more useful information can be adaptively selected both spatially and
temporally to better deblur a frame. In contrast to [29] or [21], our recurrence-in-recurrence
architecture does not necessarily require future information or cached history of features.
We let our inner recurrence module to keep track of the temporal variance of hidden states
from learning.

Long-Term Dependency Modeling in Sequential Data. LSTM [5] is one of the earliest
and widely-used architecture by solving vanishing gradient problem of RNNs. The gates in
LSTM determines the information to be forgotten in the hidden states. GRU [1] presents
an architecture with the reset and the update gates to manipulate hidden states. While the
gates are meant to model the long-term dependencies in sequential data, every information
is saved in a single state which may eventually lead to short-term optimization [28]. Trans-
former architectures [23] instead, stores the hidden activation at every time step and uses an
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Figure 2: The architecture of Recurrence-in-Recurrence Network and the components

attention module to integrate them, requiring large memory footprint. To model longer-range
dependencies in language modeling, Transformer-XL [3] reuses the states in segment-level
recurrences, however, sufficiently old states are discarded determined by the size of mem-
ory. Recently, [18] introduced compressed representation to preserve old memories instead
of discarding or saving in raw forms. They extended the baseline transformer with an ad-
ditional compression function. Our recurrence-in-recurrence architecture shares a similar
idea with [18] in terms of augmenting the short-term memory from an auxiliary module
generating additional hidden states.

3 Proposed Method

The main goal of this paper is to improve the video deblurring quality of RNN-based methods
by supplementing the hidden states by providing an additional long-ranged memory. Starting
from the baseline RNN structure, we introduce an inner-recurrence module and the adaptive
temporal blending scheme to better handle the temporal dependency. The overall architecture
is shown in Figure 2.

3.1 Video Deblurring with Recurrent Networks

We design a baseline recurrent network architecture with a feature extractor and a image
reconstructor module. From the input blurry frame B; and the hidden state /#;_1 from the
previous time step, the feature encoder emits an updated hidden state /, and a feature f; as

Sl =Encoder(By, hy—1). ¢))
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Then, the outputs from the encoder is used to reconstruct the deblurred image L; as
L, = Reconstructor(f;, ;). 2)

The recurrent model is trained with supervised loss function by comparing the output L, with
the ground-truth sharp image S; as |L, — S;||.

In our proposed recurrence-in-recurrence network, the inner-recurrence module and adap-
tive temporal blending each supplement the hidden state 4, and the feature f; to better deblur
video frames.

3.2 Inner-Recurrence Module

RNNS basically use a single hidden state at each time step to store information from the past
frames. The hidden state at each step is optimized to maximize the deblurring performance
of the corresponding frame. At every time step, less relevant information to the target frame
is forgotten and replaced by new information from the input. However, dynamic videos tend
to suffer from abrupt scene changes (i.e. camera shakes) so that long-ranged distant frames
are often more related than direct neighbors. In order to find and provide complementary
information with long-term relation, we further exploit the recurrence operation to model
the temporal variations of the hidden states. Motivated that the set of hidden states, {/},
is another sequential data, we propose to design a new type of RNN whose inputs are the
hidden states. As the recurrence operates inside the standard architecture of RNNs, we term
the module as Inner-Recurrence Module (IRM) where

hy = IRM(hy, hy_1). (3)

The outputs of IRM, {/} is generated by looking into the history and the temporal changes
of {h, }, serving as a sequence of higher-order memory states. In contrast to saving multiple
features in [29], IRM does not require additional memory to store the cached set of states
at inference. Similarly to Compressive Transformer [18] storing the compressed memory
from the memory sequence, our IRM preserves long-ranged information from learning. In
the following image reconstructor module, /z; is jointly used with &, together, supplementing
the deblurring performance. The IRM architecture is shown in Figure 2b.

3.3 Adaptive Temporal Blending

Besides using the hidden state i, to deliver information, the previous input frame B;_1 is
often used as well as B; in video deblurring RNNs [29, 30] by concatenating the features.
Instead, we choose to adaptively blend the features with an attention-based recurrent mod-
ule, inspired by dynamic temporal blending [7]. Different from the IRM that manages the
long-range dependency of frames, our Adaptive Temporal Blending (ATB) focuses on the
feature f; that is more specific to the target image at time ¢ as it is not propagated to the next
frames in the baseline architecture. DTB [7] assumes the features at all pixels to be equally
important, forcing the sum-to-one constraints in the blending weights. However, as the im-
age feature is used together with the hidden states, there could be redundancy causing spatial
variance in feature importance. Thus, we adopted an attention mechanism so that the feature
importance could be predicted from learning. Instead of updating the input feature directly
via recurrence as IRM, ATB produces the attention map to extract necessary information in
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Table 1: Effect of ATB applied to RDBN Table 2: Effect of IRM applied to IFI-RNN (C1H1)
Architect GOPRO REDS Architecture GOPRO REDS
remHecture | pSNR - SSIM | PSNR  SSIM | time(sec) PSNR SSIM | PSNR  SSIM | time(sec)
RDBN [29] 2982 09043 | 3229 09222 | 0.095 IFI-RNN [16] 2830 0.8668 | 30.01 0.8762 | 0.049
RDBN + GSA 30.10 0.9064 | 32.52 0.9233 0.170 IFI-RNN + DTB [7] 28.31 0.8697 | 30.12 0.8763 0.059
RDBN +IRM | 30.14 09072 | 32.59 09304 | 0.161 IFI-RNN + ATB 28.65 0.8779 | 30.61 0.8800 | 0.065

fi- The spatial attention maps are multiplied to the features as conical combination,
Jo=Wi X fior +wi < fi, “

where w;_; > 0 and w; > 0. Different from DTB, ATB does not require sum-to-one con-
straint. We let the attention weights to adaptively attenuate or emphasize the corresponding
features without being tied to each other. The design of ATB module is shown in Figure 2c.

3.4 Reconstructor

The reconstruction module aggregates all the features extracted from the encoder, inner-
recurrence module, and the adaptive temporal blending module. With all features f;, A,
fi, h; concatenated, the deblurred image is obtained from several convolutional layers. The
reconstructor architecture is shown in Figure 2d.

4 Experimental Results

4.1 Experimental Setup

To train and validate the performance of every model, we used GOPRO [14], REDS [15], and
DVD [20] datasets. DVD dataset contains 61 training sequences and 10 test sequences. GO-
PRO dataset provides 22 training and 11 test sequences and REDS dataset has 240 training
and 30 validation sequences. All the video frames are in 1280 x 720 resolution. To validate
the effect of the proposed modules, every experiment was done in a unified setting, training
from scratch with L1 loss and ADAM [10] optimizer with batch size 16. On GOPRO and
REDS datasets, each model was trained for 500 and 200 epochs, respectively, annealing the
learning rate at 300th and 100th epochs from the initial learning rate 1 x 10~*. On DVD
dataset, models were trained for 500 epochs and the learning rate was halved after every 200
epochs. For the model architectures used in the experiments and the implementation details,
please refer to the supplementary material.

4.2 Ablation Study: Effect of IRM and ATB

We validate the effect of our proposed IRM and ATB by applying them to the baseline RNN
architecture based on RDBN [29] and IFI-RNN [16]. The simplest form of IFI-RNN without
additional iterations, C1H1 is used.

In Table 1, we show the effect of applying IRM on the baseline model on GOPRO and
REDS datasets. Our IRM improves the deblurring accuracy by large margin at a similar
degree of computing time. We compare the effect of IRM and GSA [29] by saving a set
of features from different time steps.As we do not use future frames for deblurred frame
estimation, we used 3 features, {f;_2, fi—1, f; }, before updating the hidden state ;. We find
that IRM is not only more accurate than GSA but also faster in computation.
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Figure 3: Visualization of hidden state and the IRM output
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Figure 4: Distribution of sum of attention weights in ATB and DTB on GOPRO [14] dataset.
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In Figure 3, we visualize the hidden state and the long-term memory obtained from the
IRM as well as the error map of the deblurred image from the previous time step. While
the facial texture requires detailed information, the hidden state /s,_; fails to serve as an
informative cue due to the erroneous estimation in the previous frame as shown in Figure 3c.
It shows that ;| from IRM brings a complementary information from the further past
frames to help recover L;.

In Table 2, we validate the effect of blending features by using ATB in the RNN archi-
tecture. Our ATB successfully improves the deblurring performance of the baseline while
DTB provides marginal gains over the baseline. The different behavior of ATB and DTB in
handling the features is shown in Figure 4. By removing the sum-to-one constraint of DTB
in our adaptive temporal blending, we find that majority of the features are suppressed by the
learned attention. It shows that our ATB could better find the useful constituents in the fea-
tures while discarding the unnecessary information. Interestingly, when IRM is used jointly,
ATB tends to makes more use of the f; and f;_; as shown in Figure 4b. We further visualize
the effectiveness of our ATB in Figure 6 by showing the blended feature. While DTB fails
to gather necessary information from blending in Figure 6¢c, ATB shows clearer edges in
Figure 6d, helping the reconstruction from the walking person’s blurry legs. It indicates that
our relaxed condition from removing the sum-to-one constraint leads to successful selection
on necessary information from the spatial attention.

In Figure 5, we visualize the effect of IRM, ATB in the deblurred results. The carplate
numbers are better recognizable from the results using both modules.
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(a) Blur (b) Deblurred (IFIC1+ATB+IRM) (e) IFIC1+IRM (f) IFIC1+ATB+IRM

Figure 5: Visual ablation showing the effect of ATB and IRM on GOPRO [14] dataset.

Table 3: Application of RIRN on existing RNN architectures

Architecture DVD GOPRO REDS
PSNR  SSIM PSNR  SSIM PSNR  SSIM FPS
IFI-RNN [16] 30.53  0.9069 | 28.30 0.8668 | 30.01 0.8762 | 20.15
IFI-RNN + RIRN 30.97 09168 | 29.14 0.8894 | 31.08 0.8905 | 12.48
STRCNN [7] 29.15 0.8728 | 28.72 0.8460 | 30.23  0.8708 7.69
STRCNN + RIRN | 30.17 09019 | 28.87 0.8781 | 30.76  0.8902 5.94
STFAN [30] 3093 09087 | 28.77 0.8776 | 31.26  0.8864 6.66
STFAN + RIRN 31.03 09096 | 29.24 0.8876 | 31.44 0.8951 442
RDBN [29] 3144 09188 | 29.82 09043 | 3229 0.9222 | 10.50
RDBN + RIRN 31.83  0.9227 | 30.17 09120 | 32.71  0.9322 8.53
GRU 27.53 0.8335 | 25.11 0.7890 | 26.69 0.7956 | 22.24
GRU + RIRN 28.58 0.8773 | 26.36 0.8217 | 28.60 0.8428 | 20.94
LSTM 2694  0.8365 | 2522 0.7948 | 26.87 0.8046 | 19.14
LSTM + RIRN 29.16 0.8813 | 27.24 0.8400 | 29.12 0.8584 | 16.90

4.3 Effect of RIRN in State-of-The-Art Methods

Finding both the IRM and ATB to be effective in recurrent networks, we apply the recurrence-
in-recurrence architecture to various video deblurring methods. In Table 3, we validate
the generalizability of RIRN across different architectures by showing the consistent im-
provements from RIRN-applied models. We use IFI-RNN [16] C1H1 model, STRCNN [7],
STFAN [30], RDBN. RDBN is derived from ESTRNN [29] but does not use the cached
memory and GSA module. Also, we apply our RIRN to the gated RNN architectures such as
LSTM and GRU. where the updates of hidden states are controlled by the gates. While the
LSTM and GRU use the gates to control memory of RNNs, our RIRN successfully brings
gains in deblurring accuracy from our IRN and ATB. In Figure 8, 9 and 7, we show the vi-
sual effect of our RIRN-applied results on various RNNs on GOPRO [14], REDS [15], and
DVD [20] datasets. By applying RIRN, the textures are better deblurred and better recog-
nizable compared with the results obtained from the baseline methods. We also show the
generalizability of our RIRN on the real blurry videos [2] in Figure 10.
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Figure 7: Comparison of baselines and RIRN-applied method results in DVD [20] dataset
5 Conclusion

In this paper, we proposed a new method to improve the existing recurrent neural networks
with our recurrence-in-recurrence network architecture. The recurrence-in-recurrence net-
work consists of inner-recurrence module and the adaptive temporal blending method to
augment the baseline recurrent networks. The inner-recurrence module learns to model the
temporal variation of hidden states and provides a complementary information that is often
unseen at the previous time step by looking into further past frames. The adaptive temporal
blending of features can selectively extract necessary information and suppress unwanted
part of the information. We show that our RIRN consistently improves the video deblurring
performance on various RNN-based methods and exhibits state-of-the-art performance.
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(a) Input blurry image (b) Deblurred image (RDBN+RIRN)
(c) GRU (d) LSTM (e) STRCNN [7] (f) STFAN [30] (g) IFICI [16] (h) RDBN [29]
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Figure 8: Comparison of the baselines and the RIRN-apphed results on GOPRO [14] dataset

(a) Input blurry image (b) Deblurred image (RDBN+RIRN)
A — o & a’ o] A. —
(c) GRU (d) LSTM (e) STRCNN [7] (f) STFAN [30] (g) IFICI [16] (h) RDBN [29]
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Figure 9: Comparison of the baselines and the RIRN-applied results on REDS [15] dataset
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(a) GRU (b) LSTM (c) STRCNN [7] (d) STFAN [30] (e) IFI-RNN [16] (f) RDBN [29]

B
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(g) GRU+RIRN (h) LSTM+RIRN (i) STRCNN+RIRN  (j) STFAN+RIRN (k) IFI-RNN+RIRN (1) RDBN+RIRN

Figure 10: Visual comparison of RNN-based video deblurring results (top) and our RIRN-
applied results (bottom) on real blurry videos.
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