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Abstract
Face recognition is one of the most active tasks in computer vision and has been

widely used in the real world. With great advances made in convolutional neural net-
works (CNN), lots of face recognition algorithms have achieved high accuracy on various
face datasets. However, existing face recognition algorithms based on CNNs are vulner-
able to noise. Noise corrupted image patterns could lead to false activations, significantly
decreasing face recognition accuracy in noisy situations. To equip CNNs with built-in
robustness to noise of different levels, we proposed a Median Pixel Difference Convo-
lutional Network (MeDiNet) by replacing some traditional convolutional layers with the
proposed novel Median Pixel Difference Convolutional Layer (MeDiConv) layer. The
proposed MeDiNet integrates the idea of traditional multiscale median filtering with deep
CNNs. The MeDiNet is tested on the four face datasets (LFW, CA-LFW, CP-LFW, and
YTF) with versatile settings on blur kernels, noise intensities, scales, and JPEG qual-
ity factors. Extensive experiments show that our MeDiNet can effectively remove noisy
pixels in the feature map and suppress the negative impact of noise, leading to achiev-
ing limited accuracy loss under these practical noises compared with the standard CNN
under clean conditions.

1 Introduction
Face Recognition is one of the most important research fields in computer vision and pattern
recognition. Recent advances in deep learning, coupled with abundant face data, have led
to excellent progress in face recognition algorithms [8, 24, 27, 30, 31, 32, 37]. Due to
these achievements, face recognition technology is widely utilized in the real world, such
as human-computer interaction[20], video surveillance[5], and identification [14, 34]. The
accuracy is a crucial metric to evaluate the effectiveness of recognition models. However,
the existing noise produced by the sensor of a scanner, cameras, image compression, etc.,
results in a significant decrease in the accuracy of models. Enhancing the noise-robustness
is meaningful to the practical applications of face recognition.
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Recently, many studies have been carried out to deal with the challenges of face recog-
nition, such as the variations in expressions, lighting conditions, and poses [4, 16, 19], with
few efforts taking noise into account. The existing noise-robust face recognition methods
mainly consider the noisy labels in the face dataset [9, 10, 33, 36, 44]. This kind of method
is hard to adapt to the diversity and complexity of noise in the real world. Our purpose is to
improve the robustness of face detectors to noise in the real world.

In this paper, we propose an effective approach to enhance the noise-robustness of CNNs
with limited decreasing accuracy compared with standard CNNs. The existing CNNs exhibit
sensitivity to noise, particularly salt-and-pepper noise. Inspired by [21], we proposed a ro-
bust Median Pixel Difference Convolutional Network (MeDiNet), which can effectively sup-
press noise and improve the performance under noisy conditions by median pixel difference
convolution (MeDiConv). Specifically, MRELBP replaces the individual pixel intensities in
the feature maps with median representations in the corresponding local regions and reports
excellent results in the texture classification task under various noises, showing that com-
bining local median representation is powerful to extract features. The proposed MeDiConv
inhabits noise-robust property of MRELBP.

We summarize our contributions as follows: (i) We proposed a noise-robust network
MeDiNet integrating a novel convolutional operation named as MeDiConv to utilize median
representation to suppress noise in images effectively. (ii) We adopt the image degradation
model with a broad range of noises to approximate the noisy model in the real world (blur
kernel, noise intensity, scaling, JPEG quality), which can evaluate the performance of our
method in practical application. (iii) The model can be robust to a variety of noises without
generating additional noisy images for training the model.

In the experiment, MeDiNet is tested on four face datasets with versatile settings. For
approximating the complex noise model in the real world, we also add two complex noises
to evaluate our method except salt-and-pepper noise and additive white Gaussian noise
(AWGN): Heteroscedastic Gaussian (HG) [26] and multivariate Gaussian (MG) noise [43]).
The noisy image examples are shown in Figure 1. Our experimental results show that the
MeDiConv can effectively suppress the negative impact of the noise on the images. We
demonstrate that MeDiNet reports superior performance to standard CNN architectures on
four face datasets under noisy conditions (LFW [12], CA-LFW [46], CP-LFW [45], Youtube
Face [38]) while the loss of accuracy on the clean images is limited.

Figure 1: The image example with versatile settings. (b) Gaussian blur, σ=3, kernel size=13;
(c) Gaussian noise, σ=20; (d) JPEG Compressor, JPEG quality=10.
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2 Related work

2.1 Face recognition in noisy conditions
With the development of deep learning, a large number of face recognition algorithms have
been proposed to address problems like lighting, age, pose [4, 45, 46]. Noise in human
face images can significantly decrease the performance of face recognition systems. Noise
drops the valuable information in the image and influences the ability of some algorithms to
recognize a correct object. To suppress the impact of noise, Ding et al. [7] proposed the NR-
Network for face recognition under noise, which utilized a multi-input structure to extract a
multi-scale and more discriminative feature from the input image. Wu et al. [39] proposed
a denoising network D-BSN that is designed as a two-stage training framework with self-
supervised learning and knowledge distillation to learn the denoising from unpaired clean
and noisy images. Anwar et al. [2] firstly incorporate an attention mechanism to exploit
channel dependencies in the denoising task. Li et al. [18] proposed GFRNet consisting of
warping and a reconstruction network. The GFRNet combined the degraded and high-quality
images to enhance the performance of face restoration. The existing studies for suppressing
noise focus on the restoration tasks [1, 2, 6, 18, 39, 41]. These methods depend on training
with noisy and clean images. We aim at designing a general framework without extra noisy
image data to suppress noise in the face recognition task directly.

2.2 LBP and convolution
LBP [25] was proposed for texture analysis and has been successfully applied to many tasks
[22], such as image retrieval [35], object detection [23] and face image analysis [11, 28].
LBP has emerged as one of the most prominent texture descriptors. Recently, some studies
tried to combine LBP with standard CNNs [29, 42]. The LBCNN was motivated by LBP and
utilized a set of fixed sparse pre-defined binary convolutional filters to achieve computational
savings [13]. Inspired by LBCNN, the LBVCNN added the LBV layer to reduce trainable
parameters in facial expression task [15]. Li et al. [17] combined the LBP and attention
mechanism to extract useful features, which achieved higher performance in face recogni-
tion. These studies demonstrated that combining LBP with standard CNNs is a practical
and flexible approach in various tasks. The MRELBP is based on combining a median fil-
ter with LBP operation in a multiscale fashion, which can effectively extract noise-resistant
patterns. The development of MeDiNet shares similar motivations but has slightly different
implementation due to the different processing procedures of LBP and CNN.

3 MeDiNet
The MeDiNet is built on the Sphere20 [24]. The initial convolutional layers of Sphere20 are
replaced with MeDiConv for suppressing the negative impact of a broad range of noises in
the face images. The operation of MeDiConv is introduced as follows.

3.1 Preliminary of MRELBP
The traditional LBP calculates the differences between the pixel value of the central point and
those of its neighbors. The MRELBP [21] set the pixel intensity as median representation
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Figure 2: The convolutional operation of Median Pixel Difference Convolution. µi denotes
a global predefined value of each channel.

in a local patch, which is more robust to gray scale variations, rotation changes, and noise.
We choose the MRELBP descriptor under center pixel representation, a simple and effective
way to handle noise. This descriptor can be expressed as:

MRELBP_CI(xc) = s(φ(Xc,w)−µw) (1)

where s is the sign function, φ(Xc,w) denotes the median operation in Xc,w (the local patch of
size w×w centered at center pixel xc), µ denotes the mean value of φ(Xi,w) over the whole
image Xi. Inspired by this work, we use a set of learnable weight parameters to replace
sign function for combining the standard CNN with median representation. The MRELBP
is based on combining a median filter with traditional LBP operation, which can effectively
extract powerful features under various noisy conditions. Our MeDiConv also utilize median
representation in convolutional operation. This processing can make convolutional layer
suppress noisy pixels in forward propagation.

3.2 MeDiConv
The calculation process of standard CNN can be described as: the convolutional kernel
W cout×cin×k×k slides on the feature map Xcin×H×W to calculate the output. The formulation
can be expressed as following (cout is set to 1 without loss of generality).

Xout(u,v) =
cin−1

∑
i=0

∑
(p,q)∈N

Xi(u+ p,v+q) ·Wi(p,q) (2)

where (u,v) denotes the coordinate of the pixel in feature map, Wi denotes the convolutional
kernel, and N denotes the k× k neighborhood area centered at (u,v). The standard CNNs
are sensitive to noise (especially salt-and-pepper noise) since the noise in the local region
can confuse the subsequent feature representation process and lead to the detection of false
features with no physical correlation.

To suppress noise in regions of feature maps, MeDiConv utilizes local median pixel dif-
ference value to replace the original value of xu,v in the convolutional operation. As shown in
Figure 2, the value of each pixel xi in the input feature patch is replaced by the median value
of the 3x3 neighborhood centered on xi. The procedure can be decomposed as the following
stages: 1) for each location (u,v) with its neighborhood region {(u+ p,v+q)|(p,q) ∈ N},
calculating the median representation for each pixel located in the neighborhood region; 2)
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replacing the pixel intensity Xi(u+ p,v+q) in Eq. 2 with the difference between the calcu-
lated median representation of Xi(u+ p,v+q) and a global predefined value µ; 3) combining
the output in stage 2 with the weights to generate the output feature map. Therefore, MeDi-
Conv can be expressed as:

X̃out(u,v) =
cin−1

∑
i=0

∑
(p,q)∈N

(φ(Xi(u+ p,v+q))−µ) ·Wi(p,q) (3)

φ(Xi(u,v)) = Median({Xi(u+ p,v+q)|(p,q) ∈N}) (4)

where X̃out is the output feature map, φ(Xi(u,v)) denotes the median representation of
the k× k region centered at Xi(u,v), and µ represents the average value of φ(Xi(u,v)) over
the whole feature map. The aim of subtracting µ is to eliminate the bias of pixel intensities
in the feature map.

Compared with standard convolution, the MeDiConv is a nonlinear smoothing operation,
which can effectively remove outliers with limited impact on the ability of feature extraction
[3]. Noise corrupted image patterns could lead to false activations, leading to a significant
decrease in accuracy. For MeDiConv, the effect of applying MeDiConv at multiple layers
can be considered as applying multiple median filters of different kernel sizes on the original
image as each MeDiConv layer has a different receptive field. That is also why the proposed
MeDiNet can deal with noise of different levels. Considering the trade-off between accuracy
and noise robustness, MeDiNet only set MeDiConv in the first few layers. When the standard
CNN in the deep layer of the network is replaced by MeDiConv, the response of the feature
map will be degraded. Setting MeDiConv in the beginning layers is sufficient to eliminate
the impact of noise.

4 Experiments

4.1 Dataset
We adopt the CASIA-WebFace [40] as a training dataset. The LFW [12], CA-LFW [46],
CP-LFW [45], Youtube Face [38] are used for evaluation. The details of datasets are as
following:

CASIA-WebFace. The CASIA-WebFace dataset is collected from IMDb website con-
taining 10,575 subjects and 494,141 images. The collection and annotation of CASIA-
WebFace use a semi-automatical way. It also utilizes the name bag and face similarity for
efficient labeling.

LFW. Labeled Faces in the Wild (LFW) aims to study face recognition in an uncon-
strained environment, containing more than 13,000 face images from the website. Each face
in the LFW is marked with a person’s name, and about 1680 people contain more than two
faces. Although there are some mislabeled matched pairs, LFW is considered completely
clean.

CA-LFW and CP-LFW. CA-LFW and CP-LFW are renovations of LFW dataset. These
datasets focus on the cross-age and cross-pose face challenges in face recognition. The
images are collected from 3,000 positive face pairs with age gap and pose gap, respectively.
Compared with the LFW, both datasets are more challenging with lower test accuracy.

YouTube Faces. The YouTube Faces Dataset (YTF) is a facial video database used
to study unconstrained face recognition in videos. The dataset contains 3,425 videos from
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1,595 different people. All the videos are collected from YouTube. Each subject provides an
average of 2.15 videos. The shortest clip length is 48 frames, the longest clip length is 6070,
and the average video clip length is 181.3.

4.2 Degradation model
In the practical application, the quality of images can be affected by noise, scaling, compres-
sion, and their combination. For verifying the robustness of MeDiNet, a degradation model
is required to generate realistic noisy images [18], which can be defined as:

Id = ((I⊗ k)↓S +n)JPEGC (5)

where ⊗ means the convolutional operation. k denotes the blur kernel. ↓S denotes the down-
sampling operation with the scale factor S. n denotes the noise like AWGN. (·)JPEGC de-
notes the JPEG compression with the quality factor c. The degradation Id = ((I⊗ k)↓S +n)
is caused by remote acquisition and (·)JPEGC expresses the effect of JPEG compression.

The parameter settings of our degradation model is shown as below:
Blur kernel. In our paper, we utilize Gaussian blur kernel and Motion blur kernel as the

Simulation of defocusing effect. The variance ρ of Gaussian blur is sampled from the set
{1 : 1 : 3}. The degree D of Motion blur is sampled from the set {10 : 10 : 40}. 0 means no
blur operation.

Downsampler. The scale factor S is sampled from the set {2,4,6,8}. It should be noted
that the image will be upsampled to its original size after downsampling.

Noise. Besides common noise (like AWGN and salt-and-pepper noise), we select more
complex noise to evaluate our model, including HG ni ∼N (0,α2xi+δ 2) and MG noise n∼
N (0,∑) with ∑ = L2 ·UΛUT . U is a random unitary matrix, Λ is a diagonal matrix of three
random values in the range (0,1). The sampling ranges of noisy parameters are following:
1) AWGN: σ in {15,25,50}; 2) Salt-and-pepper noise: ρ in {5%,10%,15%,25%}; 3) HG
noise: α in {20 : 10 : 40} , σ in {10,20}; 4) MG noise: L= 75.

JPEG compression. When storing images, the quality would be compressed. We add
the JPEG Compression with the quality factor C on the degraded images. The C is sampled
from {10 : 10 : 40}. 0 means the image is losslessly compressed.

4.3 Experimental settings
Our model is trained on the CASIA-WebFace dataset. We crop the training image with size
112x96 to feed the network. The model is trained in 20 epochs with SGD optimizer. The
batchsize is set as 256. The learning rate is initialized as 1e-2 and decayed by factor 0.1 after
10, 15, 18 epoch. We add the degradation model on test images for evaluation and conduct a
separate experiment to analyze the influence of independent noise.

4.4 Experiments on the images under single noise
Our main objective of this work is to enhance the inherent noise robustness of CNNs without
significant performance loss. Therefore, Our method focuses on applying median represen-
tation to the CNN. We set the Sphere20 as baseline [24] and compare the performance of
different MeDiConv layers. The MeDiNet is built on the Sphere20. The first to fifth layers
of Sphere20 are replaced with the MeDiConv (For example, the MeDi3 denotes the first three
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layers are MeDiConv). The training stage only used clean images. The noisy images were
used in the test stage. Various types of noise are utilized to evaluate our training model on the
LFW and YTF datasets (See Figure 3 and Figure 4). We separately analyzed the robustness
of MeDiNet to each noise type. The detailed information of results can be observed in the
supplemental material.

Evaluation on blurring. In practical applications, the blurred images are generated from
defocus and pre-processing stage. We evaluate MeDiNet on the gaussian and motion blur
kernel. The blurring leads to the degradation of edges and structures in the image. The
results illustrate that our method is robust to image blurring. However, the performance
drops slightly with the number of MeDiConv increasing to five layers.

Evaluation on AWGN and Salt-and-Pepper noise. These noises are generated from re-
mote sensing and can be regarded as outliers in the images. The standard CNNs are sensitive
to noise. Noise pixels can significantly reduce the accuracy of face recognition, especially
salt-and-pepper noise. When setting the proportion of salt-and-pepper noise to 20%, the ac-
curacy of model drops by more than 30%. MeDiNet can effectively remove the outliers in
the feature maps by median representation. The test results in Figure 3 and Figure 4 show
that our method can enhance the robustness to a broad range of noises.

Evaluation on complex noise. However, CNN usually generates poorly due to complex
noise even if it can adapt to AWGN and salt-pepper noise [26]. Thus, we also present the
results on complex noise models: HG and MG noise (See Figure 3 and Figure 4). We can
observe that the improvement is still significant, which can prove the robustness of proposed
MeDiNet.

Evaluation on Scaling and Compression. Standard CNNs achieve slight accuracy loss
under compression. In the procedure of JPEG compression, part of high-frequency infor-
mation is removed, which has a negative impact on the ability of CNN to extract features.
For scaling, results demonstrate that the accuracy drops significantly when enlarging scaling
factor S because of sampling and interpolation. The detailed information of images might
be removed during the scaling process. The median representation can effectively enhance
the expression ability of features to a certain extent.

Figure 3: The evaluation on the LFW dataset under single noise.
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Figure 4: The evaluation on the YTF dataset under single noise.
Through the analysis of each experimental result under the single noise, we can ob-

serve that the MeDiNet inherits the characteristics of MRELBP, and demonstrates striking
robustness to various image noises, including blurring, AWGN, Salt-and-Pepper, HG, MG,
Compression and Scaling. In the Sections 4.5, the combination of multiple noises is adopted
to test our method, which approximates noise interference in the real world. We visual-
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Figure 5: The visualization of feature map. The first row are outputs of the first to fifth layer
in the baseline; the second row are outputs of the last MeDiConv layer in the MeDi1-5 (e.g.,
the second figure denote the feature map of last MeDiConv layer in MeDi2).
ized feature maps of middle layers in the model to demonstrate the ability of MeDiConv to
suppress noise (See Figure 5). The input image was added with the AWGN with σ = 50.
We can observe that the output by MeDiConv is smooth and contains fewer noisy pixels.
The structure and edges of face are identifiable, leading to improve the accuracy of face
recognition.

4.5 Experiments on the degraded images
In this section, the degradation model introduced in Sections 4.2 is adopted to approximate
the real-world noise. We utilize two blurring methods and four types of noise to combine.



ZHANG, SU, LIU: MEDINET FOR ROBUST FACE RECOGNITION 9

The parameters of the degradation model are randomly generated within their respective pa-
rameter ranges in Sections 4.2 (The value of parameters can be observed in the supplemental
material). In this section, we present the evaluation of four combining noises:
• Gaussian_blur+AWGN+Scaling+Compression (GB+AWGN);
• Gaussian_blur+Salt-and-Pepper+Scaling+Compression (GB+SP);
• Gaussian_blur+HG+Scaling+Compression (GB+HG);
• Gaussian_blur+MG+Scaling+Compression (GB+MG).
The clean denotes no noise in the images. Under real-world noisy conditions, the face

recognition accuracy drops more significantly than it under single noise. Tab.1 and Tab.2
show the evaluation of four datasets under real-world noisy conditions. The results of other
combinations can be observed in the supplemental material.

Table 1: The evaluation on the LFW and YTF dataset

Clean GB+AWGN GB+SP GB+HG GB+MG
LFW YTF LFW YTF LFW YTF LFW YTF LFW YTF

Sphere20 0.9922 0.9330 0.7682 0.7636 0.6762 0.6618 0.7482 0.7440 0.6573 0.6628
MeDi1 0.9908 0.9300 0.7938 0.7946 0.7407 0.7472 0.7790 0.7500 0.6723 0.6790
MeDi2 0.9910 0.9322 0.8390 0.8256 0.7797 0.7848 0.8192 0.7984 0.6755 0.6754
MeDi3 0.9898 0.9328 0.8402 0.8254 0.7908 0.7888 0.8208 0.8058 0.7265 0.7178
MeDi4 0.9882 0.9350 0.9083 0.8864 0.8820 0.8782 0.8942 0.8708 0.7157 0.7654
MeDi5 0.9892 0.9334 0.8943 0.8812 0.8735 0.8648 0.8848 0.8590 0.7222 0.7452

* The MeDi1 can be regarded as the image preprocessed by median filtering.

Compared with the single noise in Section 4.4, the degradation model further increases
the complexity of noise. The results in Tab. 1 and Tab. 2 demonstrate that MeDiNet can
enhance the performance under real-world noisy condition. We can observe improvements
of GB+AWGN, GB+SP, and GB+HG are significant. The performance under the GB+MG
is still limited.

In order to fully verify the effectiveness of our method, we also report the results of CA-
LFW and CP-LFW dataset (See Tab. 2). These datasets are collected for specific challenges
(pose and age difference). We can observe that the improvement on the CP-LFW dataset is
limited. This dataset selects face pairs with pose differences to add pose variation to intra-
class variance and contains less edge information than LFW. When using the MeDiConv, the
degradation of edge leads to a limited increase on the CP-LFW (e.g., the accuracy of MeDi5
is only 3.32% higher than baseline under GB+MG condition).

Table 2: The evaluation on the CA-LFW and CP-LFW dataset
Clean GB+AWGN GB+SP GB+HG GB+MG

CP CA CP CA CP CA CP CA CP CA
Sphere20 0.7618 0.9078 0.5697 0.6957 0.5238 0.5545 0.5502 0.6030 0.5130 0.5403
MeDi1 0.7607 0.9020 0.5868 0.7288 0.5525 0.6500 0.5500 0.6405 0.5133 0.5337
MeDi2 0.7638 0.9032 0.5927 0.7647 0.5677 0.6903 0.5675 0.6835 0.5315 0.5498
MeDi3 0.7620 0.9017 0.6028 0.7632 0.5660 0.6940 0.5707 0.6912 0.5405 0.5577
MeDi4 0.7407 0.8938 0.6485 0.8097 0.6210 0.7560 0.6097 0.7558 0.5372 0.6322
MeDi5 0.7553 0.8927 0.6438 0.8082 0.6132 0.7628 0.6028 0.7582 0.5462 0.6327

The evaluation of four datasets demonstrates that proposed MeDiNet enhances the per-
formance of face recognition under the real-world noisy conditions. The accuracy is im-
proved when the number of MeDiConv layers increases. The median representation causes
a probability of missing edge information. Thus, the performance slightly drops compared
with baseline when testing on clean images. When adding multiple combinations of noises,
the face recognition accuracy increases significantly on four datasets compared with base-
line due to the noise-robustness of MeDiNet. However, the improvement under complex
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noise (GB+HG and GB+MG) is lower than other combinations. The ability of MeDiNet to
deal with complex noises needs to be strengthened. Solving the problem of edge caused by
median representation is also the focus of future work.

In order to further analyze the characteristics of MeDiConv, we report the time consump-
tion of the model and transfer it to the ResNet architecture for evaluation.

Time Consumption In the experiment, we observed median operation is hard to speed
up on GPU. When the number of MeDiConv layers increases, the training time consumption
significantly increases (See in Fig. 6). It would be more efficient to implement from scratch
at C/Cuda level. For training convergence, the difference between the loss curve and training
accuracy of MeDi1-3 and baseline is limited, illustrating that training MeDiNet is stable.
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Figure 6: The first graph shows the training time of each model (20 epochs); The second
graph shows the inference time for per image; The third and fourth graphs show the training
loss and accuracy.

Transfer Ability For verifying that MeDiConv is a general way to handle noise, we
choose ResNet18 as the backbone. The result is shown in Tab 3. We fixed the first convo-
lution in ResNet as MeDiConv. The MeDiRes1 denotes that we replace the convolutional
layers in the first block with MeDiConv. The result showed our methods still can suppress
the negative impact of noise, which can prove that MeDiConv is a general way to handle
noise that can be transferred to other architectures.

Table 3: The ResNet architecture evaluated on the LFW
Clean GB+AWGN GB+SP GB+HG GB+MG

ResNet18 0.9888 0.8065 0.7000 0.7943 0.6665
MeDiRes1 0.9730 0.8348 0.7847 0.8205 0.6688
MeDiRes2 0.9810 0.8580 0.8110 0.8378 0.6950

5 Conclusion

We proposed a robust architecture MeDiNet, to enhance the performance of face recognition
under noisy conditions. Standard CNNs are sensitive to the noise in the real world, espe-
cially in low-quality security cameras, low-light conditions, etc., which leads to a significant
decrease in the accuracy of face recognition. Inspired by MRELBP descriptor, MeDiNet
adopted median pixel difference convolutions, which can effectively remove noisy pixels in
the feature map. Extensive experimental results showed the MeDiNet demonstrates striking
robustness to various image noises.

Compared with standard CNNs, our method has attractive properties on noisy images.
However, there are several challenges that need to be addressed: 1) The trade-off exists
between accuracy and noisy robustness. The median representation can affect feature ex-
traction (e.g., edge detection) in the deep layers; 2) The overlap region between neighbor
MeDiConv kernel might result in the same median value, which can affect the accuracy of
face recognition; 3) The accuracy still decreases significantly under the complex noise.
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